CLBlast/test/routines/levelx/xinvert.hpp

244 lines
10 KiB
C++
Raw Normal View History

// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
// Cedric Nugteren <www.cedricnugteren.nl>
//
// This file implements a class with static methods to describe the Xinvert routine. Examples of
// such 'descriptions' are how to calculate the size a of buffer or how to run the routine. These
// static methods are used by the correctness tester and the performance tester.
//
// =================================================================================================
#ifndef CLBLAST_TEST_ROUTINES_XINVERT_H_
#define CLBLAST_TEST_ROUTINES_XINVERT_H_
#include "test/routines/common.hpp"
#include "src/routines/levelx/xinvert.hpp"
namespace clblast {
// =================================================================================================
template <typename T>
StatusCode RunReference(const Arguments<T> &args, BuffersHost<T> &buffers_host) {
const bool is_upper = ((args.triangle == Triangle::kUpper && args.layout != Layout::kRowMajor) ||
(args.triangle == Triangle::kLower && args.layout == Layout::kRowMajor));
// Helper variables
const auto block_size = args.m;
const auto num_blocks = CeilDiv(args.n, block_size);
const auto a_ld = args.a_ld;
const auto b_ld = block_size;
// Checks for valid arguments
if ((block_size == 0) || (args.n == 0)) {
return StatusCode::kInvalidDimension;
}
if ((block_size % 16 != 0) || (block_size > 128)) {
return StatusCode::kUnknownError;
}
// Start at zero
for (size_t i =0; i < args.m; ++i) {
for (size_t j = 0; j < args.n; ++j) {
buffers_host.b_mat[j * args.m + i] = T{0.0};
}
}
// Loops over the amount of diagonal blocks of size args.m by args.m each
for (auto block_id = size_t{0}; block_id < num_blocks; ++block_id) {
const auto a_offset = block_id * (block_size + a_ld * block_size) + args.a_offset;
const auto b_offset = block_id * block_size * block_size;
// Inverts the diagonal elements of the matrix
for (auto i = size_t{0}; i < block_size; ++i) {
auto a_value = T{1.0};
if (args.diagonal == Diagonal::kNonUnit) {
if (i + block_id * block_size < args.n) {
if (buffers_host.a_mat[i * a_ld + i + a_offset] == T{0.0}) { return StatusCode::kUnknownError; }
a_value = T{1.0} / buffers_host.a_mat[i * a_ld + i + a_offset];
}
}
buffers_host.b_mat[i * b_ld + i + b_offset] = a_value;
}
// Inverts the upper triangle row by row
if (is_upper) {
for (int i = static_cast<int>(block_size) - 2; i >= 0; --i) {
for (auto j = static_cast<int>(block_size) - 1; j > i; --j) {
auto sum = T{0.0};
for (auto k = i + 1; k <= j; ++k) {
auto a_value = T{0.0};
if ((i + block_id * block_size < args.n) && (k + block_id * block_size < args.n)) {
a_value = buffers_host.a_mat[k * a_ld + i + a_offset];
}
sum += a_value * buffers_host.b_mat[j * b_ld + k + b_offset];
}
buffers_host.b_mat[j * b_ld + i + b_offset] = - sum * buffers_host.b_mat[i * b_ld + i + b_offset];
}
}
}
// Inverts the lower triangle row by row
else {
for (auto i = size_t{1}; i < block_size; ++i) {
for (auto j = size_t{0}; j < i; ++j) {
auto sum = T{0.0};
for (auto k = j; k < i; ++k) {
auto a_value = T{0.0};
if ((i + block_id * block_size < args.n) && (k + block_id * block_size < args.n)) {
a_value = buffers_host.a_mat[k * a_ld + i + a_offset];
}
sum += a_value * buffers_host.b_mat[j * b_ld + k + b_offset];
}
buffers_host.b_mat[j * b_ld + i + b_offset] = - sum * buffers_host.b_mat[i * b_ld + i + b_offset];
}
}
}
}
return StatusCode::kSuccess;
}
// Half-precision version calling the above reference implementation after conversions
template <>
StatusCode RunReference<half>(const Arguments<half> &args, BuffersHost<half> &buffers_host) {
auto a_buffer2 = HalfToFloatBuffer(buffers_host.a_mat);
auto b_buffer2 = HalfToFloatBuffer(buffers_host.b_mat);
auto dummy = std::vector<float>(0);
auto dummy_uint = std::vector<unsigned int>(0);
auto buffers2 = BuffersHost<float>{dummy, dummy, a_buffer2, b_buffer2, dummy, dummy, dummy, dummy_uint};
auto args2 = Arguments<float>();
args2.a_size = args.a_size; args2.b_size = args.b_size;
args2.a_ld = args.a_ld; args2.m = args.m; args2.n = args.n;
args2.a_offset = args.a_offset;
args2.layout = args.layout; args2.triangle = args.triangle; args2.diagonal = args.diagonal;
auto status = RunReference(args2, buffers2);
FloatToHalfBuffer(buffers_host.b_mat, b_buffer2);
return status;
}
// =================================================================================================
// See comment at top of file for a description of the class
template <typename T>
class TestXinvert {
public:
// The BLAS level: 4 for the extra routines
static size_t BLASLevel() { return 4; }
// The list of arguments relevant for this routine
static std::vector<std::string> GetOptions() {
return {kArgN, kArgM,
kArgLayout, kArgTriangle, kArgDiagonal,
kArgALeadDim, kArgAOffset};
}
static std::vector<std::string> BuffersIn() { return {kBufMatA, kBufMatB}; }
static std::vector<std::string> BuffersOut() { return {kBufMatB}; }
// Describes how to obtain the sizes of the buffers
static size_t GetSizeA(const Arguments<T> &args) {
return args.n * args.a_ld + args.a_offset;
}
static size_t GetSizeB(const Arguments<T> &args) {
const auto block_size = args.m;
const auto num_blocks = CeilDiv(args.n, block_size);
return num_blocks * block_size * block_size;
}
// Describes how to set the sizes of all the buffers
static void SetSizes(Arguments<T> &args, Queue&) {
args.a_size = GetSizeA(args);
args.b_size = GetSizeB(args);
}
// Describes what the default values of the leading dimensions of the matrices are
static size_t DefaultLDA(const Arguments<T> &args) { return args.n; }
static size_t DefaultLDB(const Arguments<T> &) { return 1; } // N/A for this routine
static size_t DefaultLDC(const Arguments<T> &) { return 1; } // N/A for this routine
// Describes which omatcopyose options are relevant for this routine
using Transposes = std::vector<Transpose>;
static Transposes GetATransposes(const Transposes &) { return {}; } // N/A for this routine
static Transposes GetBTransposes(const Transposes &) { return {}; } // N/A for this routine
// Describes how to prepare the input data
static void PrepareData(const Arguments<T>&, Queue&, const int, std::vector<T>&,
std::vector<T>&, std::vector<T>&, std::vector<T>&, std::vector<T>&,
std::vector<T>&, std::vector<T>&) {} // N/A for this routine
// Describes how to run the CLBlast routine
static StatusCode RunRoutine(const Arguments<T> &args, Buffers<T> &buffers, Queue &queue) {
try {
#ifdef OPENCL_API
auto event = cl_event{};
auto inverter = Xinvert<T>(queue, &event);
inverter.InvertMatrixDiagonalBlocks(args.layout, args.triangle, args.diagonal,
args.n, args.m,
buffers.a_mat, args.a_offset, args.a_ld,
buffers.b_mat);
clWaitForEvents(1, &event);
clReleaseEvent(event);
#elif CUDA_API
auto inverter = Xinvert<T>(queue, nullptr);
inverter.InvertMatrixDiagonalBlocks(args.layout, args.triangle, args.diagonal,
args.n, args.m,
buffers.a_mat, args.a_offset, args.a_ld,
buffers.b_mat);
cuStreamSynchronize(queue());
#endif
} catch (...) { return DispatchException(); }
return StatusCode::kSuccess;
}
// Describes how to run a naive version of the routine (for correctness/performance comparison).
// Note that a proper clBLAS or CPU BLAS comparison is not available for non-BLAS routines.
static StatusCode RunReference1(const Arguments<T> &args, Buffers<T> &buffers, Queue &queue) {
auto buffers_host = BuffersHost<T>();
DeviceToHost(args, buffers, buffers_host, queue, BuffersIn());
const auto status = RunReference(args, buffers_host);
HostToDevice(args, buffers, buffers_host, queue, BuffersOut());
return status;
}
static StatusCode RunReference2(const Arguments<T> &args, BuffersHost<T> &buffers_host, Queue&) {
return RunReference(args, buffers_host);
}
static StatusCode RunReference3(const Arguments<T> &args, BuffersCUDA<T> &buffers, Queue &) {
return StatusCode::kUnknownError;
}
// Describes how to download the results of the computation (more importantly: which buffer)
static std::vector<T> DownloadResult(const Arguments<T> &args, Buffers<T> &buffers, Queue &queue) {
std::vector<T> result(args.b_size, static_cast<T>(0));
buffers.b_mat.Read(queue, args.b_size, result);
return result;
}
// Describes how to compute the indices of the result buffer
static size_t ResultID1(const Arguments<T> &args) { return args.m; }
static size_t ResultID2(const Arguments<T> &args) { return Ceil(args.n, args.m); }
static size_t GetResultIndex(const Arguments<T> &args, const size_t id1, const size_t id2) {
return id1 * Ceil(args.n, args.m) + id2;
}
// Describes how to compute performance metrics
static size_t GetFlops(const Arguments<T> &args) {
const auto block_size = args.m;
const auto num_blocks = CeilDiv(args.n, block_size);
return num_blocks * (block_size * (block_size / 2) * (block_size / 2));
}
static size_t GetBytes(const Arguments<T> &args) {
return (args.a_size * args.b_size) * sizeof(T);
}
};
// =================================================================================================
} // namespace clblast
// CLBLAST_TEST_ROUTINES_XINVERT_H_
#endif