Added API and tests for new GemmStridedBatched routine

pull/239/head
Cedric Nugteren 2018-01-07 14:27:15 +01:00
parent 0c48c6e6c4
commit 9fb2c61b25
17 changed files with 1182 additions and 80 deletions

View File

@ -202,7 +202,7 @@ set(LEVEL1_ROUTINES xswap xscal xcopy xaxpy xdot xdotu xdotc xnrm2 xasum xamax)
set(LEVEL2_ROUTINES xgemv xgbmv xhemv xhbmv xhpmv xsymv xsbmv xspmv xtrmv xtbmv xtpmv xtrsv
xger xgeru xgerc xher xhpr xher2 xhpr2 xsyr xspr xsyr2 xspr2)
set(LEVEL3_ROUTINES xgemm xsymm xhemm xsyrk xherk xsyr2k xher2k xtrmm xtrsm)
set(LEVELX_ROUTINES xomatcopy xim2col xaxpybatched xgemmbatched)
set(LEVELX_ROUTINES xomatcopy xim2col xaxpybatched xgemmbatched xgemmstridedbatched)
set(ROUTINES ${LEVEL1_ROUTINES} ${LEVEL2_ROUTINES} ${LEVEL3_ROUTINES} ${LEVELX_ROUTINES})
set(PRECISIONS 32 64 3232 6464 16)

View File

@ -3182,6 +3182,108 @@ Requirements for GEMMBATCHED:
xGEMMSTRIDEDBATCHED: StridedBatched version of GEMM
-------------
As GEMM, but multiple strided operations are batched together for better performance.
C++ API:
```
template <typename T>
StatusCode GemmStridedBatched(const Layout layout, const Transpose a_transpose, const Transpose b_transpose,
const size_t m, const size_t n, const size_t k,
const T alpha,
const cl_mem a_buffer, const size_t a_offset, const size_t a_ld, const size_t a_stride,
const cl_mem b_buffer, const size_t b_offset, const size_t b_ld, const size_t b_stride,
const T beta,
cl_mem c_buffer, const size_t c_offset, const size_t c_ld, const size_t c_stride,
const size_t batch_count,
cl_command_queue* queue, cl_event* event)
```
C API:
```
CLBlastStatusCode CLBlastSgemmStridedBatched(const CLBlastLayout layout, const CLBlastTranspose a_transpose, const CLBlastTranspose b_transpose,
const size_t m, const size_t n, const size_t k,
const float alpha,
const cl_mem a_buffer, const size_t a_offset, const size_t a_ld, const size_t a_stride,
const cl_mem b_buffer, const size_t b_offset, const size_t b_ld, const size_t b_stride,
const float beta,
cl_mem c_buffer, const size_t c_offset, const size_t c_ld, const size_t c_stride,
const size_t batch_count,
cl_command_queue* queue, cl_event* event)
CLBlastStatusCode CLBlastDgemmStridedBatched(const CLBlastLayout layout, const CLBlastTranspose a_transpose, const CLBlastTranspose b_transpose,
const size_t m, const size_t n, const size_t k,
const double alpha,
const cl_mem a_buffer, const size_t a_offset, const size_t a_ld, const size_t a_stride,
const cl_mem b_buffer, const size_t b_offset, const size_t b_ld, const size_t b_stride,
const double beta,
cl_mem c_buffer, const size_t c_offset, const size_t c_ld, const size_t c_stride,
const size_t batch_count,
cl_command_queue* queue, cl_event* event)
CLBlastStatusCode CLBlastCgemmStridedBatched(const CLBlastLayout layout, const CLBlastTranspose a_transpose, const CLBlastTranspose b_transpose,
const size_t m, const size_t n, const size_t k,
const cl_float2 alpha,
const cl_mem a_buffer, const size_t a_offset, const size_t a_ld, const size_t a_stride,
const cl_mem b_buffer, const size_t b_offset, const size_t b_ld, const size_t b_stride,
const cl_float2 beta,
cl_mem c_buffer, const size_t c_offset, const size_t c_ld, const size_t c_stride,
const size_t batch_count,
cl_command_queue* queue, cl_event* event)
CLBlastStatusCode CLBlastZgemmStridedBatched(const CLBlastLayout layout, const CLBlastTranspose a_transpose, const CLBlastTranspose b_transpose,
const size_t m, const size_t n, const size_t k,
const cl_double2 alpha,
const cl_mem a_buffer, const size_t a_offset, const size_t a_ld, const size_t a_stride,
const cl_mem b_buffer, const size_t b_offset, const size_t b_ld, const size_t b_stride,
const cl_double2 beta,
cl_mem c_buffer, const size_t c_offset, const size_t c_ld, const size_t c_stride,
const size_t batch_count,
cl_command_queue* queue, cl_event* event)
CLBlastStatusCode CLBlastHgemmStridedBatched(const CLBlastLayout layout, const CLBlastTranspose a_transpose, const CLBlastTranspose b_transpose,
const size_t m, const size_t n, const size_t k,
const cl_half alpha,
const cl_mem a_buffer, const size_t a_offset, const size_t a_ld, const size_t a_stride,
const cl_mem b_buffer, const size_t b_offset, const size_t b_ld, const size_t b_stride,
const cl_half beta,
cl_mem c_buffer, const size_t c_offset, const size_t c_ld, const size_t c_stride,
const size_t batch_count,
cl_command_queue* queue, cl_event* event)
```
Arguments to GEMMSTRIDEDBATCHED:
* `const Layout layout`: Data-layout of the matrices, either `Layout::kRowMajor` (101) for row-major layout or `Layout::kColMajor` (102) for column-major data-layout.
* `const Transpose a_transpose`: Transposing the input matrix A, either `Transpose::kNo` (111), `Transpose::kYes` (112), or `Transpose::kConjugate` (113) for a complex-conjugate transpose.
* `const Transpose b_transpose`: Transposing the input matrix B, either `Transpose::kNo` (111), `Transpose::kYes` (112), or `Transpose::kConjugate` (113) for a complex-conjugate transpose.
* `const size_t m`: Integer size argument. This value must be positive.
* `const size_t n`: Integer size argument. This value must be positive.
* `const size_t k`: Integer size argument. This value must be positive.
* `const T alpha`: Input scalar constant.
* `const cl_mem a_buffer`: OpenCL buffer to store the input A matrix.
* `const size_t a_offset`: The offset in elements from the start of the input A matrix.
* `const size_t a_ld`: Leading dimension of the input A matrix. This value must be greater than 0.
* `const size_t a_stride`: The (fixed) stride between two batches of the A matrix.
* `const cl_mem b_buffer`: OpenCL buffer to store the input B matrix.
* `const size_t b_offset`: The offset in elements from the start of the input B matrix.
* `const size_t b_ld`: Leading dimension of the input B matrix. This value must be greater than 0.
* `const size_t b_stride`: The (fixed) stride between two batches of the B matrix.
* `const T beta`: Input scalar constant.
* `cl_mem c_buffer`: OpenCL buffer to store the output C matrix.
* `const size_t c_offset`: The offset in elements from the start of the output C matrix.
* `const size_t c_ld`: Leading dimension of the output C matrix. This value must be greater than 0.
* `const size_t c_stride`: The (fixed) stride between two batches of the C matrix.
* `const size_t batch_count`: Number of batches. This value must be positive.
* `cl_command_queue* queue`: Pointer to an OpenCL command queue associated with a context and device to execute the routine on.
* `cl_event* event`: Pointer to an OpenCL event to be able to wait for completion of the routine's OpenCL kernel(s). This is an optional argument.
Requirements for GEMMSTRIDEDBATCHED:
* When `transpose_a == Transpose::kNo`, then `a_ld` must be at least `m`, otherwise `a_ld` must be at least `k`.
* When `transpose_b == Transpose::kNo`, then `b_ld` must be at least `k`, otherwise `b_ld` must be at least `n`.
* The value of `c_ld` must be at least `m`.
ClearCache: Resets the cache of compiled binaries (auxiliary function)
-------------

View File

@ -647,6 +647,18 @@ StatusCode GemmBatched(const Layout layout, const Transpose a_transpose, const T
const size_t batch_count,
cl_command_queue* queue, cl_event* event = nullptr);
// StridedBatched version of GEMM: SGEMMSTRIDEDBATCHED/DGEMMSTRIDEDBATCHED/CGEMMSTRIDEDBATCHED/ZGEMMSTRIDEDBATCHED/HGEMMSTRIDEDBATCHED
template <typename T>
StatusCode GemmStridedBatched(const Layout layout, const Transpose a_transpose, const Transpose b_transpose,
const size_t m, const size_t n, const size_t k,
const T alpha,
const cl_mem a_buffer, const size_t a_offset, const size_t a_ld, const size_t a_stride,
const cl_mem b_buffer, const size_t b_offset, const size_t b_ld, const size_t b_stride,
const T beta,
cl_mem c_buffer, const size_t c_offset, const size_t c_ld, const size_t c_stride,
const size_t batch_count,
cl_command_queue* queue, cl_event* event = nullptr);
// =================================================================================================
// Retrieves the required size of the temporary buffer for the GEMM kernel (optional)

View File

@ -1451,6 +1451,53 @@ CLBlastStatusCode PUBLIC_API CLBlastHgemmBatched(const CLBlastLayout layout, con
const size_t batch_count,
cl_command_queue* queue, cl_event* event);
// StridedBatched version of GEMM: SGEMMSTRIDEDBATCHED/DGEMMSTRIDEDBATCHED/CGEMMSTRIDEDBATCHED/ZGEMMSTRIDEDBATCHED/HGEMMSTRIDEDBATCHED
CLBlastStatusCode PUBLIC_API CLBlastSgemmStridedBatched(const CLBlastLayout layout, const CLBlastTranspose a_transpose, const CLBlastTranspose b_transpose,
const size_t m, const size_t n, const size_t k,
const float alpha,
const cl_mem a_buffer, const size_t a_offset, const size_t a_ld, const size_t a_stride,
const cl_mem b_buffer, const size_t b_offset, const size_t b_ld, const size_t b_stride,
const float beta,
cl_mem c_buffer, const size_t c_offset, const size_t c_ld, const size_t c_stride,
const size_t batch_count,
cl_command_queue* queue, cl_event* event);
CLBlastStatusCode PUBLIC_API CLBlastDgemmStridedBatched(const CLBlastLayout layout, const CLBlastTranspose a_transpose, const CLBlastTranspose b_transpose,
const size_t m, const size_t n, const size_t k,
const double alpha,
const cl_mem a_buffer, const size_t a_offset, const size_t a_ld, const size_t a_stride,
const cl_mem b_buffer, const size_t b_offset, const size_t b_ld, const size_t b_stride,
const double beta,
cl_mem c_buffer, const size_t c_offset, const size_t c_ld, const size_t c_stride,
const size_t batch_count,
cl_command_queue* queue, cl_event* event);
CLBlastStatusCode PUBLIC_API CLBlastCgemmStridedBatched(const CLBlastLayout layout, const CLBlastTranspose a_transpose, const CLBlastTranspose b_transpose,
const size_t m, const size_t n, const size_t k,
const cl_float2 alpha,
const cl_mem a_buffer, const size_t a_offset, const size_t a_ld, const size_t a_stride,
const cl_mem b_buffer, const size_t b_offset, const size_t b_ld, const size_t b_stride,
const cl_float2 beta,
cl_mem c_buffer, const size_t c_offset, const size_t c_ld, const size_t c_stride,
const size_t batch_count,
cl_command_queue* queue, cl_event* event);
CLBlastStatusCode PUBLIC_API CLBlastZgemmStridedBatched(const CLBlastLayout layout, const CLBlastTranspose a_transpose, const CLBlastTranspose b_transpose,
const size_t m, const size_t n, const size_t k,
const cl_double2 alpha,
const cl_mem a_buffer, const size_t a_offset, const size_t a_ld, const size_t a_stride,
const cl_mem b_buffer, const size_t b_offset, const size_t b_ld, const size_t b_stride,
const cl_double2 beta,
cl_mem c_buffer, const size_t c_offset, const size_t c_ld, const size_t c_stride,
const size_t batch_count,
cl_command_queue* queue, cl_event* event);
CLBlastStatusCode PUBLIC_API CLBlastHgemmStridedBatched(const CLBlastLayout layout, const CLBlastTranspose a_transpose, const CLBlastTranspose b_transpose,
const size_t m, const size_t n, const size_t k,
const cl_half alpha,
const cl_mem a_buffer, const size_t a_offset, const size_t a_ld, const size_t a_stride,
const cl_mem b_buffer, const size_t b_offset, const size_t b_ld, const size_t b_stride,
const cl_half beta,
cl_mem c_buffer, const size_t c_offset, const size_t c_ld, const size_t c_stride,
const size_t batch_count,
cl_command_queue* queue, cl_event* event);
// =================================================================================================
// CLBlast stores binaries of compiled kernels into a cache in case the same kernel is used later on

View File

@ -619,6 +619,18 @@ StatusCode GemmBatched(const Layout layout, const Transpose a_transpose, const T
const size_t batch_count,
const CUcontext context, const CUdevice device);
// StridedBatched version of GEMM: SGEMMSTRIDEDBATCHED/DGEMMSTRIDEDBATCHED/CGEMMSTRIDEDBATCHED/ZGEMMSTRIDEDBATCHED/HGEMMSTRIDEDBATCHED
template <typename T>
StatusCode GemmStridedBatched(const Layout layout, const Transpose a_transpose, const Transpose b_transpose,
const size_t m, const size_t n, const size_t k,
const T alpha,
const CUdeviceptr a_buffer, const size_t a_offset, const size_t a_ld, const size_t a_stride,
const CUdeviceptr b_buffer, const size_t b_offset, const size_t b_ld, const size_t b_stride,
const T beta,
CUdeviceptr c_buffer, const size_t c_offset, const size_t c_ld, const size_t c_stride,
const size_t batch_count,
const CUcontext context, const CUdevice device);
// =================================================================================================
// Retrieves the required size of the temporary buffer for the GEMM kernel (optional)

View File

@ -109,71 +109,72 @@ col = "height * width * channels"
im2col_constants = ["channels", "height", "width", "kernel_h", "kernel_w", "pad_h", "pad_w", "stride_h", "stride_w", "dilation_h", "dilation_w"]
ROUTINES = [
[ # Level 1: vector-vector
Routine(False, True, False, False, "1", "rotg", T, [S,D], [], [], [], ["sa","sb","sc","ss"], ["1","1","1","1"], [], "", "Generate givens plane rotation", "", []),
Routine(False, True, False, False, "1", "rotmg", T, [S,D], [], [], ["sy1"], ["sd1","sd2","sx1","sparam"], ["1","1","1","1","1"], [], "", "Generate modified givens plane rotation", "", []),
Routine(False, True, False, False, "1", "rot", T, [S,D], ["n"], [], [], ["x","y"], [xn,yn], ["cos","sin"],"", "Apply givens plane rotation", "", []),
Routine(False, True, False, False, "1", "rotm", T, [S,D], ["n"], [], [], ["x","y","sparam"], [xn,yn,"1"], [], "", "Apply modified givens plane rotation", "", []),
Routine(True, True, False, False, "1", "swap", T, [S,D,C,Z,H], ["n"], [], [], ["x","y"], [xn,yn], [], "", "Swap two vectors", "Interchanges _n_ elements of vectors _x_ and _y_.", []),
Routine(True, True, False, False, "1", "scal", T, [S,D,C,Z,H], ["n"], [], [], ["x"], [xn], ["alpha"], "", "Vector scaling", "Multiplies _n_ elements of vector _x_ by a scalar constant _alpha_.", []),
Routine(True, True, False, False, "1", "copy", T, [S,D,C,Z,H], ["n"], [], ["x"], ["y"], [xn,yn], [], "", "Vector copy", "Copies the contents of vector _x_ into vector _y_.", []),
Routine(True, True, False, False, "1", "axpy", T, [S,D,C,Z,H], ["n"], [], ["x"], ["y"], [xn,yn], ["alpha"], "", "Vector-times-constant plus vector", "Performs the operation _y = alpha * x + y_, in which _x_ and _y_ are vectors and _alpha_ is a scalar constant.", []),
Routine(True, True, False, False, "1", "dot", T, [S,D,H], ["n"], [], ["x","y"], ["dot"], [xn,yn,"1"], [], "n", "Dot product of two vectors", "Multiplies _n_ elements of the vectors _x_ and _y_ element-wise and accumulates the results. The sum is stored in the _dot_ buffer.", []),
Routine(True, True, False, False, "1", "dotu", T, [C,Z], ["n"], [], ["x","y"], ["dot"], [xn,yn,"1"], [], "n", "Dot product of two complex vectors", "See the regular xDOT routine.", []),
Routine(True, True, False, False, "1", "dotc", T, [C,Z], ["n"], [], ["x","y"], ["dot"], [xn,yn,"1"], [], "n", "Dot product of two complex vectors, one conjugated", "See the regular xDOT routine.", []),
Routine(True, True, False, False, "1", "nrm2", T, [S,D,Sc,Dz,H], ["n"], [], ["x"], ["nrm2"], [xn,"1"], [], "2*n", "Euclidian norm of a vector", "Accumulates the square of _n_ elements in the _x_ vector and takes the square root. The resulting L2 norm is stored in the _nrm2_ buffer.", []),
Routine(True, True, False, False, "1", "asum", T, [S,D,Sc,Dz,H], ["n"], [], ["x"], ["asum"], [xn,"1"], [], "n", "Absolute sum of values in a vector", "Accumulates the absolute value of _n_ elements in the _x_ vector. The results are stored in the _asum_ buffer.", []),
Routine(True, False, False, False, "1", "sum", T, [S,D,Sc,Dz,H], ["n"], [], ["x"], ["sum"], [xn,"1"], [], "n", "Sum of values in a vector (non-BLAS function)", "Accumulates the values of _n_ elements in the _x_ vector. The results are stored in the _sum_ buffer. This routine is the non-absolute version of the xASUM BLAS routine.", []),
Routine(True, True, False, False, "1", "amax", T, [iS,iD,iC,iZ,iH], ["n"], [], ["x"], ["imax"], [xn,"1"], [], "2*n", "Index of absolute maximum value in a vector", "Finds the index of the maximum of the absolute values in the _x_ vector. The resulting integer index is stored in the _imax_ buffer.", []),
Routine(True, False, False, False, "1", "amin", T, [iS,iD,iC,iZ,iH], ["n"], [], ["x"], ["imin"], [xn,"1"], [], "2*n", "Index of absolute minimum value in a vector (non-BLAS function)", "Finds the index of the minimum of the absolute values in the _x_ vector. The resulting integer index is stored in the _imin_ buffer.", []),
Routine(True, False, False, False, "1", "max", T, [iS,iD,iC,iZ,iH], ["n"], [], ["x"], ["imax"], [xn,"1"], [], "2*n", "Index of maximum value in a vector (non-BLAS function)", "Finds the index of the maximum of the values in the _x_ vector. The resulting integer index is stored in the _imax_ buffer. This routine is the non-absolute version of the IxAMAX BLAS routine.", []),
Routine(True, False, False, False, "1", "min", T, [iS,iD,iC,iZ,iH], ["n"], [], ["x"], ["imin"], [xn,"1"], [], "2*n", "Index of minimum value in a vector (non-BLAS function)", "Finds the index of the minimum of the values in the _x_ vector. The resulting integer index is stored in the _imin_ buffer. This routine is the non-absolute minimum version of the IxAMAX BLAS routine.", []),
Routine(False, True, 0, False, "1", "rotg", T, [S,D], [], [], [], ["sa","sb","sc","ss"], ["1","1","1","1"], [], "", "Generate givens plane rotation", "", []),
Routine(False, True, 0, False, "1", "rotmg", T, [S,D], [], [], ["sy1"], ["sd1","sd2","sx1","sparam"], ["1","1","1","1","1"], [], "", "Generate modified givens plane rotation", "", []),
Routine(False, True, 0, False, "1", "rot", T, [S,D], ["n"], [], [], ["x","y"], [xn,yn], ["cos","sin"],"", "Apply givens plane rotation", "", []),
Routine(False, True, 0, False, "1", "rotm", T, [S,D], ["n"], [], [], ["x","y","sparam"], [xn,yn,"1"], [], "", "Apply modified givens plane rotation", "", []),
Routine(True, True, 0, False, "1", "swap", T, [S,D,C,Z,H], ["n"], [], [], ["x","y"], [xn,yn], [], "", "Swap two vectors", "Interchanges _n_ elements of vectors _x_ and _y_.", []),
Routine(True, True, 0, False, "1", "scal", T, [S,D,C,Z,H], ["n"], [], [], ["x"], [xn], ["alpha"], "", "Vector scaling", "Multiplies _n_ elements of vector _x_ by a scalar constant _alpha_.", []),
Routine(True, True, 0, False, "1", "copy", T, [S,D,C,Z,H], ["n"], [], ["x"], ["y"], [xn,yn], [], "", "Vector copy", "Copies the contents of vector _x_ into vector _y_.", []),
Routine(True, True, 0, False, "1", "axpy", T, [S,D,C,Z,H], ["n"], [], ["x"], ["y"], [xn,yn], ["alpha"], "", "Vector-times-constant plus vector", "Performs the operation _y = alpha * x + y_, in which _x_ and _y_ are vectors and _alpha_ is a scalar constant.", []),
Routine(True, True, 0, False, "1", "dot", T, [S,D,H], ["n"], [], ["x","y"], ["dot"], [xn,yn,"1"], [], "n", "Dot product of two vectors", "Multiplies _n_ elements of the vectors _x_ and _y_ element-wise and accumulates the results. The sum is stored in the _dot_ buffer.", []),
Routine(True, True, 0, False, "1", "dotu", T, [C,Z], ["n"], [], ["x","y"], ["dot"], [xn,yn,"1"], [], "n", "Dot product of two complex vectors", "See the regular xDOT routine.", []),
Routine(True, True, 0, False, "1", "dotc", T, [C,Z], ["n"], [], ["x","y"], ["dot"], [xn,yn,"1"], [], "n", "Dot product of two complex vectors, one conjugated", "See the regular xDOT routine.", []),
Routine(True, True, 0, False, "1", "nrm2", T, [S,D,Sc,Dz,H], ["n"], [], ["x"], ["nrm2"], [xn,"1"], [], "2*n", "Euclidian norm of a vector", "Accumulates the square of _n_ elements in the _x_ vector and takes the square root. The resulting L2 norm is stored in the _nrm2_ buffer.", []),
Routine(True, True, 0, False, "1", "asum", T, [S,D,Sc,Dz,H], ["n"], [], ["x"], ["asum"], [xn,"1"], [], "n", "Absolute sum of values in a vector", "Accumulates the absolute value of _n_ elements in the _x_ vector. The results are stored in the _asum_ buffer.", []),
Routine(True, False, 0, False, "1", "sum", T, [S,D,Sc,Dz,H], ["n"], [], ["x"], ["sum"], [xn,"1"], [], "n", "Sum of values in a vector (non-BLAS function)", "Accumulates the values of _n_ elements in the _x_ vector. The results are stored in the _sum_ buffer. This routine is the non-absolute version of the xASUM BLAS routine.", []),
Routine(True, True, 0, False, "1", "amax", T, [iS,iD,iC,iZ,iH], ["n"], [], ["x"], ["imax"], [xn,"1"], [], "2*n", "Index of absolute maximum value in a vector", "Finds the index of the maximum of the absolute values in the _x_ vector. The resulting integer index is stored in the _imax_ buffer.", []),
Routine(True, False, 0, False, "1", "amin", T, [iS,iD,iC,iZ,iH], ["n"], [], ["x"], ["imin"], [xn,"1"], [], "2*n", "Index of absolute minimum value in a vector (non-BLAS function)", "Finds the index of the minimum of the absolute values in the _x_ vector. The resulting integer index is stored in the _imin_ buffer.", []),
Routine(True, False, 0, False, "1", "max", T, [iS,iD,iC,iZ,iH], ["n"], [], ["x"], ["imax"], [xn,"1"], [], "2*n", "Index of maximum value in a vector (non-BLAS function)", "Finds the index of the maximum of the values in the _x_ vector. The resulting integer index is stored in the _imax_ buffer. This routine is the non-absolute version of the IxAMAX BLAS routine.", []),
Routine(True, False, 0, False, "1", "min", T, [iS,iD,iC,iZ,iH], ["n"], [], ["x"], ["imin"], [xn,"1"], [], "2*n", "Index of minimum value in a vector (non-BLAS function)", "Finds the index of the minimum of the values in the _x_ vector. The resulting integer index is stored in the _imin_ buffer. This routine is the non-absolute minimum version of the IxAMAX BLAS routine.", []),
],
[ # Level 2: matrix-vector
Routine(True, True, False, False, "2a", "gemv", T, [S,D,C,Z,H], ["m","n"], ["layout","a_transpose"], ["a","x"], ["y"], [amn,xmn,ynm], ["alpha","beta"], "", "General matrix-vector multiplication", "Performs the operation _y = alpha * A * x + beta * y_, in which _x_ is an input vector, _y_ is an input and output vector, _A_ is an input matrix, and _alpha_ and _beta_ are scalars. The matrix _A_ can optionally be transposed before performing the operation.", [ald_m]),
Routine(True, True, False, False, "2a", "gbmv", T, [S,D,C,Z,H], ["m","n","kl","ku"], ["layout","a_transpose"], ["a","x"], ["y"], [amn,xmn,ynm], ["alpha","beta"], "", "General banded matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is banded instead.", [ald_kl_ku_one]),
Routine(True, True, False, False, "2a", "hemv", T, [C,Z], ["n"], ["layout","triangle"], ["a","x"], ["y"], [an,xn,yn], ["alpha","beta"], "", "Hermitian matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is an Hermitian matrix instead.", [ald_n]),
Routine(True, True, False, False, "2a", "hbmv", T, [C,Z], ["n","k"], ["layout","triangle"], ["a","x"], ["y"], [an,xn,yn], ["alpha","beta"], "", "Hermitian banded matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is an Hermitian banded matrix instead.", [ald_k_one]),
Routine(True, True, False, False, "2a", "hpmv", T, [C,Z], ["n"], ["layout","triangle"], ["ap","x"], ["y"], [apn,xn,yn], ["alpha","beta"], "", "Hermitian packed matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is an Hermitian packed matrix instead and represented as _AP_.", []),
Routine(True, True, False, False, "2a", "symv", T, [S,D,H], ["n"], ["layout","triangle"], ["a","x"], ["y"], [an,xn,yn], ["alpha","beta"], "", "Symmetric matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is symmetric instead.", [ald_n]),
Routine(True, True, False, False, "2a", "sbmv", T, [S,D,H], ["n","k"], ["layout","triangle"], ["a","x"], ["y"], [an,xn,yn], ["alpha","beta"], "", "Symmetric banded matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is symmetric and banded instead.", [ald_k_one]),
Routine(True, True, False, False, "2a", "spmv", T, [S,D,H], ["n"], ["layout","triangle"], ["ap","x"], ["y"], [apn,xn,yn], ["alpha","beta"], "", "Symmetric packed matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is a symmetric packed matrix instead and represented as _AP_.", []),
Routine(True, True, False, False, "2a", "trmv", T, [S,D,C,Z,H], ["n"], ["layout","triangle","a_transpose","diagonal"], ["a"], ["x"], [an,xn], [], "n", "Triangular matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is triangular instead.", [ald_n]),
Routine(True, True, False, False, "2a", "tbmv", T, [S,D,C,Z,H], ["n","k"], ["layout","triangle","a_transpose","diagonal"], ["a"], ["x"], [an,xn], [], "n", "Triangular banded matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is triangular and banded instead.", [ald_k_one]),
Routine(True, True, False, False, "2a", "tpmv", T, [S,D,C,Z,H], ["n"], ["layout","triangle","a_transpose","diagonal"], ["ap"], ["x"], [apn,xn], [], "n", "Triangular packed matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is a triangular packed matrix instead and repreented as _AP_.", []),
Routine(True, True, False, False, "2a", "trsv", T, [S,D,C,Z], ["n"], ["layout","triangle","a_transpose","diagonal"], ["a"], ["x"], [an,xn], [], "", "Solves a triangular system of equations", "", []),
Routine(False, True, False, False, "2a", "tbsv", T, [S,D,C,Z], ["n","k"], ["layout","triangle","a_transpose","diagonal"], ["a"], ["x"], [an,xn], [], "", "Solves a banded triangular system of equations", "", [ald_k_one]),
Routine(False, True, False, False, "2a", "tpsv", T, [S,D,C,Z], ["n"], ["layout","triangle","a_transpose","diagonal"], ["ap"], ["x"], [apn,xn], [], "", "Solves a packed triangular system of equations", "", []),
Routine(True, True, 0, False, "2a", "gemv", T, [S,D,C,Z,H], ["m","n"], ["layout","a_transpose"], ["a","x"], ["y"], [amn,xmn,ynm], ["alpha","beta"], "", "General matrix-vector multiplication", "Performs the operation _y = alpha * A * x + beta * y_, in which _x_ is an input vector, _y_ is an input and output vector, _A_ is an input matrix, and _alpha_ and _beta_ are scalars. The matrix _A_ can optionally be transposed before performing the operation.", [ald_m]),
Routine(True, True, 0, False, "2a", "gbmv", T, [S,D,C,Z,H], ["m","n","kl","ku"], ["layout","a_transpose"], ["a","x"], ["y"], [amn,xmn,ynm], ["alpha","beta"], "", "General banded matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is banded instead.", [ald_kl_ku_one]),
Routine(True, True, 0, False, "2a", "hemv", T, [C,Z], ["n"], ["layout","triangle"], ["a","x"], ["y"], [an,xn,yn], ["alpha","beta"], "", "Hermitian matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is an Hermitian matrix instead.", [ald_n]),
Routine(True, True, 0, False, "2a", "hbmv", T, [C,Z], ["n","k"], ["layout","triangle"], ["a","x"], ["y"], [an,xn,yn], ["alpha","beta"], "", "Hermitian banded matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is an Hermitian banded matrix instead.", [ald_k_one]),
Routine(True, True, 0, False, "2a", "hpmv", T, [C,Z], ["n"], ["layout","triangle"], ["ap","x"], ["y"], [apn,xn,yn], ["alpha","beta"], "", "Hermitian packed matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is an Hermitian packed matrix instead and represented as _AP_.", []),
Routine(True, True, 0, False, "2a", "symv", T, [S,D,H], ["n"], ["layout","triangle"], ["a","x"], ["y"], [an,xn,yn], ["alpha","beta"], "", "Symmetric matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is symmetric instead.", [ald_n]),
Routine(True, True, 0, False, "2a", "sbmv", T, [S,D,H], ["n","k"], ["layout","triangle"], ["a","x"], ["y"], [an,xn,yn], ["alpha","beta"], "", "Symmetric banded matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is symmetric and banded instead.", [ald_k_one]),
Routine(True, True, 0, False, "2a", "spmv", T, [S,D,H], ["n"], ["layout","triangle"], ["ap","x"], ["y"], [apn,xn,yn], ["alpha","beta"], "", "Symmetric packed matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is a symmetric packed matrix instead and represented as _AP_.", []),
Routine(True, True, 0, False, "2a", "trmv", T, [S,D,C,Z,H], ["n"], ["layout","triangle","a_transpose","diagonal"], ["a"], ["x"], [an,xn], [], "n", "Triangular matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is triangular instead.", [ald_n]),
Routine(True, True, 0, False, "2a", "tbmv", T, [S,D,C,Z,H], ["n","k"], ["layout","triangle","a_transpose","diagonal"], ["a"], ["x"], [an,xn], [], "n", "Triangular banded matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is triangular and banded instead.", [ald_k_one]),
Routine(True, True, 0, False, "2a", "tpmv", T, [S,D,C,Z,H], ["n"], ["layout","triangle","a_transpose","diagonal"], ["ap"], ["x"], [apn,xn], [], "n", "Triangular packed matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is a triangular packed matrix instead and repreented as _AP_.", []),
Routine(True, True, 0, False, "2a", "trsv", T, [S,D,C,Z], ["n"], ["layout","triangle","a_transpose","diagonal"], ["a"], ["x"], [an,xn], [], "", "Solves a triangular system of equations", "", []),
Routine(False, True, 0, False, "2a", "tbsv", T, [S,D,C,Z], ["n","k"], ["layout","triangle","a_transpose","diagonal"], ["a"], ["x"], [an,xn], [], "", "Solves a banded triangular system of equations", "", [ald_k_one]),
Routine(False, True, 0, False, "2a", "tpsv", T, [S,D,C,Z], ["n"], ["layout","triangle","a_transpose","diagonal"], ["ap"], ["x"], [apn,xn], [], "", "Solves a packed triangular system of equations", "", []),
# Level 2: matrix update
Routine(True, True, False, False, "2b", "ger", T, [S,D,H], ["m","n"], ["layout"], ["x","y"], ["a"], [xm,yn,amn], ["alpha"], "", "General rank-1 matrix update", "Performs the operation _A = alpha * x * y^T + A_, in which _x_ is an input vector, _y^T_ is the transpose of the input vector _y_, _A_ is the matrix to be updated, and _alpha_ is a scalar value.", [ald_m]),
Routine(True, True, False, False, "2b", "geru", T, [C,Z], ["m","n"], ["layout"], ["x","y"], ["a"], [xm,yn,amn], ["alpha"], "", "General rank-1 complex matrix update", "Same operation as xGER, but with complex data-types.", [ald_m]),
Routine(True, True, False, False, "2b", "gerc", T, [C,Z], ["m","n"], ["layout"], ["x","y"], ["a"], [xm,yn,amn], ["alpha"], "", "General rank-1 complex conjugated matrix update", "Same operation as xGERU, but the update is done based on the complex conjugate of the input vectors.", [ald_m]),
Routine(True, True, False, False, "2b", "her", Tc, [Css,Zdd], ["n"], ["layout","triangle"], ["x"], ["a"], [xn,an], ["alpha"], "", "Hermitian rank-1 matrix update", "Performs the operation _A = alpha * x * x^T + A_, in which x is an input vector, x^T is the transpose of this vector, _A_ is the triangular Hermetian matrix to be updated, and alpha is a scalar value.", [ald_n]),
Routine(True, True, False, False, "2b", "hpr", Tc, [Css,Zdd], ["n"], ["layout","triangle"], ["x"], ["ap"], [xn,apn], ["alpha"], "", "Hermitian packed rank-1 matrix update", "Same operation as xHER, but matrix _A_ is an Hermitian packed matrix instead and represented as _AP_.", []),
Routine(True, True, False, False, "2b", "her2", T, [C,Z], ["n"], ["layout","triangle"], ["x","y"], ["a"], [xn,yn,an], ["alpha"], "", "Hermitian rank-2 matrix update", "Performs the operation _A = alpha * x * y^T + conj(alpha) * y * x^T + A_, in which _x_ is an input vector and _x^T_ its transpose, _y_ is an input vector and _y^T_ its transpose, _A_ is the triangular Hermetian matrix to be updated, _alpha_ is a scalar value and _conj(alpha)_ its complex conjugate.", [ald_n]),
Routine(True, True, False, False, "2b", "hpr2", T, [C,Z], ["n"], ["layout","triangle"], ["x","y"], ["ap"], [xn,yn,apn], ["alpha"], "", "Hermitian packed rank-2 matrix update", "Same operation as xHER2, but matrix _A_ is an Hermitian packed matrix instead and represented as _AP_.", []),
Routine(True, True, False, False, "2b", "syr", T, [S,D,H], ["n"], ["layout","triangle"], ["x"], ["a"], [xn,an], ["alpha"], "", "Symmetric rank-1 matrix update", "Same operation as xHER, but matrix A is a symmetric matrix instead.", [ald_n]),
Routine(True, True, False, False, "2b", "spr", T, [S,D,H], ["n"], ["layout","triangle"], ["x"], ["ap"], [xn,apn], ["alpha"], "", "Symmetric packed rank-1 matrix update", "Same operation as xSPR, but matrix _A_ is a symmetric packed matrix instead and represented as _AP_.", []),
Routine(True, True, False, False, "2b", "syr2", T, [S,D,H], ["n"], ["layout","triangle"], ["x","y"], ["a"], [xn,yn,an], ["alpha"], "", "Symmetric rank-2 matrix update", "Same operation as xHER2, but matrix _A_ is a symmetric matrix instead.", [ald_n]),
Routine(True, True, False, False, "2b", "spr2", T, [S,D,H], ["n"], ["layout","triangle"], ["x","y"], ["ap"], [xn,yn,apn], ["alpha"], "", "Symmetric packed rank-2 matrix update", "Same operation as xSPR2, but matrix _A_ is a symmetric packed matrix instead and represented as _AP_.", []),
Routine(True, True, 0, False, "2b", "ger", T, [S,D,H], ["m","n"], ["layout"], ["x","y"], ["a"], [xm,yn,amn], ["alpha"], "", "General rank-1 matrix update", "Performs the operation _A = alpha * x * y^T + A_, in which _x_ is an input vector, _y^T_ is the transpose of the input vector _y_, _A_ is the matrix to be updated, and _alpha_ is a scalar value.", [ald_m]),
Routine(True, True, 0, False, "2b", "geru", T, [C,Z], ["m","n"], ["layout"], ["x","y"], ["a"], [xm,yn,amn], ["alpha"], "", "General rank-1 complex matrix update", "Same operation as xGER, but with complex data-types.", [ald_m]),
Routine(True, True, 0, False, "2b", "gerc", T, [C,Z], ["m","n"], ["layout"], ["x","y"], ["a"], [xm,yn,amn], ["alpha"], "", "General rank-1 complex conjugated matrix update", "Same operation as xGERU, but the update is done based on the complex conjugate of the input vectors.", [ald_m]),
Routine(True, True, 0, False, "2b", "her", Tc, [Css,Zdd], ["n"], ["layout","triangle"], ["x"], ["a"], [xn,an], ["alpha"], "", "Hermitian rank-1 matrix update", "Performs the operation _A = alpha * x * x^T + A_, in which x is an input vector, x^T is the transpose of this vector, _A_ is the triangular Hermetian matrix to be updated, and alpha is a scalar value.", [ald_n]),
Routine(True, True, 0, False, "2b", "hpr", Tc, [Css,Zdd], ["n"], ["layout","triangle"], ["x"], ["ap"], [xn,apn], ["alpha"], "", "Hermitian packed rank-1 matrix update", "Same operation as xHER, but matrix _A_ is an Hermitian packed matrix instead and represented as _AP_.", []),
Routine(True, True, 0, False, "2b", "her2", T, [C,Z], ["n"], ["layout","triangle"], ["x","y"], ["a"], [xn,yn,an], ["alpha"], "", "Hermitian rank-2 matrix update", "Performs the operation _A = alpha * x * y^T + conj(alpha) * y * x^T + A_, in which _x_ is an input vector and _x^T_ its transpose, _y_ is an input vector and _y^T_ its transpose, _A_ is the triangular Hermetian matrix to be updated, _alpha_ is a scalar value and _conj(alpha)_ its complex conjugate.", [ald_n]),
Routine(True, True, 0, False, "2b", "hpr2", T, [C,Z], ["n"], ["layout","triangle"], ["x","y"], ["ap"], [xn,yn,apn], ["alpha"], "", "Hermitian packed rank-2 matrix update", "Same operation as xHER2, but matrix _A_ is an Hermitian packed matrix instead and represented as _AP_.", []),
Routine(True, True, 0, False, "2b", "syr", T, [S,D,H], ["n"], ["layout","triangle"], ["x"], ["a"], [xn,an], ["alpha"], "", "Symmetric rank-1 matrix update", "Same operation as xHER, but matrix A is a symmetric matrix instead.", [ald_n]),
Routine(True, True, 0, False, "2b", "spr", T, [S,D,H], ["n"], ["layout","triangle"], ["x"], ["ap"], [xn,apn], ["alpha"], "", "Symmetric packed rank-1 matrix update", "Same operation as xSPR, but matrix _A_ is a symmetric packed matrix instead and represented as _AP_.", []),
Routine(True, True, 0, False, "2b", "syr2", T, [S,D,H], ["n"], ["layout","triangle"], ["x","y"], ["a"], [xn,yn,an], ["alpha"], "", "Symmetric rank-2 matrix update", "Same operation as xHER2, but matrix _A_ is a symmetric matrix instead.", [ald_n]),
Routine(True, True, 0, False, "2b", "spr2", T, [S,D,H], ["n"], ["layout","triangle"], ["x","y"], ["ap"], [xn,yn,apn], ["alpha"], "", "Symmetric packed rank-2 matrix update", "Same operation as xSPR2, but matrix _A_ is a symmetric packed matrix instead and represented as _AP_.", []),
],
[ # Level 3: matrix-matrix
Routine(True, True, False, True, "3", "gemm", T, [S,D,C,Z,H], ["m","n","k"], ["layout","a_transpose","b_transpose"], ["a","b"], ["c"], [amk,bkn,cmn], ["alpha","beta"], "", "General matrix-matrix multiplication", "Performs the matrix product _C = alpha * A * B + beta * C_, in which _A_ (_m_ by _k_) and _B_ (_k_ by _n_) are two general rectangular input matrices, _C_ (_m_ by _n_) is the matrix to be updated, and _alpha_ and _beta_ are scalar values. The matrices _A_ and/or _B_ can optionally be transposed before performing the operation.", [ald_transa_m_k, bld_transb_k_n, cld_m]),
Routine(True, True, False, False, "3", "symm", T, [S,D,C,Z,H], ["m","n"], ["layout","side","triangle"], ["a","b"], ["c"], [ammn,bmnn,cmn], ["alpha","beta"], "", "Symmetric matrix-matrix multiplication", "Same operation as xGEMM, but _A_ is symmetric instead. In case of `side == kLeft`, _A_ is a symmetric _m_ by _m_ matrix and _C = alpha * A * B + beta * C_ is performed. Otherwise, in case of `side == kRight`, _A_ is a symmtric _n_ by _n_ matrix and _C = alpha * B * A + beta * C_ is performed.", [ald_side_m_n, bld_m, cld_m]),
Routine(True, True, False, False, "3", "hemm", T, [C,Z], ["m","n"], ["layout","side","triangle"], ["a","b"], ["c"], [ammn,bmnn,cmn], ["alpha","beta"], "", "Hermitian matrix-matrix multiplication", "Same operation as xSYMM, but _A_ is an Hermitian matrix instead.", [ald_side_m_n, bld_m, cld_m]),
Routine(True, True, False, False, "3", "syrk", T, [S,D,C,Z,H], ["n","k"], ["layout","triangle","a_transpose"], ["a"], ["c"], [ank,cn], ["alpha","beta"], "", "Rank-K update of a symmetric matrix", "Performs the matrix product _C = alpha * A * A^T + beta * C_ or _C = alpha * A^T * A + beta * C_, in which _A_ is a general matrix and _A^T_ is its transpose, _C_ (_n_ by _n_) is the symmetric matrix to be updated, and _alpha_ and _beta_ are scalar values.", [ald_trans_n_k, cld_m]),
Routine(True, True, False, False, "3", "herk", Tc, [Css,Zdd], ["n","k"], ["layout","triangle","a_transpose"], ["a"], ["c"], [ank,cn], ["alpha","beta"], "", "Rank-K update of a hermitian matrix", "Same operation as xSYRK, but _C_ is an Hermitian matrix instead.", [ald_trans_n_k, cld_m]),
Routine(True, True, False, False, "3", "syr2k", T, [S,D,C,Z,H], ["n","k"], ["layout","triangle","ab_transpose"], ["a","b"], ["c"], [ankab,bnkab,cn],["alpha","beta"], "", "Rank-2K update of a symmetric matrix", "Performs the matrix product _C = alpha * A * B^T + alpha * B * A^T + beta * C_ or _C = alpha * A^T * B + alpha * B^T * A + beta * C_, in which _A_ and _B_ are general matrices and _A^T_ and _B^T_ are their transposed versions, _C_ (_n_ by _n_) is the symmetric matrix to be updated, and _alpha_ and _beta_ are scalar values.", [ald_trans_n_k, bld_trans_n_k, cld_n]),
Routine(True, True, False, False, "3", "her2k", TU, [Ccs,Zzd], ["n","k"], ["layout","triangle","ab_transpose"], ["a","b"], ["c"], [ankab,bnkab,cn],["alpha","beta"], "", "Rank-2K update of a hermitian matrix", "Same operation as xSYR2K, but _C_ is an Hermitian matrix instead.", [ald_trans_n_k, bld_trans_n_k, cld_n]),
Routine(True, True, False, False, "3", "trmm", T, [S,D,C,Z,H], ["m","n"], ["layout","side","triangle","a_transpose","diagonal"], ["a"], ["b"], [amns,bmn], ["alpha"], "", "Triangular matrix-matrix multiplication", "Performs the matrix product _B = alpha * A * B_ or _B = alpha * B * A_, in which _A_ is a unit or non-unit triangular matrix, _B_ (_m_ by _n_) is the general matrix to be updated, and _alpha_ is a scalar value.", [ald_side_m_n, bld_m]),
Routine(True, True, False, False, "3", "trsm", T, [S,D,C,Z], ["m","n"], ["layout","side","triangle","a_transpose","diagonal"], ["a"], ["b"], [amns,bmn], ["alpha"], "", "Solves a triangular system of equations", "Solves the equation _A * X = alpha * B_ for the unknown _m_ by _n_ matrix X, in which _A_ is an _n_ by _n_ unit or non-unit triangular matrix and B is an _m_ by _n_ matrix. The matrix _B_ is overwritten by the solution _X_.", []),
Routine(True, True, 0, True, "3", "gemm", T, [S,D,C,Z,H], ["m","n","k"], ["layout","a_transpose","b_transpose"], ["a","b"], ["c"], [amk,bkn,cmn], ["alpha","beta"], "", "General matrix-matrix multiplication", "Performs the matrix product _C = alpha * A * B + beta * C_, in which _A_ (_m_ by _k_) and _B_ (_k_ by _n_) are two general rectangular input matrices, _C_ (_m_ by _n_) is the matrix to be updated, and _alpha_ and _beta_ are scalar values. The matrices _A_ and/or _B_ can optionally be transposed before performing the operation.", [ald_transa_m_k, bld_transb_k_n, cld_m]),
Routine(True, True, 0, False, "3", "symm", T, [S,D,C,Z,H], ["m","n"], ["layout","side","triangle"], ["a","b"], ["c"], [ammn,bmnn,cmn], ["alpha","beta"], "", "Symmetric matrix-matrix multiplication", "Same operation as xGEMM, but _A_ is symmetric instead. In case of `side == kLeft`, _A_ is a symmetric _m_ by _m_ matrix and _C = alpha * A * B + beta * C_ is performed. Otherwise, in case of `side == kRight`, _A_ is a symmtric _n_ by _n_ matrix and _C = alpha * B * A + beta * C_ is performed.", [ald_side_m_n, bld_m, cld_m]),
Routine(True, True, 0, False, "3", "hemm", T, [C,Z], ["m","n"], ["layout","side","triangle"], ["a","b"], ["c"], [ammn,bmnn,cmn], ["alpha","beta"], "", "Hermitian matrix-matrix multiplication", "Same operation as xSYMM, but _A_ is an Hermitian matrix instead.", [ald_side_m_n, bld_m, cld_m]),
Routine(True, True, 0, False, "3", "syrk", T, [S,D,C,Z,H], ["n","k"], ["layout","triangle","a_transpose"], ["a"], ["c"], [ank,cn], ["alpha","beta"], "", "Rank-K update of a symmetric matrix", "Performs the matrix product _C = alpha * A * A^T + beta * C_ or _C = alpha * A^T * A + beta * C_, in which _A_ is a general matrix and _A^T_ is its transpose, _C_ (_n_ by _n_) is the symmetric matrix to be updated, and _alpha_ and _beta_ are scalar values.", [ald_trans_n_k, cld_m]),
Routine(True, True, 0, False, "3", "herk", Tc, [Css,Zdd], ["n","k"], ["layout","triangle","a_transpose"], ["a"], ["c"], [ank,cn], ["alpha","beta"], "", "Rank-K update of a hermitian matrix", "Same operation as xSYRK, but _C_ is an Hermitian matrix instead.", [ald_trans_n_k, cld_m]),
Routine(True, True, 0, False, "3", "syr2k", T, [S,D,C,Z,H], ["n","k"], ["layout","triangle","ab_transpose"], ["a","b"], ["c"], [ankab,bnkab,cn],["alpha","beta"], "", "Rank-2K update of a symmetric matrix", "Performs the matrix product _C = alpha * A * B^T + alpha * B * A^T + beta * C_ or _C = alpha * A^T * B + alpha * B^T * A + beta * C_, in which _A_ and _B_ are general matrices and _A^T_ and _B^T_ are their transposed versions, _C_ (_n_ by _n_) is the symmetric matrix to be updated, and _alpha_ and _beta_ are scalar values.", [ald_trans_n_k, bld_trans_n_k, cld_n]),
Routine(True, True, 0, False, "3", "her2k", TU, [Ccs,Zzd], ["n","k"], ["layout","triangle","ab_transpose"], ["a","b"], ["c"], [ankab,bnkab,cn],["alpha","beta"], "", "Rank-2K update of a hermitian matrix", "Same operation as xSYR2K, but _C_ is an Hermitian matrix instead.", [ald_trans_n_k, bld_trans_n_k, cld_n]),
Routine(True, True, 0, False, "3", "trmm", T, [S,D,C,Z,H], ["m","n"], ["layout","side","triangle","a_transpose","diagonal"], ["a"], ["b"], [amns,bmn], ["alpha"], "", "Triangular matrix-matrix multiplication", "Performs the matrix product _B = alpha * A * B_ or _B = alpha * B * A_, in which _A_ is a unit or non-unit triangular matrix, _B_ (_m_ by _n_) is the general matrix to be updated, and _alpha_ is a scalar value.", [ald_side_m_n, bld_m]),
Routine(True, True, 0, False, "3", "trsm", T, [S,D,C,Z], ["m","n"], ["layout","side","triangle","a_transpose","diagonal"], ["a"], ["b"], [amns,bmn], ["alpha"], "", "Solves a triangular system of equations", "Solves the equation _A * X = alpha * B_ for the unknown _m_ by _n_ matrix X, in which _A_ is an _n_ by _n_ unit or non-unit triangular matrix and B is an _m_ by _n_ matrix. The matrix _B_ is overwritten by the solution _X_.", []),
],
[ # Level X: extra routines (not part of BLAS)
# Special routines:
Routine(True, True, False, False, "x", "omatcopy", T, [S,D,C,Z,H], ["m","n"], ["layout","a_transpose"], ["a"], ["b"], [amn,bnma], ["alpha"], "", "Scaling and out-place transpose/copy (non-BLAS function)", "Performs scaling and out-of-place transposition/copying of matrices according to _B = alpha*op(A)_, in which _A_ is an input matrix (_m_ rows by _n_ columns), _B_ an output matrix, and _alpha_ a scalar value. The operation _op_ can be a normal matrix copy, a transposition or a conjugate transposition.", [ald_m, bld_n]),
Routine(True, True, False, False, "x", "im2col", T, [S,D,C,Z,H], im2col_constants, [], ["im"], ["col"], [im,col], [""], "", "Im2col function (non-BLAS function)", "Performs the im2col algorithm, in which _im_ is the input matrix and _col_ is the output matrix.", []),
Routine(True, True, 0, False, "x", "omatcopy", T, [S,D,C,Z,H], ["m","n"], ["layout","a_transpose"], ["a"], ["b"], [amn,bnma], ["alpha"], "", "Scaling and out-place transpose/copy (non-BLAS function)", "Performs scaling and out-of-place transposition/copying of matrices according to _B = alpha*op(A)_, in which _A_ is an input matrix (_m_ rows by _n_ columns), _B_ an output matrix, and _alpha_ a scalar value. The operation _op_ can be a normal matrix copy, a transposition or a conjugate transposition.", [ald_m, bld_n]),
Routine(True, True, 0, False, "x", "im2col", T, [S,D,C,Z,H], im2col_constants, [], ["im"], ["col"], [im,col], [""], "", "Im2col function (non-BLAS function)", "Performs the im2col algorithm, in which _im_ is the input matrix and _col_ is the output matrix.", []),
# Batched routines:
Routine(True, True, True, False, "x", "axpy", T, [S,D,C,Z,H], ["n"], [], ["x"], ["y"], [xn,yn], ["alpha"], "", "Batched version of AXPY", "As AXPY, but multiple operations are batched together for better performance.", []),
Routine(True, True, True, False, "x", "gemm", T, [S,D,C,Z,H], ["m","n","k"], ["layout","a_transpose","b_transpose"], ["a","b"], ["c"], [amk,bkn,cmn], ["alpha","beta"], "", "Batched version of GEMM", "As GEMM, but multiple operations are batched together for better performance.", [ald_transa_m_k, bld_transb_k_n, cld_m]),
Routine(True, True, 1, False, "x", "axpy", T, [S,D,C,Z,H], ["n"], [], ["x"], ["y"], [xn,yn], ["alpha"], "", "Batched version of AXPY", "As AXPY, but multiple operations are batched together for better performance.", []),
Routine(True, True, 1, False, "x", "gemm", T, [S,D,C,Z,H], ["m","n","k"], ["layout","a_transpose","b_transpose"], ["a","b"], ["c"], [amk,bkn,cmn], ["alpha","beta"], "", "Batched version of GEMM", "As GEMM, but multiple operations are batched together for better performance.", [ald_transa_m_k, bld_transb_k_n, cld_m]),
Routine(True, True, 2, False, "x", "gemm", T, [S,D,C,Z,H], ["m","n","k"], ["layout","a_transpose","b_transpose"], ["a","b"], ["c"], [amk,bkn,cmn], ["alpha","beta"], "", "StridedBatched version of GEMM", "As GEMM, but multiple strided operations are batched together for better performance.", [ald_transa_m_k, bld_transb_k_n, cld_m]),
]]
@ -223,10 +224,10 @@ def main(argv):
if i == 6:
body += cpp.wrapper_cublas(routine)
if i == 7:
if not routine.batched:
if routine.batched == 0:
body += cpp.clblast_netlib_c_h(routine)
if i == 8:
if not routine.batched:
if routine.batched == 0:
body += cpp.clblast_netlib_c_cc(routine)
if i == 9:
body += cpp.clblast_h(routine, cuda=True)

View File

@ -58,7 +58,7 @@ def clblast_cc(routine, cuda=False):
result += " auto queue_cpp = Queue(*queue);" + NL
event = "nullptr" if cuda else "event"
result += " auto routine = X" + routine.plain_name() + "<" + routine.template.template + ">(queue_cpp, " + event + ");" + NL
if routine.batched:
if routine.batched == 1:
result += " " + (NL + " ").join(routine.batched_transform_to_cpp()) + NL
if routine.temp_buffer:
null = "0" if cuda else "nullptr"
@ -110,7 +110,7 @@ def clblast_c_cc(routine):
template = "<" + flavour.template + ">" if routine.no_scalars() else ""
indent = " " * (16 + routine.length() + len(template))
result += routine.routine_header_c(flavour, 27, "") + " {" + NL
if routine.batched:
if routine.batched == 1:
result += " " + (NL + " ").join(routine.batched_transform_to_complex(flavour)) + NL
result += " try {" + NL
result += " return static_cast<CLBlastStatusCode>(" + NL
@ -388,7 +388,7 @@ def performance_test(routine, level_string):
found = False
for flavour in routine.flavours:
if flavour.precision_name == precision:
extra_template_argument = "0, " if routine.name == "gemm" and not routine.batched else ""
extra_template_argument = "0, " if routine.name == "gemm" and routine.batched == 0 else ""
result += NL + " clblast::RunClient<clblast::TestX" + routine.plain_name()
result += flavour.test_template(extra_template_argument)
result += ">(argc, argv); break;" + NL
@ -410,7 +410,7 @@ def correctness_test(routine, level_string):
result += "int main(int argc, char *argv[]) {" + NL
result += " auto errors = size_t{0};" + NL
not_first = "false"
extra_template_arguments = ["1, ", "2, "] if routine.name == "gemm" and not routine.batched else [""]
extra_template_arguments = ["1, ", "2, "] if routine.name == "gemm" and routine.batched == 0 else [""]
for extra_template_argument in extra_template_arguments:
for flavour in routine.flavours:
result += " errors += clblast::RunTests<clblast::TestX" + routine.plain_name()

View File

@ -12,12 +12,12 @@ import generator.convert as convert
class Routine:
"""Class holding routine-specific information (e.g. name, which arguments, which precisions)"""
def __init__(self, implemented, has_tests, batched, temp_buffer, level, name, template, flavours, sizes, options,
def __init__(self, implemented, has_tests, batched_strided, temp_buffer, level, name, template, flavours, sizes, options,
inputs, outputs, buffer_sizes, scalars, scratch,
description, details, requirements):
self.implemented = implemented
self.has_tests = has_tests
self.batched = batched
self.batched = batched_strided
self.temp_buffer = temp_buffer
self.level = level
self.name = name
@ -35,38 +35,42 @@ class Routine:
self.requirements = requirements
def lowercase_name(self):
postfix = "batched" if self.batched else ""
postfix = "strided" if self.batched == 2 else ""
postfix += "batched" if self.batched != 0 else ""
return self.name + postfix
def plain_name(self):
postfix = "Batched" if self.batched else ""
postfix = "Strided" if self.batched == 2 else ""
postfix += "Batched" if self.batched != 0 else ""
return self.name + postfix
def capitalized_name(self):
postfix = "Batched" if self.batched else ""
postfix = "Strided" if self.batched == 2 else ""
postfix += "Batched" if self.batched != 0 else ""
return self.name.capitalize() + postfix
def upper_name(self):
postfix = "BATCHED" if self.batched else ""
postfix = "STRIDED" if self.batched == 2 else ""
postfix += "BATCHED" if self.batched != 0 else ""
return self.name.upper() + postfix
def b_star(self):
return "*" if self.batched else ""
return "*" if self.batched == 1 else ""
def b_s(self):
return "s" if self.batched else ""
return "s" if self.batched == 1 else ""
def batch_count_def(self):
return ["const size_t batch_count"] if self.batched else []
return ["const size_t batch_count"] if self.batched != 0 else []
def batch_count_list(self):
return ["batch_count"] if self.batched else []
return ["batch_count"] if self.batched != 0 else []
def batch_count_type(self):
return ["const size_t"] if self.batched else []
return ["const size_t"] if self.batched != 0 else []
def batch_count_doc(self):
return ["`const size_t batch_count`: Number of batches. This value must be positive."] if self.batched else []
return ["`const size_t batch_count`: Number of batches. This value must be positive."] if self.batched != 0 else []
def batched_transform_to_cpp(self):
result = []
@ -230,6 +234,8 @@ class Routine:
a = [name + "_buffer"]
b = [name + "_offset" + self.b_s()]
c = [name + "_" + self.postfix(name)] if (name not in self.buffers_without_ld_inc()) else []
if self.batched == 2:
c += [name + "_stride"]
return [", ".join(a + b + c)]
return []
@ -239,6 +245,8 @@ class Routine:
a = [name + "_buffer_bis"]
b = [name + "_offset"]
c = [name + "_" + self.postfix(name)] if name not in self.buffers_without_ld_inc() else []
if self.batched == 2:
c += [name + "_stride"]
return [", ".join(a + b + c)]
return []
@ -258,6 +266,8 @@ class Routine:
a = [prefix + "cl_mem " + name + "_buffer"]
b = ["const size_t " + self.b_star() + name + "_offset" + self.b_s()]
c = ["const size_t " + name + "_" + self.postfix(name)] if name not in self.buffers_without_ld_inc() else []
if self.batched == 2:
c += ["const size_t " + name + "_stride"]
return [", ".join(a + b + c)]
return []
@ -307,8 +317,10 @@ class Routine:
if name in self.inputs or name in self.outputs:
buffer_type = "unsigned int" if (name in self.index_buffers()) else self.template.buffer_type
a = ["Buffer<" + buffer_type + ">(" + name + "_buffer)"]
b = [name + "_offsets_cpp"] if self.batched else [name + "_offset"]
b = [name + "_offsets_cpp"] if self.batched == 1 else [name + "_offset"]
c = [name + "_" + self.postfix(name)] if (name not in self.buffers_without_ld_inc()) else []
if self.batched == 2:
c += [name + "_stride"]
return [", ".join(a + b + c)]
return []
@ -375,6 +387,8 @@ class Routine:
a = [prefix + "cl_mem"]
b = ["const size_t" + self.b_star()]
c = ["const size_t"] if (name not in self.buffers_without_ld_inc()) else []
if self.batched == 2:
c += ["const size_t"]
return [", ".join(a + b + c)]
return []
@ -391,13 +405,15 @@ class Routine:
if name not in self.buffers_without_ld_inc():
c = ["`const size_t " + name + "_" + self.postfix(name) + "`: " +
inc_ld_description + "of the " + inout + " " + math_name + ". This value must be greater than 0."]
if self.batched == 2:
c += ["`const size_t " + name + "_stride`: The (fixed) stride between two batches of the " + name.upper() + " matrix."]
return a + b + c
return []
def scalar(self, name):
"""Retrieves the name of a scalar (alpha/beta)"""
if name in self.scalars:
if self.batched:
if self.batched == 1:
return [name + "s_cpp"]
return [name]
return []
@ -418,11 +434,11 @@ class Routine:
"""Retrieves the use of a scalar (alpha/beta)"""
if name in self.scalars:
if name == "alpha":
if self.batched:
if self.batched == 1:
return ["alphas_cpp.data()"]
return [flavour.use_alpha()]
elif name == "beta":
if self.batched:
if self.batched == 1:
return ["betas_cpp.data()"]
return [flavour.use_beta()]
return [name]
@ -866,7 +882,7 @@ class Routine:
if self.name in self.routines_scalar_no_return():
routine_name += "_sub"
indent += " "
if self.batched:
if self.batched != 0:
routine_name += "batched"
result = return_type + extra_qualifier + " cblas_" + flavour.name.lower() + routine_name + "("
result += (",\n" + indent).join([a for a in self.arguments_def_netlib(flavour)]) + ")"

View File

@ -2336,6 +2336,77 @@ template StatusCode PUBLIC_API GemmBatched<half>(const Layout, const Transpose,
const size_t,
cl_command_queue*, cl_event*);
// StridedBatched version of GEMM: SGEMMSTRIDEDBATCHED/DGEMMSTRIDEDBATCHED/CGEMMSTRIDEDBATCHED/ZGEMMSTRIDEDBATCHED/HGEMMSTRIDEDBATCHED
template <typename T>
StatusCode GemmStridedBatched(const Layout layout, const Transpose a_transpose, const Transpose b_transpose,
const size_t m, const size_t n, const size_t k,
const T alpha,
const cl_mem a_buffer, const size_t a_offset, const size_t a_ld, const size_t a_stride,
const cl_mem b_buffer, const size_t b_offset, const size_t b_ld, const size_t b_stride,
const T beta,
cl_mem c_buffer, const size_t c_offset, const size_t c_ld, const size_t c_stride,
const size_t batch_count,
cl_command_queue* queue, cl_event* event) {
try {
auto queue_cpp = Queue(*queue);
auto routine = XgemmStridedBatched<T>(queue_cpp, event);
routine.DoGemmStridedBatched(layout, a_transpose, b_transpose,
m, n, k,
alpha,
Buffer<T>(a_buffer), a_offset, a_ld, a_stride,
Buffer<T>(b_buffer), b_offset, b_ld, b_stride,
beta,
Buffer<T>(c_buffer), c_offset, c_ld, c_stride,
batch_count);
return StatusCode::kSuccess;
} catch (...) { return DispatchException(); }
}
template StatusCode PUBLIC_API GemmStridedBatched<float>(const Layout, const Transpose, const Transpose,
const size_t, const size_t, const size_t,
const float,
const cl_mem, const size_t, const size_t, const size_t,
const cl_mem, const size_t, const size_t, const size_t,
const float,
cl_mem, const size_t, const size_t, const size_t,
const size_t,
cl_command_queue*, cl_event*);
template StatusCode PUBLIC_API GemmStridedBatched<double>(const Layout, const Transpose, const Transpose,
const size_t, const size_t, const size_t,
const double,
const cl_mem, const size_t, const size_t, const size_t,
const cl_mem, const size_t, const size_t, const size_t,
const double,
cl_mem, const size_t, const size_t, const size_t,
const size_t,
cl_command_queue*, cl_event*);
template StatusCode PUBLIC_API GemmStridedBatched<float2>(const Layout, const Transpose, const Transpose,
const size_t, const size_t, const size_t,
const float2,
const cl_mem, const size_t, const size_t, const size_t,
const cl_mem, const size_t, const size_t, const size_t,
const float2,
cl_mem, const size_t, const size_t, const size_t,
const size_t,
cl_command_queue*, cl_event*);
template StatusCode PUBLIC_API GemmStridedBatched<double2>(const Layout, const Transpose, const Transpose,
const size_t, const size_t, const size_t,
const double2,
const cl_mem, const size_t, const size_t, const size_t,
const cl_mem, const size_t, const size_t, const size_t,
const double2,
cl_mem, const size_t, const size_t, const size_t,
const size_t,
cl_command_queue*, cl_event*);
template StatusCode PUBLIC_API GemmStridedBatched<half>(const Layout, const Transpose, const Transpose,
const size_t, const size_t, const size_t,
const half,
const cl_mem, const size_t, const size_t, const size_t,
const cl_mem, const size_t, const size_t, const size_t,
const half,
cl_mem, const size_t, const size_t, const size_t,
const size_t,
cl_command_queue*, cl_event*);
// =================================================================================================
// Retrieves the required size of the temporary buffer for the GEMM kernel (optional)

View File

@ -3846,6 +3846,133 @@ CLBlastStatusCode CLBlastHgemmBatched(const CLBlastLayout layout, const CLBlastT
} catch (...) { return static_cast<CLBlastStatusCode>(clblast::DispatchExceptionForC()); }
}
// GEMM
CLBlastStatusCode CLBlastSgemmStridedBatched(const CLBlastLayout layout, const CLBlastTranspose a_transpose, const CLBlastTranspose b_transpose,
const size_t m, const size_t n, const size_t k,
const float alpha,
const cl_mem a_buffer, const size_t a_offset, const size_t a_ld, const size_t a_stride,
const cl_mem b_buffer, const size_t b_offset, const size_t b_ld, const size_t b_stride,
const float beta,
cl_mem c_buffer, const size_t c_offset, const size_t c_ld, const size_t c_stride,
const size_t batch_count,
cl_command_queue* queue, cl_event* event) {
try {
return static_cast<CLBlastStatusCode>(
clblast::GemmStridedBatched(static_cast<clblast::Layout>(layout),
static_cast<clblast::Transpose>(a_transpose),
static_cast<clblast::Transpose>(b_transpose),
m, n, k,
alpha,
a_buffer, a_offset, a_ld, a_stride,
b_buffer, b_offset, b_ld, b_stride,
beta,
c_buffer, c_offset, c_ld, c_stride,
batch_count,
queue, event)
);
} catch (...) { return static_cast<CLBlastStatusCode>(clblast::DispatchExceptionForC()); }
}
CLBlastStatusCode CLBlastDgemmStridedBatched(const CLBlastLayout layout, const CLBlastTranspose a_transpose, const CLBlastTranspose b_transpose,
const size_t m, const size_t n, const size_t k,
const double alpha,
const cl_mem a_buffer, const size_t a_offset, const size_t a_ld, const size_t a_stride,
const cl_mem b_buffer, const size_t b_offset, const size_t b_ld, const size_t b_stride,
const double beta,
cl_mem c_buffer, const size_t c_offset, const size_t c_ld, const size_t c_stride,
const size_t batch_count,
cl_command_queue* queue, cl_event* event) {
try {
return static_cast<CLBlastStatusCode>(
clblast::GemmStridedBatched(static_cast<clblast::Layout>(layout),
static_cast<clblast::Transpose>(a_transpose),
static_cast<clblast::Transpose>(b_transpose),
m, n, k,
alpha,
a_buffer, a_offset, a_ld, a_stride,
b_buffer, b_offset, b_ld, b_stride,
beta,
c_buffer, c_offset, c_ld, c_stride,
batch_count,
queue, event)
);
} catch (...) { return static_cast<CLBlastStatusCode>(clblast::DispatchExceptionForC()); }
}
CLBlastStatusCode CLBlastCgemmStridedBatched(const CLBlastLayout layout, const CLBlastTranspose a_transpose, const CLBlastTranspose b_transpose,
const size_t m, const size_t n, const size_t k,
const cl_float2 alpha,
const cl_mem a_buffer, const size_t a_offset, const size_t a_ld, const size_t a_stride,
const cl_mem b_buffer, const size_t b_offset, const size_t b_ld, const size_t b_stride,
const cl_float2 beta,
cl_mem c_buffer, const size_t c_offset, const size_t c_ld, const size_t c_stride,
const size_t batch_count,
cl_command_queue* queue, cl_event* event) {
try {
return static_cast<CLBlastStatusCode>(
clblast::GemmStridedBatched(static_cast<clblast::Layout>(layout),
static_cast<clblast::Transpose>(a_transpose),
static_cast<clblast::Transpose>(b_transpose),
m, n, k,
float2{alpha.s[0], alpha.s[1]},
a_buffer, a_offset, a_ld, a_stride,
b_buffer, b_offset, b_ld, b_stride,
float2{beta.s[0], beta.s[1]},
c_buffer, c_offset, c_ld, c_stride,
batch_count,
queue, event)
);
} catch (...) { return static_cast<CLBlastStatusCode>(clblast::DispatchExceptionForC()); }
}
CLBlastStatusCode CLBlastZgemmStridedBatched(const CLBlastLayout layout, const CLBlastTranspose a_transpose, const CLBlastTranspose b_transpose,
const size_t m, const size_t n, const size_t k,
const cl_double2 alpha,
const cl_mem a_buffer, const size_t a_offset, const size_t a_ld, const size_t a_stride,
const cl_mem b_buffer, const size_t b_offset, const size_t b_ld, const size_t b_stride,
const cl_double2 beta,
cl_mem c_buffer, const size_t c_offset, const size_t c_ld, const size_t c_stride,
const size_t batch_count,
cl_command_queue* queue, cl_event* event) {
try {
return static_cast<CLBlastStatusCode>(
clblast::GemmStridedBatched(static_cast<clblast::Layout>(layout),
static_cast<clblast::Transpose>(a_transpose),
static_cast<clblast::Transpose>(b_transpose),
m, n, k,
double2{alpha.s[0], alpha.s[1]},
a_buffer, a_offset, a_ld, a_stride,
b_buffer, b_offset, b_ld, b_stride,
double2{beta.s[0], beta.s[1]},
c_buffer, c_offset, c_ld, c_stride,
batch_count,
queue, event)
);
} catch (...) { return static_cast<CLBlastStatusCode>(clblast::DispatchExceptionForC()); }
}
CLBlastStatusCode CLBlastHgemmStridedBatched(const CLBlastLayout layout, const CLBlastTranspose a_transpose, const CLBlastTranspose b_transpose,
const size_t m, const size_t n, const size_t k,
const cl_half alpha,
const cl_mem a_buffer, const size_t a_offset, const size_t a_ld, const size_t a_stride,
const cl_mem b_buffer, const size_t b_offset, const size_t b_ld, const size_t b_stride,
const cl_half beta,
cl_mem c_buffer, const size_t c_offset, const size_t c_ld, const size_t c_stride,
const size_t batch_count,
cl_command_queue* queue, cl_event* event) {
try {
return static_cast<CLBlastStatusCode>(
clblast::GemmStridedBatched(static_cast<clblast::Layout>(layout),
static_cast<clblast::Transpose>(a_transpose),
static_cast<clblast::Transpose>(b_transpose),
m, n, k,
alpha,
a_buffer, a_offset, a_ld, a_stride,
b_buffer, b_offset, b_ld, b_stride,
beta,
c_buffer, c_offset, c_ld, c_stride,
batch_count,
queue, event)
);
} catch (...) { return static_cast<CLBlastStatusCode>(clblast::DispatchExceptionForC()); }
}
// =================================================================================================
// Clears the cache of stored binaries

View File

@ -2436,6 +2436,79 @@ template StatusCode PUBLIC_API GemmBatched<half>(const Layout, const Transpose,
const size_t,
const CUcontext, const CUdevice);
// StridedBatched version of GEMM: SGEMMSTRIDEDBATCHED/DGEMMSTRIDEDBATCHED/CGEMMSTRIDEDBATCHED/ZGEMMSTRIDEDBATCHED/HGEMMSTRIDEDBATCHED
template <typename T>
StatusCode GemmStridedBatched(const Layout layout, const Transpose a_transpose, const Transpose b_transpose,
const size_t m, const size_t n, const size_t k,
const T alpha,
const CUdeviceptr a_buffer, const size_t a_offset, const size_t a_ld, const size_t a_stride,
const CUdeviceptr b_buffer, const size_t b_offset, const size_t b_ld, const size_t b_stride,
const T beta,
CUdeviceptr c_buffer, const size_t c_offset, const size_t c_ld, const size_t c_stride,
const size_t batch_count,
const CUcontext context, const CUdevice device) {
try {
const auto context_cpp = Context(context);
const auto device_cpp = Device(device);
auto queue_cpp = Queue(context_cpp, device_cpp);
auto routine = XgemmStridedBatched<T>(queue_cpp, nullptr);
routine.DoGemmStridedBatched(layout, a_transpose, b_transpose,
m, n, k,
alpha,
Buffer<T>(a_buffer), a_offset, a_ld, a_stride,
Buffer<T>(b_buffer), b_offset, b_ld, b_stride,
beta,
Buffer<T>(c_buffer), c_offset, c_ld, c_stride,
batch_count);
return StatusCode::kSuccess;
} catch (...) { return DispatchException(); }
}
template StatusCode PUBLIC_API GemmStridedBatched<float>(const Layout, const Transpose, const Transpose,
const size_t, const size_t, const size_t,
const float,
const CUdeviceptr, const size_t, const size_t, const size_t,
const CUdeviceptr, const size_t, const size_t, const size_t,
const float,
CUdeviceptr, const size_t, const size_t, const size_t,
const size_t,
const CUcontext, const CUdevice);
template StatusCode PUBLIC_API GemmStridedBatched<double>(const Layout, const Transpose, const Transpose,
const size_t, const size_t, const size_t,
const double,
const CUdeviceptr, const size_t, const size_t, const size_t,
const CUdeviceptr, const size_t, const size_t, const size_t,
const double,
CUdeviceptr, const size_t, const size_t, const size_t,
const size_t,
const CUcontext, const CUdevice);
template StatusCode PUBLIC_API GemmStridedBatched<float2>(const Layout, const Transpose, const Transpose,
const size_t, const size_t, const size_t,
const float2,
const CUdeviceptr, const size_t, const size_t, const size_t,
const CUdeviceptr, const size_t, const size_t, const size_t,
const float2,
CUdeviceptr, const size_t, const size_t, const size_t,
const size_t,
const CUcontext, const CUdevice);
template StatusCode PUBLIC_API GemmStridedBatched<double2>(const Layout, const Transpose, const Transpose,
const size_t, const size_t, const size_t,
const double2,
const CUdeviceptr, const size_t, const size_t, const size_t,
const CUdeviceptr, const size_t, const size_t, const size_t,
const double2,
CUdeviceptr, const size_t, const size_t, const size_t,
const size_t,
const CUcontext, const CUdevice);
template StatusCode PUBLIC_API GemmStridedBatched<half>(const Layout, const Transpose, const Transpose,
const size_t, const size_t, const size_t,
const half,
const CUdeviceptr, const size_t, const size_t, const size_t,
const CUdeviceptr, const size_t, const size_t, const size_t,
const half,
CUdeviceptr, const size_t, const size_t, const size_t,
const size_t,
const CUcontext, const CUdevice);
// =================================================================================================
// Retrieves the required size of the temporary buffer for the GEMM kernel (optional)

View File

@ -0,0 +1,297 @@
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
// Cedric Nugteren <www.cedricnugteren.nl>
//
// This file implements the XgemmStridedBatched class (see the header for information about the class).
//
// =================================================================================================
#include "routines/levelx/xgemmstridedbatched.hpp"
#include "routines/level3/xgemm.hpp"
#include <string>
#include <vector>
namespace clblast {
// =================================================================================================
// Constructor: forwards to base class constructor
template <typename T>
XgemmStridedBatched<T>::XgemmStridedBatched(Queue &queue, EventPointer event, const std::string &name):
Routine(queue, event, name, {"Copy","Pad","Transpose","Padtranspose","Xgemm","XgemmDirect","GemmRoutine"},
PrecisionValue<T>(), {}, {
#include "../../kernels/level3/level3.opencl"
#include "../../kernels/level3/copy_fast.opencl"
#include "../../kernels/level3/copy_pad.opencl"
#include "../../kernels/level3/transpose_fast.opencl"
#include "../../kernels/level3/transpose_pad.opencl"
, // separated in multiple parts to prevent C1091 in MSVC 2013
#include "../../kernels/level3/xgemm_direct_part1.opencl"
#include "../../kernels/level3/xgemm_direct_part2.opencl"
#include "../../kernels/level3/xgemm_direct_part3.opencl"
, // separated in multiple parts to prevent C1091 in MSVC 2013
#include "../../kernels/level3/xgemm_part1.opencl"
#include "../../kernels/level3/xgemm_part2.opencl"
#include "../../kernels/level3/xgemm_part3.opencl"
#include "../../kernels/level3/xgemm_part4.opencl"
, // separated in multiple parts to prevent C1091 in MSVC 2013
#include "../../kernels/level3/xgemm_batched.opencl"
#include "../../kernels/level3/xgemm_direct_batched.opencl"
}) {
}
// =================================================================================================
// The main routine
template <typename T>
void XgemmStridedBatched<T>::DoGemmStridedBatched(const Layout layout, const Transpose a_transpose, const Transpose b_transpose,
const size_t m, const size_t n, const size_t k, const T alpha,
const Buffer<T> &a_buffer, const size_t a_offset, const size_t a_ld, const size_t a_stride,
const Buffer<T> &b_buffer, const size_t b_offset, const size_t b_ld, const size_t b_stride, const T beta,
const Buffer<T> &c_buffer, const size_t c_offset, const size_t c_ld, const size_t c_stride,
const size_t batch_count) {
// Tests for a valid batch count
if (batch_count < 1) {
throw BLASError(StatusCode::kInvalidBatchCount);
}
// Computes the transpose/conjugate options and sets the a/b/c sizes based on that
bool a_do_transpose, b_do_transpose, c_do_transpose, a_conjugate, b_conjugate;
size_t a_one, a_two, b_one, b_two, c_one, c_two;
Xgemm<T>::ProcessArguments(layout, a_transpose, b_transpose, m, n, k,
a_one, a_two, b_one, b_two, c_one, c_two,
a_do_transpose, b_do_transpose, c_do_transpose, a_conjugate, b_conjugate);
// Tests the matrices for validity
for (auto batch = size_t{0}; batch < batch_count; ++batch) {
TestMatrixA(a_one, a_two, a_buffer, a_offset + a_stride * batch, a_ld);
TestMatrixB(b_one, b_two, b_buffer, b_offset + b_stride * batch, b_ld);
TestMatrixC(c_one, c_two, c_buffer, c_offset + c_stride * batch, c_ld);
}
// Selects which version of the batched GEMM to run
const auto do_gemm_direct = true;
if (do_gemm_direct) { // single generic kernel
BatchedGemmDirect(m, n, k, alpha,
a_buffer, a_offset, a_ld, a_stride,
b_buffer, b_offset, b_ld, b_stride, beta,
c_buffer, c_offset, c_ld, c_stride,
a_do_transpose, b_do_transpose, c_do_transpose, a_conjugate, b_conjugate,
batch_count);
}
else { // pre/post-processing plus a very fast kernel
BatchedGemmIndirect(m, n, k, alpha,
a_buffer, a_offset, a_ld, a_stride,
b_buffer, b_offset, b_ld, b_stride, beta,
c_buffer, c_offset, c_ld, c_stride,
a_do_transpose, b_do_transpose, c_do_transpose, a_conjugate, b_conjugate,
a_one, a_two, b_one, b_two, c_one, c_two, batch_count);
}
}
// =================================================================================================
// The indirect version of batched GEMM. This uses the faster but non-general kernel. It has specific
// requirements, but several pre and post-processing kernels take care of those. However, the
// overhead of these extra kernels might not be ideal for certain devices/arguments.
template <typename T>
void XgemmStridedBatched<T>::BatchedGemmIndirect(const size_t m, const size_t n, const size_t k, const T alpha,
const Buffer<T> &a_buffer, const size_t a_offset, const size_t a_ld, const size_t a_stride,
const Buffer<T> &b_buffer, const size_t b_offset, const size_t b_ld, const size_t b_stride, const T beta,
const Buffer<T> &c_buffer, const size_t c_offset, const size_t c_ld, const size_t c_stride,
const bool a_do_transpose, const bool b_do_transpose, const bool c_do_transpose,
const bool a_conjugate, const bool b_conjugate,
const size_t a_one, const size_t a_two,
const size_t b_one, const size_t b_two,
const size_t c_one, const size_t c_two,
const size_t batch_count) {
// Calculates the ceiled versions of m, n, and k
const auto m_ceiled = Ceil(Ceil(m, db_["MWG"]), db_["VWM"]);
const auto n_ceiled = Ceil(Ceil(n, db_["NWG"]), db_["VWN"]);
const auto k_ceiled = Ceil(Ceil(k, db_["KWG"]), db_["VWM"]);
// Computes the first and second "internal" (ceiled) dimensions of the 3 matrices taking into account
// whether the matrices need to be rotated or not for the kernel.
size_t a_one_i, a_two_i, b_one_i, b_two_i, c_one_i, c_two_i;
Xgemm<T>::CalculateInternalDimensions(m, n, k, db_["MWG"], db_["NWG"], db_["KWG"],
a_one_i, a_two_i, b_one_i, b_two_i, c_one_i, c_two_i);
/* TODO
// Sets the "internal" offsets, i.e. the perfect offsets
auto a_offsets_i = 0;//std::vector<int>(batch_count);
auto b_offsets_i = 0;//std::vector<int>(batch_count);
auto c_offsets_i = 0;//std::vector<int>(batch_count);
// Determines whether or not temporary matrices are needed
auto a_no_temp = a_one == a_one_i && a_two == a_two_i && a_ld == a_one && a_offsets == a_offsets_i &&
!a_do_transpose && !a_conjugate;
auto b_no_temp = b_one == b_one_i && b_two == b_two_i && b_ld == b_one && b_offsets == b_offsets_i &&
!b_do_transpose && !b_conjugate;
auto c_no_temp = c_one == c_one_i && c_two == c_two_i && c_ld == c_one && c_offsets == c_offsets_i &&
!c_do_transpose;
// Creates the temporary matrices
const auto a_temp = (a_no_temp) ? a_buffer : Buffer<T>(context_, batch_count * a_one_i * a_two_i);
const auto b_temp = (b_no_temp) ? b_buffer : Buffer<T>(context_, batch_count * b_one_i * b_two_i);
const auto c_temp = (c_no_temp) ? c_buffer : Buffer<T>(context_, batch_count * c_one_i * c_two_i);
// Events of all kernels (including pre/post processing kernels)
auto eventWaitList = std::vector<Event>();
auto emptyEventList = std::vector<Event>();
// Runs the pre-processing kernel for matrix A. This transposes the matrix, but also pads zeros
// to fill it up until it reaches a certain multiple of size (kernel parameter dependent). In
// case nothing has to be done, these kernels can be skipped.
if (!a_no_temp) {
auto a_offsets_device = Buffer<int>(context_, BufferAccess::kReadWrite, batch_count);
auto a_offsets_i_device = Buffer<int>(context_, BufferAccess::kReadWrite, batch_count);
a_offsets_device.Write(queue_, batch_count, a_offsets);
a_offsets_i_device.Write(queue_, batch_count, a_offsets_i);
auto eventProcessA = Event();
PadCopyTransposeMatrixBatched(queue_, device_, db_, eventProcessA.pointer(), emptyEventList,
a_one, a_two, a_ld, a_offsets_device, a_buffer,
a_one_i, a_two_i, a_one_i, a_offsets_i_device, a_temp,
program_, true, a_do_transpose, a_conjugate, batch_count);
eventWaitList.push_back(eventProcessA);
}
// As above, but now for matrix B
if (!b_no_temp) {
auto b_offsets_device = Buffer<int>(context_, BufferAccess::kReadWrite, batch_count);
auto b_offsets_i_device = Buffer<int>(context_, BufferAccess::kReadWrite, batch_count);
b_offsets_device.Write(queue_, batch_count, b_offsets);
b_offsets_i_device.Write(queue_, batch_count, b_offsets_i);
auto eventProcessB = Event();
PadCopyTransposeMatrixBatched(queue_, device_, db_, eventProcessB.pointer(), emptyEventList,
b_one, b_two, b_ld, b_offsets_device, b_buffer,
b_one_i, b_two_i, b_one_i, b_offsets_i_device, b_temp,
program_, true, b_do_transpose, b_conjugate, batch_count);
eventWaitList.push_back(eventProcessB);
}
// As above, but now for matrix C
auto c_offsets_device = Buffer<int>(context_, BufferAccess::kReadWrite, batch_count);
auto c_offsets_i_device = Buffer<int>(context_, BufferAccess::kReadWrite, batch_count);
if (!c_no_temp) {
c_offsets_device.Write(queue_, batch_count, c_offsets);
c_offsets_i_device.Write(queue_, batch_count, c_offsets_i);
auto eventProcessC = Event();
PadCopyTransposeMatrixBatched(queue_, device_, db_, eventProcessC.pointer(), emptyEventList,
c_one, c_two, c_ld, c_offsets_device, c_buffer,
c_one_i, c_two_i, c_one_i, c_offsets_i_device, c_temp,
program_, true, c_do_transpose, false, batch_count);
eventWaitList.push_back(eventProcessC);
}
// Retrieves the Xgemm kernel from the compiled binary
auto kernel = Kernel(program_, "XgemmStridedBatched");
// Sets the kernel arguments
kernel.SetArgument(0, static_cast<int>(m_ceiled));
kernel.SetArgument(1, static_cast<int>(n_ceiled));
kernel.SetArgument(2, static_cast<int>(k_ceiled));
kernel.SetArgument(3, alpha);
kernel.SetArgument(4, beta);
kernel.SetArgument(5, a_temp());
kernel.SetArgument(6, static_cast<int>(a_one_i));
kernel.SetArgument(7, static_cast<int>(a_two_i));
kernel.SetArgument(8, b_temp());
kernel.SetArgument(9, static_cast<int>(b_one_i));
kernel.SetArgument(10, static_cast<int>(b_two_i));
kernel.SetArgument(11, c_temp());
kernel.SetArgument(12, static_cast<int>(c_one_i));
kernel.SetArgument(13, static_cast<int>(c_two_i));
// Computes the global and local thread sizes
const auto global = std::vector<size_t>{
(c_one_i * db_["MDIMC"]) / db_["MWG"],
(c_two_i * db_["NDIMC"]) / db_["NWG"],
batch_count
};
const auto local = std::vector<size_t>{db_["MDIMC"], db_["NDIMC"], 1};
// Launches the kernel
auto eventKernel = Event();
auto eventPointer = eventKernel.pointer();
RunKernel(kernel, queue_, device_, global, local, eventPointer, eventWaitList);
// Runs the post-processing kernel if needed
if (!c_no_temp) {
eventWaitList.push_back(eventKernel);
PadCopyTransposeMatrixBatched(queue_, device_, db_, event_, eventWaitList,
c_one_i, c_two_i, c_one_i, c_offsets_i_device, c_temp,
c_one, c_two, c_ld, c_offsets_device, c_buffer,
program_, false, c_do_transpose, false, batch_count);
}
*/
}
// =================================================================================================
// The direct version of batched GEMM, requiring just one kernel, no pre or post-processing kernels.
template <typename T>
void XgemmStridedBatched<T>::BatchedGemmDirect(const size_t m, const size_t n, const size_t k, const T alpha,
const Buffer<T> &a_buffer, const size_t a_offset, const size_t a_ld, const size_t a_stride,
const Buffer<T> &b_buffer, const size_t b_offset, const size_t b_ld, const size_t b_stride, const T beta,
const Buffer<T> &c_buffer, const size_t c_offset, const size_t c_ld, const size_t c_stride,
const bool a_do_transpose, const bool b_do_transpose, const bool c_do_transpose,
const bool a_conjugate, const bool b_conjugate,
const size_t batch_count) {
/* TODO
// Retrieves the proper XgemmDirect kernel from the compiled binary
const auto name = (a_do_transpose) ? (b_do_transpose ? "XgemmDirectBatchedTT" : "XgemmDirectBatchedTN") :
(b_do_transpose ? "XgemmDirectBatchedNT" : "XgemmDirectBatchedNN");
auto kernel = Kernel(program_, name);
// Sets the kernel arguments
kernel.SetArgument(0, static_cast<int>(m));
kernel.SetArgument(1, static_cast<int>(n));
kernel.SetArgument(2, static_cast<int>(k));
kernel.SetArgument(3, alpha);
kernel.SetArgument(4, beta);
kernel.SetArgument(5, a_buffer());
kernel.SetArgument(6, a_offset);
kernel.SetArgument(7, static_cast<int>(a_ld));
kernel.SetArgument(8, b_buffer());
kernel.SetArgument(9, b_offset);
kernel.SetArgument(10, static_cast<int>(b_ld));
kernel.SetArgument(11, c_buffer());
kernel.SetArgument(12, c_offset);
kernel.SetArgument(13, static_cast<int>(c_ld));
kernel.SetArgument(14, static_cast<int>(c_do_transpose));
kernel.SetArgument(15, static_cast<int>(a_conjugate));
kernel.SetArgument(16, static_cast<int>(b_conjugate));
// Computes the global and local thread sizes
const auto m_ceiled = Ceil(m, db_["WGD"]);
const auto n_ceiled = Ceil(n, db_["WGD"]);
const auto global = std::vector<size_t>{
(m_ceiled * db_["MDIMCD"]) / db_["WGD"],
(n_ceiled * db_["NDIMCD"]) / db_["WGD"],
batch_count
};
const auto local = std::vector<size_t>{db_["MDIMCD"], db_["NDIMCD"], 1};
// Launches the kernel
RunKernel(kernel, queue_, device_, global, local, event_);
*/
}
// =================================================================================================
// Compiles the templated class
template class XgemmStridedBatched<half>;
template class XgemmStridedBatched<float>;
template class XgemmStridedBatched<double>;
template class XgemmStridedBatched<float2>;
template class XgemmStridedBatched<double2>;
// =================================================================================================
} // namespace clblast

View File

@ -0,0 +1,66 @@
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
// Cedric Nugteren <www.cedricnugteren.nl>
//
// This file implements the XgemmStridedBatched routine. This is a non-blas batched version of GEMM.
//
// =================================================================================================
#ifndef CLBLAST_ROUTINES_XGEMMSTRIDEDBATCHED_H_
#define CLBLAST_ROUTINES_XGEMMSTRIDEDBATCHED_H_
#include <vector>
#include "routine.hpp"
namespace clblast {
// =================================================================================================
// See comment at top of file for a description of the class
template <typename T>
class XgemmStridedBatched: public Routine {
public:
// Constructor
XgemmStridedBatched(Queue &queue, EventPointer event, const std::string &name = "GEMMSTRIDEDBATCHED");
// Templated-precision implementation of the routine
void DoGemmStridedBatched(const Layout layout, const Transpose a_transpose, const Transpose b_transpose,
const size_t m, const size_t n, const size_t k, const T alpha,
const Buffer<T> &a_buffer, const size_t a_offset, const size_t a_ld, const size_t a_stride,
const Buffer<T> &b_buffer, const size_t b_offset, const size_t b_ld, const size_t b_stride, const T beta,
const Buffer<T> &c_buffer, const size_t c_offset, const size_t c_ld, const size_t c_stride,
const size_t batch_count);
// Indirect version of strided batched GEMM (with pre and post-processing kernels)
void BatchedGemmIndirect(const size_t m, const size_t n, const size_t k, const T alpha,
const Buffer<T> &a_buffer, const size_t a_offset, const size_t a_ld, const size_t a_stride,
const Buffer<T> &b_buffer, const size_t b_offset, const size_t b_ld, const size_t b_stride, const T beta,
const Buffer<T> &c_buffer, const size_t c_offset, const size_t c_ld, const size_t c_stride,
const bool a_do_transpose, const bool b_do_transpose, const bool c_do_transpose,
const bool a_conjugate, const bool b_conjugate,
const size_t a_one, const size_t a_two,
const size_t b_one, const size_t b_two,
const size_t c_one, const size_t c_two,
const size_t batch_count);
// Direct version of strided batched GEMM (no pre and post-processing kernels)
void BatchedGemmDirect(const size_t m, const size_t n, const size_t k, const T alpha,
const Buffer<T> &a_buffer, const size_t a_offset, const size_t a_ld, const size_t a_stride,
const Buffer<T> &b_buffer, const size_t b_offset, const size_t b_ld, const size_t b_stride, const T beta,
const Buffer<T> &c_buffer, const size_t c_offset, const size_t c_ld, const size_t c_stride,
const bool a_do_transpose, const bool b_do_transpose, const bool c_do_transpose,
const bool a_conjugate, const bool b_conjugate,
const size_t batch_count);
};
// =================================================================================================
} // namespace clblast
// CLBLAST_ROUTINES_XGEMMSTRIDEDBATCHED_H_
#endif

View File

@ -71,6 +71,7 @@
#include "routines/levelx/xim2col.hpp"
#include "routines/levelx/xaxpybatched.hpp"
#include "routines/levelx/xgemmbatched.hpp"
#include "routines/levelx/xgemmstridedbatched.hpp"
// CLBLAST_ROUTINES_ROUTINES_H_
#endif

View File

@ -0,0 +1,26 @@
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
// Cedric Nugteren <www.cedricnugteren.nl>
//
// =================================================================================================
#include "test/correctness/testblas.hpp"
#include "test/routines/levelx/xgemmstridedbatched.hpp"
// Main function (not within the clblast namespace)
int main(int argc, char *argv[]) {
auto errors = size_t{0};
errors += clblast::RunTests<clblast::TestXgemmStridedBatched<float>, float, float>(argc, argv, false, "SGEMMSTRIDEDBATCHED");
errors += clblast::RunTests<clblast::TestXgemmStridedBatched<double>, double, double>(argc, argv, true, "DGEMMSTRIDEDBATCHED");
errors += clblast::RunTests<clblast::TestXgemmStridedBatched<clblast::float2>, clblast::float2, clblast::float2>(argc, argv, true, "CGEMMSTRIDEDBATCHED");
errors += clblast::RunTests<clblast::TestXgemmStridedBatched<clblast::double2>, clblast::double2, clblast::double2>(argc, argv, true, "ZGEMMSTRIDEDBATCHED");
errors += clblast::RunTests<clblast::TestXgemmStridedBatched<clblast::half>, clblast::half, clblast::half>(argc, argv, true, "HGEMMSTRIDEDBATCHED");
if (errors > 0) { return 1; } else { return 0; }
}
// =================================================================================================

View File

@ -0,0 +1,33 @@
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
// Cedric Nugteren <www.cedricnugteren.nl>
//
// =================================================================================================
#include "test/performance/client.hpp"
#include "test/routines/levelx/xgemmstridedbatched.hpp"
// Main function (not within the clblast namespace)
int main(int argc, char *argv[]) {
const auto command_line_args = clblast::RetrieveCommandLineArguments(argc, argv);
switch(clblast::GetPrecision(command_line_args, clblast::Precision::kSingle)) {
case clblast::Precision::kHalf:
clblast::RunClient<clblast::TestXgemmStridedBatched<clblast::half>, clblast::half, clblast::half>(argc, argv); break;
case clblast::Precision::kSingle:
clblast::RunClient<clblast::TestXgemmStridedBatched<float>, float, float>(argc, argv); break;
case clblast::Precision::kDouble:
clblast::RunClient<clblast::TestXgemmStridedBatched<double>, double, double>(argc, argv); break;
case clblast::Precision::kComplexSingle:
clblast::RunClient<clblast::TestXgemmStridedBatched<clblast::float2>, clblast::float2, clblast::float2>(argc, argv); break;
case clblast::Precision::kComplexDouble:
clblast::RunClient<clblast::TestXgemmStridedBatched<clblast::double2>, clblast::double2, clblast::double2>(argc, argv); break;
}
return 0;
}
// =================================================================================================

View File

@ -0,0 +1,218 @@
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
// Cedric Nugteren <www.cedricnugteren.nl>
//
// This file implements a class with static methods to describe the XgemmStridedBatched routine. Examples of
// such 'descriptions' are how to calculate the size a of buffer or how to run the routine. These
// static methods are used by the correctness tester and the performance tester.
//
// =================================================================================================
#ifndef CLBLAST_TEST_ROUTINES_XGEMMSTRIDEDBATCHED_H_
#define CLBLAST_TEST_ROUTINES_XGEMMSTRIDEDBATCHED_H_
#include "test/routines/common.hpp"
namespace clblast {
// =================================================================================================
// See comment at top of file for a description of the class
template <typename T>
class TestXgemmStridedBatched {
public:
// Although it is a non-BLAS routine, it can still be tested against level-3 routines in a loop
static size_t BLASLevel() { return 3; }
// The list of arguments relevant for this routine
static std::vector<std::string> GetOptions() {
return {kArgM, kArgN, kArgK,
kArgLayout, kArgATransp, kArgBTransp,
kArgALeadDim, kArgBLeadDim, kArgCLeadDim,
kArgAOffset, kArgBOffset, kArgCOffset,
kArgBatchCount, kArgAlpha, kArgBeta};
}
static std::vector<std::string> BuffersIn() { return {kBufMatA, kBufMatB, kBufMatC}; }
static std::vector<std::string> BuffersOut() { return {kBufMatC}; }
// Helper for the sizes per batch
static size_t PerBatchSizeA(const Arguments<T> &args) {
auto a_rotated = (args.layout == Layout::kColMajor && args.a_transpose != Transpose::kNo) ||
(args.layout == Layout::kRowMajor && args.a_transpose == Transpose::kNo);
auto a_two = (a_rotated) ? args.m : args.k;
return a_two * args.a_ld;
}
static size_t PerBatchSizeB(const Arguments<T> &args) {
auto b_rotated = (args.layout == Layout::kColMajor && args.b_transpose != Transpose::kNo) ||
(args.layout == Layout::kRowMajor && args.b_transpose == Transpose::kNo);
auto b_two = (b_rotated) ? args.k : args.n;
return b_two * args.b_ld;
}
static size_t PerBatchSizeC(const Arguments<T> &args) {
auto c_rotated = (args.layout == Layout::kRowMajor);
auto c_two = (c_rotated) ? args.m : args.n;
return c_two * args.c_ld;
}
// Describes how to obtain the sizes of the buffers
static size_t GetSizeA(const Arguments<T> &args) {
return PerBatchSizeA(args) * args.batch_count + args.a_offset;
}
static size_t GetSizeB(const Arguments<T> &args) {
return PerBatchSizeB(args) * args.batch_count + args.b_offset;
}
static size_t GetSizeC(const Arguments<T> &args) {
return PerBatchSizeC(args) * args.batch_count + args.c_offset;
}
// Describes how to set the sizes of all the buffers
static void SetSizes(Arguments<T> &args, Queue&) {
args.a_size = GetSizeA(args);
args.b_size = GetSizeB(args);
args.c_size = GetSizeC(args);
}
// Describes what the default values of the leading dimensions of the matrices are
static size_t DefaultLDA(const Arguments<T> &args) { return args.k; }
static size_t DefaultLDB(const Arguments<T> &args) { return args.n; }
static size_t DefaultLDC(const Arguments<T> &args) { return args.n; }
// Describes which transpose options are relevant for this routine
using Transposes = std::vector<Transpose>;
static Transposes GetATransposes(const Transposes &all) { return all; }
static Transposes GetBTransposes(const Transposes &all) { return all; }
// Describes how to prepare the input data
static void PrepareData(const Arguments<T>&, Queue&, const int, std::vector<T>&,
std::vector<T>&, std::vector<T>&, std::vector<T>&, std::vector<T>&,
std::vector<T>&, std::vector<T>&) {} // N/A for this routine
// Describes how to run the CLBlast routine
static StatusCode RunRoutine(const Arguments<T> &args, Buffers<T> &buffers, Queue &queue) {
#ifdef OPENCL_API
auto queue_plain = queue();
auto event = cl_event{};
auto status = GemmStridedBatched(args.layout, args.a_transpose, args.b_transpose,
args.m, args.n, args.k, args.alpha,
buffers.a_mat(), args.a_offset, args.a_ld, PerBatchSizeA(args),
buffers.b_mat(), args.b_offset, args.b_ld, PerBatchSizeB(args), args.beta,
buffers.c_mat(), args.c_offset, args.c_ld, PerBatchSizeC(args),
args.batch_count,
&queue_plain, &event);
if (status == StatusCode::kSuccess) { clWaitForEvents(1, &event); clReleaseEvent(event); }
#elif CUDA_API
auto status = GemmStridedBatched(args.layout, args.a_transpose, args.b_transpose,
args.m, args.n, args.k, args.alpha,
buffers.a_mat(), args.a_offset, args.a_ld, PerBatchSizeA(args),
buffers.b_mat(), args.b_offset, args.b_ld, PerBatchSizeB(args), args.beta,
buffers.c_mat(), args.c_offset, args.c_ld, PerBatchSizeC(args),
args.batch_count,
queue.GetContext()(), queue.GetDevice()());
cuStreamSynchronize(queue());
#endif
return status;
}
// Describes how to run the clBLAS routine (for correctness/performance comparison)
#ifdef CLBLAST_REF_CLBLAS
static StatusCode RunReference1(const Arguments<T> &args, Buffers<T> &buffers, Queue &queue) {
auto queue_plain = queue();
for (auto batch = size_t{0}; batch < args.batch_count; ++batch) {
const auto a_batch_offset = args.a_offset + PerBatchSizeA(args) * batch;
const auto b_batch_offset = args.c_offset + PerBatchSizeB(args) * batch;
const auto c_batch_offset = args.b_offset + PerBatchSizeC(args) * batch;
auto event = cl_event{};
auto status = clblasXgemm(convertToCLBLAS(args.layout),
convertToCLBLAS(args.a_transpose),
convertToCLBLAS(args.b_transpose),
args.m, args.n, args.k, args.alpha,
buffers.a_mat, a_batch_offset, args.a_ld,
buffers.b_mat, b_batch_offset, args.b_ld, args.beta,
buffers.c_mat, c_batch_offset, args.c_ld,
1, &queue_plain, 0, nullptr, &event);
clWaitForEvents(1, &event);
if (static_cast<StatusCode>(status) != StatusCode::kSuccess) {
return static_cast<StatusCode>(status);
}
}
return StatusCode::kSuccess;
}
#endif
// Describes how to run the CPU BLAS routine (for correctness/performance comparison)
#ifdef CLBLAST_REF_CBLAS
static StatusCode RunReference2(const Arguments<T> &args, BuffersHost<T> &buffers_host, Queue &) {
for (auto batch = size_t{0}; batch < args.batch_count; ++batch) {
const auto a_batch_offset = args.a_offset + PerBatchSizeA(args) * batch;
const auto b_batch_offset = args.c_offset + PerBatchSizeB(args) * batch;
const auto c_batch_offset = args.b_offset + PerBatchSizeC(args) * batch;
cblasXgemm(convertToCBLAS(args.layout),
convertToCBLAS(args.a_transpose),
convertToCBLAS(args.b_transpose),
args.m, args.n, args.k, args.alpha,
buffers_host.a_mat, a_batch_offset, args.a_ld,
buffers_host.b_mat, b_batch_offset, args.b_ld, args.beta,
buffers_host.c_mat, c_batch_offset, args.c_ld);
}
return StatusCode::kSuccess;
}
#endif
// Describes how to run the cuBLAS routine (for correctness/performance comparison)
#ifdef CLBLAST_REF_CUBLAS
static StatusCode RunReference3(const Arguments<T> &args, BuffersCUDA<T> &buffers, Queue &) {
for (auto batch = size_t{0}; batch < args.batch_count; ++batch) {
const auto a_batch_offset = args.a_offset + PerBatchSizeA(args) * batch;
const auto b_batch_offset = args.c_offset + PerBatchSizeB(args) * batch;
const auto c_batch_offset = args.b_offset + PerBatchSizeC(args) * batch;
auto status = cublasXgemm(reinterpret_cast<cublasHandle_t>(args.cublas_handle), args.layout,
convertToCUBLAS(args.a_transpose),
convertToCUBLAS(args.b_transpose),
args.m, args.n, args.k, args.alpha,
buffers.a_mat, a_batch_offset, args.a_ld,
buffers.b_mat, b_batch_offset, args.b_ld, args.beta,
buffers.c_mat, c_batch_offset, args.c_ld);
if (status != CUBLAS_STATUS_SUCCESS) { return StatusCode::kUnknownError; }
}
return StatusCode::kSuccess;
}
#endif
// Describes how to download the results of the computation (more importantly: which buffer)
static std::vector<T> DownloadResult(const Arguments<T> &args, Buffers<T> &buffers, Queue &queue) {
std::vector<T> result(args.c_size, static_cast<T>(0));
buffers.c_mat.Read(queue, args.c_size, result);
return result;
}
// Describes how to compute the indices of the result buffer
static size_t ResultID1(const Arguments<T> &args) { return args.m; }
static size_t ResultID2(const Arguments<T> &args) { return args.n * args.batch_count; }
static size_t GetResultIndex(const Arguments<T> &args, const size_t id1, const size_t id2_3) {
const size_t id2 = id2_3 % args.n;
const size_t id3 = id2_3 / args.n;
const auto c_batch_offset = args.c_offset + PerBatchSizeC(args) * id3;
return (args.layout == Layout::kRowMajor) ?
id1*args.c_ld + id2 + c_batch_offset:
id2*args.c_ld + id1 + c_batch_offset;
}
// Describes how to compute performance metrics
static size_t GetFlops(const Arguments<T> &args) {
return args.batch_count * (2 * args.m * args.n * args.k);
}
static size_t GetBytes(const Arguments<T> &args) {
return args.batch_count * (args.m*args.k + args.k*args.n + 2*args.m*args.n) * sizeof(T);
}
};
// =================================================================================================
} // namespace clblast
// CLBLAST_TEST_ROUTINES_XGEMMSTRIDEDBATCHED_H_
#endif