feat(core): Added AES-128-CBC password scheme for SQL authentication.

This allows SOGo to use Plesk's database as an authentication source.
pull/265/head
Ludovic Marcotte 2020-01-06 15:47:47 -05:00
parent 4216f9e726
commit f0980a9cbd
12 changed files with 853 additions and 31 deletions

View File

@ -1659,8 +1659,9 @@ they have the same name as popular LDAP attributes (such as `givenName`,
|The default algorithm used for password encryption when changing
passwords. Possible values are: `none`, `plain`, `crypt`, `md5`,
`md5-crypt`, `smd5`, `cram-md5`, `ldap-md5`, and `sha`, `sha256`,
`sha512` and its ssha (e.g. `ssha` or `ssha256`) variants. Passwords can
have the scheme prepended in the form `{scheme}encryptedPass`.
`sha256-crypt`, `sha512`, `sha512-crypt` and its ssha (e.g. `ssha` or
`ssha256`) variants and `sym-aes-128-cbc`. Passwords can have the
scheme prepended in the form `{scheme}encryptedPass`.
If no scheme is given, _userPasswordAlgorithm_ is used instead. The
schemes listed above follow the algorithms described in
@ -1673,7 +1674,13 @@ context as Dovecot stores in its database. 
|prependPasswordScheme
|The default behaviour is to store newly set passwords without the
scheme (default: `NO`). This can be overridden by setting to `YES` and
will result in passwords stored as `{scheme}encryptedPass`. 
will result in passwords stored as `{scheme}encryptedPass`. For
`sym-aes-128-cbc`, always set this to `NO`.
|keyPath
For `sym-aes-128-cbc`, a global key file is required. This value
must be set to the full path where the key file is. The key file
must also be readable by the `sogo` user.
|canAuthenticate
|If set to `YES`, this SQL source is used for authentication.

View File

@ -235,7 +235,8 @@
tags = [NSArray arrayWithObjects: @"DTSTAMP", @"DTSTART", @"DTEND", @"DUE", @"EXDATE", @"EXRULE", @"RRULE", @"RECURRENCE-ID", nil];
uid = [[component uid] asCryptedPassUsingScheme: @"ssha256"
withSalt: [[settings userSalt] dataUsingEncoding: NSASCIIStringEncoding]
andEncoding: encHex];
andEncoding: encHex
keyPath: nil];
children = [[[[component children] copy] autorelease] objectEnumerator];

View File

@ -169,7 +169,7 @@ SOGo_OBJC_FILES = \
SOGoCredentialsFile.m \
SOGoTextTemplateFile.m
SOGo_C_FILES += lmhash.c
SOGo_C_FILES += lmhash.c aes.c
SOGo_RESOURCE_FILES = \
SOGoDefaults.plist \

View File

@ -617,7 +617,8 @@ groupObjectClasses: (NSArray *) newGroupObjectClasses
- (NSString *) _encryptPassword: (NSString *) thePassword
{
NSString *pass;
pass = [thePassword asCryptedPassUsingScheme: _userPasswordAlgorithm];
pass = [thePassword asCryptedPassUsingScheme: _userPasswordAlgorithm
keyPath: nil];
if (pass == nil)
{

View File

@ -1,7 +1,7 @@
/* NSData+Crypto.h - this file is part of SOGo
*
* Copyright (C) 2012 Nicolas Höft
* Copyright (C) 2012-2016 Inverse inc.
* Copyright (C) 2012-2020 Inverse inc.
*
* Author: Nicolas Höft
* Inverse inc.
@ -32,7 +32,8 @@
@interface NSData (SOGoCryptoExtension)
- (NSData *) asCryptedPassUsingScheme: (NSString *) passwordScheme
withSalt: (NSData *) theSalt;
withSalt: (NSData *) theSalt
keyPath: (NSString *) theKeyPath;
- (NSData *) asLM;
- (NSData *) asMD4;
@ -46,6 +47,8 @@
- (NSData *) asSSHA512UsingSalt: (NSData *) theSalt;
- (NSData *) asSHA256CryptUsingSalt: (NSData *) theSalt;
- (NSData *) asSHA512CryptUsingSalt: (NSData *) theSalt;
- (NSData *) asSymAES128CBCUsingIV: (NSString *) theIV
keyPath: (NSString *) theKeyPath;
- (NSData *) asCramMD5;
- (NSData *) asCryptUsingSalt: (NSData *) theSalt;
@ -57,8 +60,8 @@
withBase64: (BOOL) doBase64;
+ (NSData *) generateSaltForLength: (unsigned int) theLength;
+ (NSString *) encodeDataAsHexString: (NSData* ) theData;
+ (NSData *) decodeDataFromHexString: (NSString* ) theString;
+ (NSString *) encodeDataAsHexString: (NSData *) theData;
+ (NSData *) decodeDataFromHexString: (NSString *) theString;
@end

View File

@ -1,7 +1,7 @@
/* NSData+Crypto.m - this file is part of SOGo
*
* Copyright (C) 2012 Nicolas Höft
* Copyright (C) 2012-2016 Inverse inc.
* Copyright (C) 2012-2020 Inverse inc.
* Copyright (C) 2012 Jeroen Dekkers
*
* Author: Nicolas Höft
@ -49,6 +49,7 @@
#error this module requires either gnutls or openssl
#endif
#include "aes.h"
#include "lmhash.h"
#import <Foundation/NSArray.h>
@ -178,6 +179,7 @@ static void _nettle_md5_compress(uint32_t *digest, const uint8_t *input);
*/
- (NSData *) asCryptedPassUsingScheme: (NSString *) passwordScheme
withSalt: (NSData *) theSalt
keyPath: (NSString *) theKeyPath
{
if ([passwordScheme caseInsensitiveCompare: @"none"] == NSOrderedSame ||
[passwordScheme caseInsensitiveCompare: @"plain"] == NSOrderedSame ||
@ -243,6 +245,39 @@ static void _nettle_md5_compress(uint32_t *digest, const uint8_t *input);
{
return [self asSHA512CryptUsingSalt: theSalt];
}
else if ([[passwordScheme lowercaseString] hasPrefix: @"sym"])
{
// We first support one sym cipher, AES-128-CBC. If something else is provided
// we return nil for now. Example of what theSalt might contain:
// $AES-128-CBC$cinlbHKnyBApySphVCz6yA==$Z9hjCXfMhz4xbXkW+aMkAw==
// If theSalt is empty, that means we are not validating a password
// but rather changing it. In this case, we generate an IV.
NSString *cipher, *iv;
cipher = nil;
iv = nil;
if ([theSalt length])
{
NSString *s;
NSArray *a;
s = [[NSString alloc] initWithData: theSalt encoding: NSUTF8StringEncoding];
[s autorelease];
a = [s componentsSeparatedByString: @"$"];
cipher = [a objectAtIndex: 1];
iv = [a objectAtIndex: 2];
}
else
{
if ([passwordScheme caseInsensitiveCompare: @"sym-aes-128-cbc"] == NSOrderedSame)
cipher = @"AES-128-CBC";
}
if ([cipher caseInsensitiveCompare: @"AES-128-CBC"] == NSOrderedSame)
return [self asSymAES128CBCUsingIV: iv
keyPath: theKeyPath];
}
// in case the scheme was not detected, return nil
return nil;
}
@ -476,6 +511,48 @@ static void _nettle_md5_compress(uint32_t *digest, const uint8_t *input);
return [NSData dataWithBytes: sha length: SHA512_DIGEST_LENGTH];
}
- (NSData *) asSymAES128CBCUsingIV: (NSString *) theIV
keyPath: (NSString *) theKeyPath
{
NSData *iv_d, *key_d, *cipherdata;
NSMutableString *result;
NSString *s;
char ciphertext[256], *iv_s, *key_s, *pass;
unsigned int len;
len = ceil((double)[self length]/16) * 16;
if (theIV)
iv_d = [theIV dataByDecodingBase64];
else
{
iv_d = [NSData generateSaltForLength: len];
theIV = [iv_d stringByEncodingBase64];
}
iv_s = calloc([iv_d length]+1, sizeof(char));
strncpy(iv_s, [iv_d bytes], [iv_d length]);
key_d = [NSData dataWithContentsOfFile: theKeyPath];
key_s = calloc([key_d length]+1, sizeof(char));
strncpy(key_s, [key_d bytes], [key_d length]);
pass = calloc(len, sizeof(char));
strncpy(pass, [self bytes], [self length]);
AES128_CBC_encrypt_buffer((uint8_t*)ciphertext, (uint8_t*)pass, (uint32_t)len, (const uint8_t*)key_s, (const uint8_t*)iv_s);
cipherdata = [NSData dataWithBytes: ciphertext length: 16];
s = [[NSString alloc] initWithData: [cipherdata dataByEncodingBase64WithLineLength: 1024]
encoding: NSASCIIStringEncoding];
result = [NSMutableString string];
[result appendFormat: @"$AES-128-CBC$%@$%@", theIV, s];
RELEASE(s);
return [result dataUsingEncoding: NSUTF8StringEncoding];
}
/**
* Hash the data with SSHA. Uses openssl functions to generate it.
*
@ -490,7 +567,8 @@ static void _nettle_md5_compress(uint32_t *digest, const uint8_t *input);
NSMutableData *sshaData;
// generate salt, if not available
if ([theSalt length] == 0) theSalt = [NSData generateSaltForLength: 8];
if ([theSalt length] == 0)
theSalt = [NSData generateSaltForLength: 8];
// put the pass and salt together as one data array
sshaData = [NSMutableData dataWithData: self];
@ -517,7 +595,8 @@ static void _nettle_md5_compress(uint32_t *digest, const uint8_t *input);
NSMutableData *sshaData;
// generate salt, if not available
if ([theSalt length] == 0) theSalt = [NSData generateSaltForLength: 8];
if ([theSalt length] == 0)
theSalt = [NSData generateSaltForLength: 8];
// put the pass and salt together as one data array
sshaData = [NSMutableData dataWithData: self];
@ -544,7 +623,8 @@ static void _nettle_md5_compress(uint32_t *digest, const uint8_t *input);
NSMutableData *sshaData;
// generate salt, if not available
if ([theSalt length] == 0) theSalt = [NSData generateSaltForLength: 8];
if ([theSalt length] == 0)
theSalt = [NSData generateSaltForLength: 8];
// put the pass and salt together as one data array
sshaData = [NSMutableData dataWithData: self];
@ -571,7 +651,8 @@ static void _nettle_md5_compress(uint32_t *digest, const uint8_t *input);
NSMutableData *smdData;
// generate salt, if not available
if ([theSalt length] == 0) theSalt = [NSData generateSaltForLength: 8];
if ([theSalt length] == 0)
theSalt = [NSData generateSaltForLength: 8];
// put the pass and salt together as one data array
smdData = [NSMutableData dataWithData: self];
@ -600,6 +681,7 @@ static void _nettle_md5_compress(uint32_t *digest, const uint8_t *input);
// make sure these characters are all printable by using base64
theSalt = [NSData generateSaltForLength: 8 withBase64: YES];
}
cryptString = [[NSString alloc] initWithData: self encoding: NSUTF8StringEncoding];
saltData = [NSMutableData dataWithData: [[NSString stringWithFormat:@"$%@$", magic] dataUsingEncoding: NSUTF8StringEncoding]];
@ -759,6 +841,11 @@ static void _nettle_md5_compress(uint32_t *digest, const uint8_t *input);
{
r = NSMakeRange(MD5_DIGEST_LENGTH, len - MD5_DIGEST_LENGTH);
}
else if ([[theScheme lowercaseString] hasPrefix: @"sym"])
{
// For sym we return everything
r = NSMakeRange(0, len);
}
else
{
// return empty string on unknown scheme

View File

@ -1,7 +1,7 @@
/* NSString+Crypto.h - this file is part of SOGo
*
* Copyright (C) 2012 Nicolas Höft
* Copyright (C) 2012-2016 Inverse inc.
* Copyright (C) 2012-2020 Inverse inc.
*
* Author: Nicolas Höft
* Inverse inc.
@ -39,15 +39,18 @@ typedef enum {
@interface NSString (SOGoCryptoExtension)
- (BOOL) isEqualToCrypted: (NSString *) cryptedPassword
withDefaultScheme: (NSString *) theScheme;
withDefaultScheme: (NSString *) theScheme
keyPath: (NSString *) theKeyPath;
- (NSString *) asCryptedPassUsingScheme: (NSString *) passwordScheme
withSalt: (NSData *) theSalt
andEncoding: (keyEncoding) encoding;
andEncoding: (keyEncoding) encoding
keyPath: (NSString *) theKeyPath;
// this method uses the default encoding (base64, plain, hex)
// and generates a salt when necessary
- (NSString *) asCryptedPassUsingScheme: (NSString *) passwordScheme;
- (NSString *) asCryptedPassUsingScheme: (NSString *) passwordScheme
keyPath: (NSString *) theKeyPath;
- (NSArray *) splitPasswordWithDefaultScheme: (NSString *) defaultScheme;

View File

@ -1,7 +1,7 @@
/* NSString+Crypto.m - this file is part of SOGo
*
* Copyright (C) 2012 Nicolas Höft
* Copyright (C) 2012-2015 Inverse inc.
* Copyright (C) 2012-2019 Inverse inc.
*
* Author: Nicolas Höft
* Inverse inc.
@ -106,6 +106,7 @@
*/
- (BOOL) isEqualToCrypted: (NSString *) cryptedPassword
withDefaultScheme: (NSString *) theScheme
keyPath: (NSString *) theKeyPath
{
NSArray *passInfo;
NSString *selfCrypted;
@ -113,7 +114,6 @@
NSString *scheme;
NSData *salt;
NSData *decodedData;
NSNumber *encodingNumber;
keyEncoding encoding;
// split scheme and pass
@ -121,8 +121,7 @@
scheme = [passInfo objectAtIndex: 0];
pass = [passInfo objectAtIndex: 1];
encodingNumber = [passInfo objectAtIndex: 2];
encoding = [encodingNumber intValue];
encoding = [[passInfo objectAtIndex: 2] intValue];
if (encoding == encHex)
{
@ -158,7 +157,8 @@
// encrypt self with the salt an compare the results
selfCrypted = [self asCryptedPassUsingScheme: scheme
withSalt: salt
andEncoding: encoding];
andEncoding: encoding
keyPath: theKeyPath];
// return always false when there was a problem
if (selfCrypted == nil)
@ -178,10 +178,12 @@
* @return If successful, the encrypted and encoded NSString of the format {scheme}pass, or nil if the scheme did not exists or an error occured
*/
- (NSString *) asCryptedPassUsingScheme: (NSString *) passwordScheme
keyPath: (NSString *) theKeyPath
{
return [self asCryptedPassUsingScheme: passwordScheme
withSalt: [NSData data]
andEncoding: encDefault];
andEncoding: encDefault
keyPath: theKeyPath];
}
/**
@ -198,6 +200,7 @@
- (NSString *) asCryptedPassUsingScheme: (NSString *) passwordScheme
withSalt: (NSData *) theSalt
andEncoding: (keyEncoding) userEncoding
keyPath: (NSString *) theKeyPath
{
keyEncoding dataEncoding;
NSData* cryptedData;
@ -219,7 +222,10 @@
// convert NSString to NSData and apply encryption scheme
cryptedData = [self dataUsingEncoding: NSUTF8StringEncoding];
cryptedData = [cryptedData asCryptedPassUsingScheme: passwordScheme withSalt: theSalt];
cryptedData = [cryptedData asCryptedPassUsingScheme: passwordScheme
withSalt: theSalt
keyPath: theKeyPath];
// abort on unsupported scheme or error
if (cryptedData == nil)
return nil;
@ -229,7 +235,7 @@
// hex encoding
return [NSData encodeDataAsHexString: cryptedData];
}
else if(dataEncoding == encBase64)
else if (dataEncoding == encBase64)
{
// base64 encoding
NSString *s = [[NSString alloc] initWithData: [cryptedData dataByEncodingBase64WithLineLength: 1024]

View File

@ -1,6 +1,6 @@
/* SQLSource.h - this file is part of SOGo
*
* Copyright (C) 2009-2019 Inverse inc.
* Copyright (C) 2009-2020 Inverse inc.
*
* This file is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -42,6 +42,7 @@
NSString *_imapHostField;
NSString *_sieveHostField;
NSString *_userPasswordAlgorithm;
NSString *_keyPath;
NSURL *_viewURL;
BOOL _prependPasswordScheme;

View File

@ -1,6 +1,6 @@
/* SQLSource.h - this file is part of SOGo
*
* Copyright (C) 2009-2017 Inverse inc.
* Copyright (C) 2009-2020 Inverse inc.
*
* This file is part of SOGo.
*
@ -94,6 +94,7 @@
_searchFields = [NSArray arrayWithObjects: @"c_cn", @"mail", nil];
[_searchFields retain];
_userPasswordAlgorithm = nil;
_keyPath = nil;
_viewURL = nil;
_kindField = nil;
_multipleBookingsField = nil;
@ -114,6 +115,7 @@
[_mailFields release];
[_searchFields release];
[_userPasswordAlgorithm release];
[_keyPath release];
[_viewURL release];
[_kindField release];
[_multipleBookingsField release];
@ -137,6 +139,7 @@
ASSIGN(_loginFields, [udSource objectForKey: @"LoginFieldNames"]);
ASSIGN(_mailFields, [udSource objectForKey: @"MailFieldNames"]);
ASSIGN(_userPasswordAlgorithm, [udSource objectForKey: @"userPasswordAlgorithm"]);
ASSIGN(_keyPath, [udSource objectForKey: @"keyPath"]);
ASSIGN(_imapLoginField, [udSource objectForKey: @"IMAPLoginFieldName"]);
ASSIGN(_imapHostField, [udSource objectForKey: @"IMAPHostFieldName"]);
ASSIGN(_sieveHostField, [udSource objectForKey: @"SieveHostFieldName"]);
@ -191,7 +194,8 @@
return NO;
return [plainPassword isEqualToCrypted: encryptedPassword
withDefaultScheme: _userPasswordAlgorithm];
withDefaultScheme: _userPasswordAlgorithm
keyPath: _keyPath];
}
/**
@ -205,7 +209,8 @@
NSString *pass;
NSString* result;
pass = [plainPassword asCryptedPassUsingScheme: _userPasswordAlgorithm];
pass = [plainPassword asCryptedPassUsingScheme: _userPasswordAlgorithm
keyPath: _keyPath];
if (pass == nil)
{

View File

@ -0,0 +1,659 @@
/*
This is an implementation of the AES128 algorithm, specifically ECB and CBC mode.
The implementation is verified against the test vectors in:
National Institute of Standards and Technology Special Publication 800-38A 2001 ED
ECB-AES128
----------
plain-text:
6bc1bee22e409f96e93d7e117393172a
ae2d8a571e03ac9c9eb76fac45af8e51
30c81c46a35ce411e5fbc1191a0a52ef
f69f2445df4f9b17ad2b417be66c3710
key:
2b7e151628aed2a6abf7158809cf4f3c
resulting cipher
3ad77bb40d7a3660a89ecaf32466ef97
f5d3d58503b9699de785895a96fdbaaf
43b1cd7f598ece23881b00e3ed030688
7b0c785e27e8ad3f8223207104725dd4
NOTE: String length must be evenly divisible by 16byte (str_len % 16 == 0)
You should pad the end of the string with zeros if this is not the case.
*/
/*****************************************************************************/
/* Includes: */
/*****************************************************************************/
#include <stdint.h>
#include <string.h> // CBC mode, for memset
#include "aes.h"
/*****************************************************************************/
/* Defines: */
/*****************************************************************************/
// The number of columns comprising a state in AES. This is a constant in AES. Value=4
#define Nb 4
// The number of 32 bit words in a key.
#define Nk 4
// Key length in bytes [128 bit]
#define KEYLEN 16
// The number of rounds in AES Cipher.
#define Nr 10
// jcallan@github points out that declaring Multiply as a function
// reduces code size considerably with the Keil ARM compiler.
// See this link for more information: https://github.com/kokke/tiny-AES128-C/pull/3
#ifndef MULTIPLY_AS_A_FUNCTION
#define MULTIPLY_AS_A_FUNCTION 0
#endif
/*****************************************************************************/
/* Private variables: */
/*****************************************************************************/
// state - array holding the intermediate results during decryption.
typedef uint8_t state_t[4][4];
static state_t* state;
// The array that stores the round keys.
static uint8_t RoundKey[176];
// The Key input to the AES Program
static const uint8_t* Key;
#if defined(CBC) && CBC
// Initial Vector used only for CBC mode
static uint8_t* Iv;
#endif
// The lookup-tables are marked const so they can be placed in read-only storage instead of RAM
// The numbers below can be computed dynamically trading ROM for RAM -
// This can be useful in (embedded) bootloader applications, where ROM is often limited.
static const uint8_t sbox[256] = {
//0 1 2 3 4 5 6 7 8 9 A B C D E F
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };
static const uint8_t rsbox[256] =
{ 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d };
// The round constant word array, Rcon[i], contains the values given by
// x to th e power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8)
// Note that i starts at 1, not 0).
static const uint8_t Rcon[255] = {
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a,
0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39,
0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a,
0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8,
0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef,
0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc,
0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b,
0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3,
0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94,
0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20,
0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35,
0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f,
0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04,
0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63,
0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd,
0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb };
/*****************************************************************************/
/* Private functions: */
/*****************************************************************************/
static uint8_t getSBoxValue(uint8_t num)
{
return sbox[num];
}
static uint8_t getSBoxInvert(uint8_t num)
{
return rsbox[num];
}
// This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states.
static void KeyExpansion(void)
{
uint32_t i, j, k;
uint8_t tempa[4]; // Used for the column/row operations
// The first round key is the key itself.
for(i = 0; i < Nk; ++i)
{
RoundKey[(i * 4) + 0] = Key[(i * 4) + 0];
RoundKey[(i * 4) + 1] = Key[(i * 4) + 1];
RoundKey[(i * 4) + 2] = Key[(i * 4) + 2];
RoundKey[(i * 4) + 3] = Key[(i * 4) + 3];
}
// All other round keys are found from the previous round keys.
for(; (i < (Nb * (Nr + 1))); ++i)
{
for(j = 0; j < 4; ++j)
{
tempa[j]=RoundKey[(i-1) * 4 + j];
}
if (i % Nk == 0)
{
// This function rotates the 4 bytes in a word to the left once.
// [a0,a1,a2,a3] becomes [a1,a2,a3,a0]
// Function RotWord()
{
k = tempa[0];
tempa[0] = tempa[1];
tempa[1] = tempa[2];
tempa[2] = tempa[3];
tempa[3] = k;
}
// SubWord() is a function that takes a four-byte input word and
// applies the S-box to each of the four bytes to produce an output word.
// Function Subword()
{
tempa[0] = getSBoxValue(tempa[0]);
tempa[1] = getSBoxValue(tempa[1]);
tempa[2] = getSBoxValue(tempa[2]);
tempa[3] = getSBoxValue(tempa[3]);
}
tempa[0] = tempa[0] ^ Rcon[i/Nk];
}
else if (Nk > 6 && i % Nk == 4)
{
// Function Subword()
{
tempa[0] = getSBoxValue(tempa[0]);
tempa[1] = getSBoxValue(tempa[1]);
tempa[2] = getSBoxValue(tempa[2]);
tempa[3] = getSBoxValue(tempa[3]);
}
}
RoundKey[i * 4 + 0] = RoundKey[(i - Nk) * 4 + 0] ^ tempa[0];
RoundKey[i * 4 + 1] = RoundKey[(i - Nk) * 4 + 1] ^ tempa[1];
RoundKey[i * 4 + 2] = RoundKey[(i - Nk) * 4 + 2] ^ tempa[2];
RoundKey[i * 4 + 3] = RoundKey[(i - Nk) * 4 + 3] ^ tempa[3];
}
}
// This function adds the round key to state.
// The round key is added to the state by an XOR function.
static void AddRoundKey(uint8_t round)
{
uint8_t i,j;
for(i=0;i<4;++i)
{
for(j = 0; j < 4; ++j)
{
(*state)[i][j] ^= RoundKey[round * Nb * 4 + i * Nb + j];
}
}
}
// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
static void SubBytes(void)
{
uint8_t i, j;
for(i = 0; i < 4; ++i)
{
for(j = 0; j < 4; ++j)
{
(*state)[j][i] = getSBoxValue((*state)[j][i]);
}
}
}
// The ShiftRows() function shifts the rows in the state to the left.
// Each row is shifted with different offset.
// Offset = Row number. So the first row is not shifted.
static void ShiftRows(void)
{
uint8_t temp;
// Rotate first row 1 columns to left
temp = (*state)[0][1];
(*state)[0][1] = (*state)[1][1];
(*state)[1][1] = (*state)[2][1];
(*state)[2][1] = (*state)[3][1];
(*state)[3][1] = temp;
// Rotate second row 2 columns to left
temp = (*state)[0][2];
(*state)[0][2] = (*state)[2][2];
(*state)[2][2] = temp;
temp = (*state)[1][2];
(*state)[1][2] = (*state)[3][2];
(*state)[3][2] = temp;
// Rotate third row 3 columns to left
temp = (*state)[0][3];
(*state)[0][3] = (*state)[3][3];
(*state)[3][3] = (*state)[2][3];
(*state)[2][3] = (*state)[1][3];
(*state)[1][3] = temp;
}
static uint8_t xtime(uint8_t x)
{
return ((x<<1) ^ (((x>>7) & 1) * 0x1b));
}
// MixColumns function mixes the columns of the state matrix
static void MixColumns(void)
{
uint8_t i;
uint8_t Tmp,Tm,t;
for(i = 0; i < 4; ++i)
{
t = (*state)[i][0];
Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3] ;
Tm = (*state)[i][0] ^ (*state)[i][1] ; Tm = xtime(Tm); (*state)[i][0] ^= Tm ^ Tmp ;
Tm = (*state)[i][1] ^ (*state)[i][2] ; Tm = xtime(Tm); (*state)[i][1] ^= Tm ^ Tmp ;
Tm = (*state)[i][2] ^ (*state)[i][3] ; Tm = xtime(Tm); (*state)[i][2] ^= Tm ^ Tmp ;
Tm = (*state)[i][3] ^ t ; Tm = xtime(Tm); (*state)[i][3] ^= Tm ^ Tmp ;
}
}
// Multiply is used to multiply numbers in the field GF(2^8)
#if MULTIPLY_AS_A_FUNCTION
static uint8_t Multiply(uint8_t x, uint8_t y)
{
return (((y & 1) * x) ^
((y>>1 & 1) * xtime(x)) ^
((y>>2 & 1) * xtime(xtime(x))) ^
((y>>3 & 1) * xtime(xtime(xtime(x)))) ^
((y>>4 & 1) * xtime(xtime(xtime(xtime(x))))));
}
#else
#define Multiply(x, y) \
( ((y & 1) * x) ^ \
((y>>1 & 1) * xtime(x)) ^ \
((y>>2 & 1) * xtime(xtime(x))) ^ \
((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ \
((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))) \
#endif
// MixColumns function mixes the columns of the state matrix.
// The method used to multiply may be difficult to understand for the inexperienced.
// Please use the references to gain more information.
static void InvMixColumns(void)
{
int i;
uint8_t a,b,c,d;
for(i=0;i<4;++i)
{
a = (*state)[i][0];
b = (*state)[i][1];
c = (*state)[i][2];
d = (*state)[i][3];
(*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09);
(*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d);
(*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b);
(*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e);
}
}
// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
static void InvSubBytes(void)
{
uint8_t i,j;
for(i=0;i<4;++i)
{
for(j=0;j<4;++j)
{
(*state)[j][i] = getSBoxInvert((*state)[j][i]);
}
}
}
static void InvShiftRows(void)
{
uint8_t temp;
// Rotate first row 1 columns to right
temp=(*state)[3][1];
(*state)[3][1]=(*state)[2][1];
(*state)[2][1]=(*state)[1][1];
(*state)[1][1]=(*state)[0][1];
(*state)[0][1]=temp;
// Rotate second row 2 columns to right
temp=(*state)[0][2];
(*state)[0][2]=(*state)[2][2];
(*state)[2][2]=temp;
temp=(*state)[1][2];
(*state)[1][2]=(*state)[3][2];
(*state)[3][2]=temp;
// Rotate third row 3 columns to right
temp=(*state)[0][3];
(*state)[0][3]=(*state)[1][3];
(*state)[1][3]=(*state)[2][3];
(*state)[2][3]=(*state)[3][3];
(*state)[3][3]=temp;
}
// Cipher is the main function that encrypts the PlainText.
static void Cipher(void)
{
uint8_t round = 0;
// Add the First round key to the state before starting the rounds.
AddRoundKey(0);
// There will be Nr rounds.
// The first Nr-1 rounds are identical.
// These Nr-1 rounds are executed in the loop below.
for(round = 1; round < Nr; ++round)
{
SubBytes();
ShiftRows();
MixColumns();
AddRoundKey(round);
}
// The last round is given below.
// The MixColumns function is not here in the last round.
SubBytes();
ShiftRows();
AddRoundKey(Nr);
}
static void InvCipher(void)
{
uint8_t round=0;
// Add the First round key to the state before starting the rounds.
AddRoundKey(Nr);
// There will be Nr rounds.
// The first Nr-1 rounds are identical.
// These Nr-1 rounds are executed in the loop below.
for(round=Nr-1;round>0;round--)
{
InvShiftRows();
InvSubBytes();
AddRoundKey(round);
InvMixColumns();
}
// The last round is given below.
// The MixColumns function is not here in the last round.
InvShiftRows();
InvSubBytes();
AddRoundKey(0);
}
static void BlockCopy(uint8_t* output, uint8_t* input)
{
uint8_t i;
for (i=0;i<KEYLEN;++i)
{
output[i] = input[i];
}
}
/*****************************************************************************/
/* Public functions: */
/*****************************************************************************/
#if defined(ECB) && ECB
void AES128_ECB_encrypt(uint8_t* input, const uint8_t* key, uint8_t* output)
{
// Copy input to output, and work in-memory on output
BlockCopy(output, input);
state = (state_t*)output;
Key = key;
KeyExpansion();
// The next function call encrypts the PlainText with the Key using AES algorithm.
Cipher();
}
void AES128_ECB_decrypt(uint8_t* input, const uint8_t* key, uint8_t *output)
{
// Copy input to output, and work in-memory on output
BlockCopy(output, input);
state = (state_t*)output;
// The KeyExpansion routine must be called before encryption.
Key = key;
KeyExpansion();
InvCipher();
}
#endif // #if defined(ECB) && ECB
#if defined(CBC) && CBC
static void XorWithIv(uint8_t* buf)
{
uint8_t i;
for(i = 0; i < KEYLEN; ++i)
{
buf[i] ^= Iv[i];
}
}
void AES128_CBC_encrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv)
{
size_t i;
uint8_t remainders = length % KEYLEN; /* Remaining bytes in the last non-full block */
BlockCopy(output, input);
state = (state_t*)output;
// Skip the key expansion if key is passed as 0
if(0 != key)
{
Key = key;
KeyExpansion();
}
if(iv != 0)
{
Iv = (uint8_t*)iv;
}
for(i = 0; i < length; i += KEYLEN)
{
XorWithIv(input);
BlockCopy(output, input);
state = (state_t*)output;
Cipher();
Iv = output;
input += KEYLEN;
output += KEYLEN;
}
if(remainders)
{
BlockCopy(output, input);
memset(output + remainders, 0, KEYLEN - remainders); /* add 0-padding */
state = (state_t*)output;
Cipher();
}
}
void AES128_CBC_decrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv)
{
size_t i;
uint8_t remainders = length % KEYLEN; /* Remaining bytes in the last non-full block */
BlockCopy(output, input);
state = (state_t*)output;
// Skip the key expansion if key is passed as 0
if(0 != key)
{
Key = key;
KeyExpansion();
}
// If iv is passed as 0, we continue to encrypt without re-setting the Iv
if(iv != 0)
{
Iv = (uint8_t*)iv;
}
for(i = 0; i < length; i += KEYLEN)
{
BlockCopy(output, input);
state = (state_t*)output;
InvCipher();
XorWithIv(output);
Iv = input;
input += KEYLEN;
output += KEYLEN;
}
if(remainders)
{
BlockCopy(output, input);
memset(output+remainders, 0, KEYLEN - remainders); /* add 0-padding */
state = (state_t*)output;
InvCipher();
}
}
uint8_t AES128_CBC_encrypt_inplace( uint8_t* data, size_t length, const uint8_t* key, const uint8_t* iv){
size_t i;
state = NULL;
/* Check for valid length. Must be > 0 and a multiple of KEYLEN */
if( length % KEYLEN != 0 || length == 0){
return 1;
}
// Skip the key expansion if key is passed as 0
if(0 != key)
{
Key = key;
KeyExpansion();
}
if(iv != 0)
{
Iv = (uint8_t*)iv;
}
for(i = 0; i < length; i += KEYLEN)
{
XorWithIv(data);
state = (state_t*)data;
Cipher();
Iv = data;
data += KEYLEN;
}
return 0;
}
/* We must have a writable iv pointer in this case, as we need the storage for holding the next decryption IV */
uint8_t AES128_CBC_decrypt_inplace( uint8_t* data, size_t length, const uint8_t* key, uint8_t* iv){
size_t i;
state = NULL;
uint8_t next_iv[KEYLEN];
/* Check for valid length. Must be > 0 and a multiple of KEYLEN */
if( length % KEYLEN != 0 || length == 0){
return 1;
}
if( 0 == iv )
{
return 2;
}
Iv = (uint8_t*)iv;
// Skip the key expansion if key is passed as 0
if(0 != key)
{
Key = key;
KeyExpansion();
}
BlockCopy(next_iv,data);
for(i = 0; i < length; i += KEYLEN)
{
state = (state_t*)data;
InvCipher();
XorWithIv(data);
data += KEYLEN;
/* use the last buffered IV */
BlockCopy(iv,next_iv);
/* and buffer the next */
BlockCopy(next_iv,data);
}
return 0;
}
#endif // #if defined(CBC) && CBC

View File

@ -0,0 +1,49 @@
#ifndef _AES_H_
#define _AES_H_
#include <stdint.h>
// #define the macros below to 1/0 to enable/disable the mode of operation.
//
// CBC enables AES128 encryption in CBC-mode of operation and handles 0-padding.
// ECB enables the basic ECB 16-byte block algorithm. Both can be enabled simultaneously.
// The #ifndef-guard allows it to be configured before #include'ing or at compile time.
#ifndef CBC
#define CBC 1
#endif
#ifndef ECB
#define ECB 1
#endif
#if defined(ECB) && ECB
void AES128_ECB_encrypt(uint8_t* input, const uint8_t* key, uint8_t *output);
void AES128_ECB_decrypt(uint8_t* input, const uint8_t* key, uint8_t *output);
#endif // #if defined(ECB) && ECB
#if defined(CBC) && CBC
void AES128_CBC_encrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv);
void AES128_CBC_decrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv);
/* These variants encrypt and decrypt the data block in-place.
* The data block length MUST be a multiple of the algorithm block size (16 bytes)
* The return value will be non-zero if the length is incorrect.
* For the decypt function, the iv data must be writable, and will be modified on return.
*/
uint8_t AES128_CBC_encrypt_inplace( uint8_t* data, size_t length, const uint8_t* key, const uint8_t* iv);
uint8_t AES128_CBC_decrypt_inplace( uint8_t* data, size_t length, const uint8_t* key, uint8_t* iv);
#endif // #if defined(CBC) && CBC
#endif //_AES_H_