Merge branch 'level1_routines' into development

This commit is contained in:
cnugteren 2016-04-20 22:14:55 -06:00
commit c8e28a33c0
30 changed files with 1457 additions and 44 deletions

View file

@ -6,6 +6,8 @@ Development version (next release)
- Fixed the use of events within the library
- Added level-1 routines:
* SNRM2/DNRM2/ScNRM2/DzNRM2
* SASUM/DASUM/ScASUM/DzASUM
* iSAMAX/iDAMAX/iCAMAX/iZAMAX
Version 0.6.0
- Added support for MSVC (Visual Studio) 2015

View file

@ -121,7 +121,7 @@ include_directories(${clblast_SOURCE_DIR}/include ${OPENCL_INCLUDE_DIRS})
set(KERNELS copy pad transpose padtranspose xaxpy xdot xger xgemm xgemv)
set(SAMPLE_PROGRAMS_CPP sgemm)
set(SAMPLE_PROGRAMS_C sgemm)
set(LEVEL1_ROUTINES xswap xscal xcopy xaxpy xdot xdotu xdotc xnrm2)
set(LEVEL1_ROUTINES xswap xscal xcopy xaxpy xdot xdotu xdotc xnrm2 xasum xamax)
set(LEVEL2_ROUTINES xgemv xgbmv xhemv xhbmv xhpmv xsymv xsbmv xspmv xtrmv xtbmv xtpmv
xger xgeru xgerc xher xhpr xher2 xhpr2 xsyr xspr xsyr2 xspr2)
set(LEVEL3_ROUTINES xgemm xsymm xhemm xsyrk xherk xsyr2k xher2k xtrmm)

View file

@ -185,8 +185,8 @@ CLBlast is in active development but already supports almost all the BLAS routin
| xDOTU | - | - | ✔ | ✔ | |
| xDOTC | - | - | ✔ | ✔ | |
| xNRM2 | ✔ | ✔ | ✔ | ✔ | |
| xASUM | | | | | |
| IxAMAX | | | | | |
| xASUM | ✔ | ✔ | ✔ | ✔ | |
| IxAMAX | ✔ | ✔ | ✔ | ✔ | |
| Level-2 | S | D | C | Z | Notes |
| ---------|---|---|---|---|---------|

View file

@ -181,6 +181,20 @@ StatusCode Nrm2(const size_t n,
const cl_mem x_buffer, const size_t x_offset, const size_t x_inc,
cl_command_queue* queue, cl_event* event = nullptr);
// Absolute sum of values in a vector: SASUM/DASUM/ScASUM/DzASUM
template <typename T>
StatusCode Asum(const size_t n,
cl_mem asum_buffer, const size_t asum_offset,
const cl_mem x_buffer, const size_t x_offset, const size_t x_inc,
cl_command_queue* queue, cl_event* event = nullptr);
// Index of absolute maxium value in a vector: iSAMAX/iDAMAX/iCAMAX/iZAMAX
template <typename T>
StatusCode Amax(const size_t n,
cl_mem imax_buffer, const size_t imax_offset,
const cl_mem x_buffer, const size_t x_offset, const size_t x_inc,
cl_command_queue* queue, cl_event* event = nullptr);
// =================================================================================================
// BLAS level-2 (matrix-vector) routines
// =================================================================================================

View file

@ -278,6 +278,42 @@ StatusCode PUBLIC_API CLBlastDznrm2(const size_t n,
const cl_mem x_buffer, const size_t x_offset, const size_t x_inc,
cl_command_queue* queue, cl_event* event);
// Absolute sum of values in a vector: SASUM/DASUM/ScASUM/DzASUM
StatusCode PUBLIC_API CLBlastSasum(const size_t n,
cl_mem asum_buffer, const size_t asum_offset,
const cl_mem x_buffer, const size_t x_offset, const size_t x_inc,
cl_command_queue* queue, cl_event* event);
StatusCode PUBLIC_API CLBlastDasum(const size_t n,
cl_mem asum_buffer, const size_t asum_offset,
const cl_mem x_buffer, const size_t x_offset, const size_t x_inc,
cl_command_queue* queue, cl_event* event);
StatusCode PUBLIC_API CLBlastScasum(const size_t n,
cl_mem asum_buffer, const size_t asum_offset,
const cl_mem x_buffer, const size_t x_offset, const size_t x_inc,
cl_command_queue* queue, cl_event* event);
StatusCode PUBLIC_API CLBlastDzasum(const size_t n,
cl_mem asum_buffer, const size_t asum_offset,
const cl_mem x_buffer, const size_t x_offset, const size_t x_inc,
cl_command_queue* queue, cl_event* event);
// Index of absolute maxium value in a vector: iSAMAX/iDAMAX/iCAMAX/iZAMAX
StatusCode PUBLIC_API CLBlastiSamax(const size_t n,
cl_mem imax_buffer, const size_t imax_offset,
const cl_mem x_buffer, const size_t x_offset, const size_t x_inc,
cl_command_queue* queue, cl_event* event);
StatusCode PUBLIC_API CLBlastiDamax(const size_t n,
cl_mem imax_buffer, const size_t imax_offset,
const cl_mem x_buffer, const size_t x_offset, const size_t x_inc,
cl_command_queue* queue, cl_event* event);
StatusCode PUBLIC_API CLBlastiCamax(const size_t n,
cl_mem imax_buffer, const size_t imax_offset,
const cl_mem x_buffer, const size_t x_offset, const size_t x_inc,
cl_command_queue* queue, cl_event* event);
StatusCode PUBLIC_API CLBlastiZamax(const size_t n,
cl_mem imax_buffer, const size_t imax_offset,
const cl_mem x_buffer, const size_t x_offset, const size_t x_inc,
cl_command_queue* queue, cl_event* event);
// =================================================================================================
// BLAS level-2 (matrix-vector) routines
// =================================================================================================

View file

@ -0,0 +1,56 @@
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
// Cedric Nugteren <www.cedricnugteren.nl>
//
// This file implements the Xamax routine. The precision is implemented using a template argument.
//
// =================================================================================================
#ifndef CLBLAST_ROUTINES_XAMAX_H_
#define CLBLAST_ROUTINES_XAMAX_H_
#include "internal/routine.h"
namespace clblast {
// =================================================================================================
// See comment at top of file for a description of the class
template <typename T>
class Xamax: public Routine<T> {
public:
// Members and methods from the base class
using Routine<T>::db_;
using Routine<T>::source_string_;
using Routine<T>::queue_;
using Routine<T>::event_;
using Routine<T>::context_;
using Routine<T>::GetProgramFromCache;
using Routine<T>::TestVectorX;
using Routine<T>::TestVectorDot;
using Routine<T>::RunKernel;
using Routine<T>::ErrorIn;
// Constructor
Xamax(Queue &queue, EventPointer event, const std::string &name = "AMAX");
// Templated-precision implementation of the routine
StatusCode DoAmax(const size_t n,
const Buffer<T> &imax_buffer, const size_t imax_offset,
const Buffer<T> &x_buffer, const size_t x_offset, const size_t x_inc);
private:
// Static variable to get the precision
const static Precision precision_;
};
// =================================================================================================
} // namespace clblast
// CLBLAST_ROUTINES_XAMAX_H_
#endif

View file

@ -0,0 +1,56 @@
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
// Cedric Nugteren <www.cedricnugteren.nl>
//
// This file implements the Xasum routine. The precision is implemented using a template argument.
//
// =================================================================================================
#ifndef CLBLAST_ROUTINES_XASUM_H_
#define CLBLAST_ROUTINES_XASUM_H_
#include "internal/routine.h"
namespace clblast {
// =================================================================================================
// See comment at top of file for a description of the class
template <typename T>
class Xasum: public Routine<T> {
public:
// Members and methods from the base class
using Routine<T>::db_;
using Routine<T>::source_string_;
using Routine<T>::queue_;
using Routine<T>::event_;
using Routine<T>::context_;
using Routine<T>::GetProgramFromCache;
using Routine<T>::TestVectorX;
using Routine<T>::TestVectorDot;
using Routine<T>::RunKernel;
using Routine<T>::ErrorIn;
// Constructor
Xasum(Queue &queue, EventPointer event, const std::string &name = "ASUM");
// Templated-precision implementation of the routine
StatusCode DoAsum(const size_t n,
const Buffer<T> &asum_buffer, const size_t asum_offset,
const Buffer<T> &x_buffer, const size_t x_offset, const size_t x_inc);
private:
// Static variable to get the precision
const static Precision precision_;
};
// =================================================================================================
} // namespace clblast
// CLBLAST_ROUTINES_XASUM_H_
#endif

View file

@ -65,6 +65,8 @@ constexpr auto kArgCOffset = "offc";
constexpr auto kArgAPOffset = "offap";
constexpr auto kArgDotOffset = "offdot";
constexpr auto kArgNrm2Offset = "offnrm2";
constexpr auto kArgAsumOffset = "offasum";
constexpr auto kArgImaxOffset = "offimax";
constexpr auto kArgAlpha = "alpha";
constexpr auto kArgBeta = "beta";
@ -119,6 +121,8 @@ struct Arguments {
size_t ap_offset = 0;
size_t dot_offset = 0;
size_t nrm2_offset = 0;
size_t asum_offset = 0;
size_t imax_offset = 0;
T alpha = T{1.0};
T beta = T{1.0};
size_t x_size = 1;

View file

@ -40,6 +40,10 @@ Z = DataType("Z", "Z", DBL2, [DBL2, DBL2, D2CL, D2CL], DBL2) # double-complex (6
# Special cases
Sc = DataType("C", "Sc", FLT2, [FLT2, FLT2, FLT2, FLT2], FLT2) # As C, but with real output
Dz = DataType("Z", "Dz", DBL2, [DBL2, DBL2, DBL2, DBL2], DBL2) # As Z, but with real output
iS = DataType("S", "iS", FLT, [FLT, FLT, FLT, FLT], FLT ) # As S, but with integer output
iD = DataType("D", "iD", DBL, [DBL, DBL, DBL, DBL], DBL ) # As D, but with integer output
iC = DataType("C", "iC", FLT2, [FLT2, FLT2, F2CL, F2CL], FLT2) # As C, but with integer output
iZ = DataType("Z", "iZ", DBL2, [DBL2, DBL2, D2CL, D2CL], DBL2) # As Z, but with integer output
Css = DataType("C", "C", FLT, [FLT, FLT, FLT, FLT], FLT2) # As C, but with constants from S
Zdd = DataType("Z", "Z", DBL, [DBL, DBL, DBL, DBL], DBL2) # As Z, but with constants from D
Ccs = DataType("C", "C", FLT2+","+FLT, [FLT2, FLT, F2CL, FLT], FLT2) # As C, but with one constant from S
@ -67,6 +71,8 @@ routines = [
Routine(True, "1", "dotu", T, [C,Z], ["n"], [], ["x","y"], ["dot"], [], "n", "Dot product of two complex vectors"),
Routine(True, "1", "dotc", T, [C,Z], ["n"], [], ["x","y"], ["dot"], [], "n", "Dot product of two complex vectors, one conjugated"),
Routine(True, "1", "nrm2", T, [S,D,Sc,Dz],["n"], [], ["x"], ["nrm2"], [], "2*n", "Euclidian norm of a vector"),
Routine(True, "1", "asum", T, [S,D,Sc,Dz],["n"], [], ["x"], ["asum"], [], "n", "Absolute sum of values in a vector"),
Routine(True, "1", "amax", T, [iS,iD,iC,iZ],["n"], [], ["x"], ["imax"], [], "2*n", "Index of absolute maxium value in a vector"),
],
[ # Level 2: matrix-vector
Routine(True, "2a", "gemv", T, [S,D,C,Z], ["m","n"], ["layout","a_transpose"], ["a","x"], ["y"], ["alpha","beta"], "", "General matrix-vector multiplication"),
@ -288,7 +294,7 @@ files = [
path_clblast+"/test/wrapper_clblas.h",
path_clblast+"/test/wrapper_cblas.h",
]
header_lines = [84, 65, 93, 22, 22, 38]
header_lines = [84, 67, 93, 22, 22, 38]
footer_lines = [6, 3, 9, 2, 6, 6]
# Checks whether the command-line arguments are valid; exists otherwise
@ -368,7 +374,7 @@ for level in [1,2,3]:
body += "using double2 = clblast::double2;\n\n"
body += "// Main function (not within the clblast namespace)\n"
body += "int main(int argc, char *argv[]) {\n"
default = PrecisionToFullName(routine.flavours[0].name)
default = PrecisionToFullName(routine.flavours[0].precision_name)
body += " switch(clblast::GetPrecision(argc, argv, clblast::Precision::k"+default+")) {\n"
for precision in ["H","S","D","C","Z"]:
body += " case clblast::Precision::k"+PrecisionToFullName(precision)+":"

View file

@ -72,7 +72,7 @@ class Routine():
# List of scalar buffers
def ScalarBuffersFirst(self):
return ["dot","nrm2"]
return ["dot","nrm2","asum","imax"]
def ScalarBuffersSecond(self):
return ["sa","sb","sc","ss","sd1","sd2","sx1","sy1","sparam"]

View file

@ -27,6 +27,8 @@
#include "internal/routines/level1/xdotu.h"
#include "internal/routines/level1/xdotc.h"
#include "internal/routines/level1/xnrm2.h"
#include "internal/routines/level1/xasum.h"
#include "internal/routines/level1/xamax.h"
// BLAS level-2 includes
#include "internal/routines/level2/xgemv.h"
@ -396,6 +398,68 @@ template StatusCode PUBLIC_API Nrm2<double2>(const size_t,
const cl_mem, const size_t, const size_t,
cl_command_queue*, cl_event*);
// Absolute sum of values in a vector: SASUM/DASUM/ScASUM/DzASUM
template <typename T>
StatusCode Asum(const size_t n,
cl_mem asum_buffer, const size_t asum_offset,
const cl_mem x_buffer, const size_t x_offset, const size_t x_inc,
cl_command_queue* queue, cl_event* event) {
auto queue_cpp = Queue(*queue);
auto routine = Xasum<T>(queue_cpp, event);
auto status = routine.SetUp();
if (status != StatusCode::kSuccess) { return status; }
return routine.DoAsum(n,
Buffer<T>(asum_buffer), asum_offset,
Buffer<T>(x_buffer), x_offset, x_inc);
}
template StatusCode PUBLIC_API Asum<float>(const size_t,
cl_mem, const size_t,
const cl_mem, const size_t, const size_t,
cl_command_queue*, cl_event*);
template StatusCode PUBLIC_API Asum<double>(const size_t,
cl_mem, const size_t,
const cl_mem, const size_t, const size_t,
cl_command_queue*, cl_event*);
template StatusCode PUBLIC_API Asum<float2>(const size_t,
cl_mem, const size_t,
const cl_mem, const size_t, const size_t,
cl_command_queue*, cl_event*);
template StatusCode PUBLIC_API Asum<double2>(const size_t,
cl_mem, const size_t,
const cl_mem, const size_t, const size_t,
cl_command_queue*, cl_event*);
// Index of absolute maxium value in a vector: iSAMAX/iDAMAX/iCAMAX/iZAMAX
template <typename T>
StatusCode Amax(const size_t n,
cl_mem imax_buffer, const size_t imax_offset,
const cl_mem x_buffer, const size_t x_offset, const size_t x_inc,
cl_command_queue* queue, cl_event* event) {
auto queue_cpp = Queue(*queue);
auto routine = Xamax<T>(queue_cpp, event);
auto status = routine.SetUp();
if (status != StatusCode::kSuccess) { return status; }
return routine.DoAmax(n,
Buffer<T>(imax_buffer), imax_offset,
Buffer<T>(x_buffer), x_offset, x_inc);
}
template StatusCode PUBLIC_API Amax<float>(const size_t,
cl_mem, const size_t,
const cl_mem, const size_t, const size_t,
cl_command_queue*, cl_event*);
template StatusCode PUBLIC_API Amax<double>(const size_t,
cl_mem, const size_t,
const cl_mem, const size_t, const size_t,
cl_command_queue*, cl_event*);
template StatusCode PUBLIC_API Amax<float2>(const size_t,
cl_mem, const size_t,
const cl_mem, const size_t, const size_t,
cl_command_queue*, cl_event*);
template StatusCode PUBLIC_API Amax<double2>(const size_t,
cl_mem, const size_t,
const cl_mem, const size_t, const size_t,
cl_command_queue*, cl_event*);
// =================================================================================================
// BLAS level-2 (matrix-vector) routines
// =================================================================================================

View file

@ -433,6 +433,90 @@ StatusCode CLBlastDznrm2(const size_t n,
return static_cast<StatusCode>(status);
}
// ASUM
StatusCode CLBlastSasum(const size_t n,
cl_mem asum_buffer, const size_t asum_offset,
const cl_mem x_buffer, const size_t x_offset, const size_t x_inc,
cl_command_queue* queue, cl_event* event) {
auto status = clblast::Asum<float>(n,
asum_buffer, asum_offset,
x_buffer, x_offset, x_inc,
queue, event);
return static_cast<StatusCode>(status);
}
StatusCode CLBlastDasum(const size_t n,
cl_mem asum_buffer, const size_t asum_offset,
const cl_mem x_buffer, const size_t x_offset, const size_t x_inc,
cl_command_queue* queue, cl_event* event) {
auto status = clblast::Asum<double>(n,
asum_buffer, asum_offset,
x_buffer, x_offset, x_inc,
queue, event);
return static_cast<StatusCode>(status);
}
StatusCode CLBlastScasum(const size_t n,
cl_mem asum_buffer, const size_t asum_offset,
const cl_mem x_buffer, const size_t x_offset, const size_t x_inc,
cl_command_queue* queue, cl_event* event) {
auto status = clblast::Asum<float2>(n,
asum_buffer, asum_offset,
x_buffer, x_offset, x_inc,
queue, event);
return static_cast<StatusCode>(status);
}
StatusCode CLBlastDzasum(const size_t n,
cl_mem asum_buffer, const size_t asum_offset,
const cl_mem x_buffer, const size_t x_offset, const size_t x_inc,
cl_command_queue* queue, cl_event* event) {
auto status = clblast::Asum<double2>(n,
asum_buffer, asum_offset,
x_buffer, x_offset, x_inc,
queue, event);
return static_cast<StatusCode>(status);
}
// AMAX
StatusCode CLBlastiSamax(const size_t n,
cl_mem imax_buffer, const size_t imax_offset,
const cl_mem x_buffer, const size_t x_offset, const size_t x_inc,
cl_command_queue* queue, cl_event* event) {
auto status = clblast::Amax<float>(n,
imax_buffer, imax_offset,
x_buffer, x_offset, x_inc,
queue, event);
return static_cast<StatusCode>(status);
}
StatusCode CLBlastiDamax(const size_t n,
cl_mem imax_buffer, const size_t imax_offset,
const cl_mem x_buffer, const size_t x_offset, const size_t x_inc,
cl_command_queue* queue, cl_event* event) {
auto status = clblast::Amax<double>(n,
imax_buffer, imax_offset,
x_buffer, x_offset, x_inc,
queue, event);
return static_cast<StatusCode>(status);
}
StatusCode CLBlastiCamax(const size_t n,
cl_mem imax_buffer, const size_t imax_offset,
const cl_mem x_buffer, const size_t x_offset, const size_t x_inc,
cl_command_queue* queue, cl_event* event) {
auto status = clblast::Amax<float2>(n,
imax_buffer, imax_offset,
x_buffer, x_offset, x_inc,
queue, event);
return static_cast<StatusCode>(status);
}
StatusCode CLBlastiZamax(const size_t n,
cl_mem imax_buffer, const size_t imax_offset,
const cl_mem x_buffer, const size_t x_offset, const size_t x_inc,
cl_command_queue* queue, cl_event* event) {
auto status = clblast::Amax<double2>(n,
imax_buffer, imax_offset,
x_buffer, x_offset, x_inc,
queue, event);
return static_cast<StatusCode>(status);
}
// =================================================================================================
// BLAS level-2 (matrix-vector) routines
// =================================================================================================

View file

@ -80,6 +80,15 @@ R"(
#define ONE 1.0
#endif
// Single-element version of a complex number
#if PRECISION == 3232
typedef float singlereal;
#elif PRECISION == 6464
typedef double singlereal;
#else
typedef real singlereal;
#endif
// =================================================================================================
// Don't use the non-IEEE754 compliant OpenCL built-in mad() instruction per default. For specific
@ -109,6 +118,13 @@ R"(
#define SetToOne(a) a = ONE
#endif
// The absolute value (component-wise)
#if PRECISION == 3232 || PRECISION == 6464
#define AbsoluteValue(value) value.x = fabs(value.x); value.y = fabs(value.y)
#else
#define AbsoluteValue(value) value = fabs(value)
#endif
// Adds two complex variables
#if PRECISION == 3232 || PRECISION == 6464
#define Add(c, a, b) c.x = a.x + b.x; c.y = a.y + b.y

View file

@ -0,0 +1,128 @@
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
// Cedric Nugteren <www.cedricnugteren.nl>
//
// This file contains the Xamax kernel. It implements an index of absolute max computation using
// reduction kernels. Reduction is split in two parts. In the first (main) kernel the X vector is
// loaded, followed by a per-thread and a per-workgroup reduction. The second (epilogue) kernel
// is executed with a single workgroup only, computing the final result.
//
// =================================================================================================
// Enables loading of this file using the C++ pre-processor's #include (C++11 standard raw string
// literal). Comment-out this line for syntax-highlighting when developing.
R"(
// Parameters set by the tuner or by the database. Here they are given a basic default value in case
// this kernel file is used outside of the CLBlast library.
#ifndef WGS1
#define WGS1 64 // The local work-group size of the main kernel
#endif
#ifndef WGS2
#define WGS2 64 // The local work-group size of the epilogue kernel
#endif
// =================================================================================================
// The main reduction kernel, performing the loading and the majority of the operation
__attribute__((reqd_work_group_size(WGS1, 1, 1)))
__kernel void Xamax(const int n,
const __global real* restrict xgm, const int x_offset, const int x_inc,
__global singlereal* maxgm, __global unsigned int* imaxgm) {
__local singlereal maxlm[WGS1];
__local unsigned int imaxlm[WGS1];
const int lid = get_local_id(0);
const int wgid = get_group_id(0);
const int num_groups = get_num_groups(0);
// Performs loading and the first steps of the reduction
singlereal max = ZERO;
unsigned int imax = 0;
int id = wgid*WGS1 + lid;
while (id < n) {
#if PRECISION == 3232 || PRECISION == 6464
singlereal x = fabs(xgm[id*x_inc + x_offset].x);
#else
singlereal x = fabs(xgm[id*x_inc + x_offset]);
#endif
if (x >= max) {
max = x;
imax = id*x_inc + x_offset;
}
id += WGS1*num_groups;
}
maxlm[lid] = max;
imaxlm[lid] = imax;
barrier(CLK_LOCAL_MEM_FENCE);
// Performs reduction in local memory
#pragma unroll
for (int s=WGS1/2; s>0; s=s>>1) {
if (lid < s) {
if (maxlm[lid + s] >= maxlm[lid]) {
maxlm[lid] = maxlm[lid + s];
imaxlm[lid] = imaxlm[lid + s];
}
}
barrier(CLK_LOCAL_MEM_FENCE);
}
// Stores the per-workgroup result
if (lid == 0) {
maxgm[wgid] = maxlm[0];
imaxgm[wgid] = imaxlm[0];
}
}
// =================================================================================================
// The epilogue reduction kernel, performing the final bit of the operation. This kernel has to
// be launched with a single workgroup only.
__attribute__((reqd_work_group_size(WGS2, 1, 1)))
__kernel void XamaxEpilogue(const __global singlereal* restrict maxgm,
const __global unsigned int* restrict imaxgm,
__global unsigned int* imax, const int imax_offset) {
__local singlereal maxlm[WGS2];
__local unsigned int imaxlm[WGS2];
const int lid = get_local_id(0);
// Performs the first step of the reduction while loading the data
if (maxgm[lid + WGS2] >= maxgm[lid]) {
maxlm[lid] = maxgm[lid + WGS2];
imaxlm[lid] = imaxgm[lid + WGS2];
}
else {
maxlm[lid] = maxgm[lid];
imaxlm[lid] = imaxgm[lid];
}
barrier(CLK_LOCAL_MEM_FENCE);
// Performs reduction in local memory
#pragma unroll
for (int s=WGS2/2; s>0; s=s>>1) {
if (lid < s) {
if (maxlm[lid + s] >= maxlm[lid]) {
maxlm[lid] = maxlm[lid + s];
imaxlm[lid] = imaxlm[lid + s];
}
}
barrier(CLK_LOCAL_MEM_FENCE);
}
// Stores the final result
if (lid == 0) {
imax[imax_offset] = imaxlm[0];
}
}
// =================================================================================================
// End of the C++11 raw string literal
)"
// =================================================================================================

View file

@ -0,0 +1,108 @@
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
// Cedric Nugteren <www.cedricnugteren.nl>
//
// This file contains the Xasum kernel. It implements a absolute sum computation using reduction
// kernels. Reduction is split in two parts. In the first (main) kernel the X vector is loaded,
// followed by a per-thread and a per-workgroup reduction. The second (epilogue) kernel
// is executed with a single workgroup only, computing the final result.
//
// =================================================================================================
// Enables loading of this file using the C++ pre-processor's #include (C++11 standard raw string
// literal). Comment-out this line for syntax-highlighting when developing.
R"(
// Parameters set by the tuner or by the database. Here they are given a basic default value in case
// this kernel file is used outside of the CLBlast library.
#ifndef WGS1
#define WGS1 64 // The local work-group size of the main kernel
#endif
#ifndef WGS2
#define WGS2 64 // The local work-group size of the epilogue kernel
#endif
// =================================================================================================
// The main reduction kernel, performing the loading and the majority of the operation
__attribute__((reqd_work_group_size(WGS1, 1, 1)))
__kernel void Xasum(const int n,
const __global real* restrict xgm, const int x_offset, const int x_inc,
__global real* output) {
__local real lm[WGS1];
const int lid = get_local_id(0);
const int wgid = get_group_id(0);
const int num_groups = get_num_groups(0);
// Performs loading and the first steps of the reduction
real acc;
SetToZero(acc);
int id = wgid*WGS1 + lid;
while (id < n) {
real x = xgm[id*x_inc + x_offset];
AbsoluteValue(x);
Add(acc, acc, x);
id += WGS1*num_groups;
}
lm[lid] = acc;
barrier(CLK_LOCAL_MEM_FENCE);
// Performs reduction in local memory
#pragma unroll
for (int s=WGS1/2; s>0; s=s>>1) {
if (lid < s) {
Add(lm[lid], lm[lid], lm[lid + s]);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
// Stores the per-workgroup result
if (lid == 0) {
output[wgid] = lm[0];
}
}
// =================================================================================================
// The epilogue reduction kernel, performing the final bit of the operation. This kernel has to
// be launched with a single workgroup only.
__attribute__((reqd_work_group_size(WGS2, 1, 1)))
__kernel void XasumEpilogue(const __global real* restrict input,
__global real* asum, const int asum_offset) {
__local real lm[WGS2];
const int lid = get_local_id(0);
// Performs the first step of the reduction while loading the data
Add(lm[lid], input[lid], input[lid + WGS2]);
barrier(CLK_LOCAL_MEM_FENCE);
// Performs reduction in local memory
#pragma unroll
for (int s=WGS2/2; s>0; s=s>>1) {
if (lid < s) {
Add(lm[lid], lm[lid], lm[lid + s]);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
// Computes the absolute value and stores the final result
if (lid == 0) {
#if PRECISION == 3232 || PRECISION == 6464
asum[asum_offset].x = lm[0].x + lm[0].y; // the result is a non-complex number
#else
asum[asum_offset] = lm[0];
#endif
}
}
// =================================================================================================
// End of the C++11 raw string literal
)"
// =================================================================================================

View file

@ -7,9 +7,9 @@
// Author(s):
// Cedric Nugteren <www.cedricnugteren.nl>
//
// This file contains the Xnrm2 kernel. It implements a dot-product computation using reduction
// kernels. Reduction is split in two parts. In the first (main) kernel the X and Y vectors are
// multiplied, followed by a per-thread and a per-workgroup reduction. The second (epilogue) kernel
// This file contains the Xnrm2 kernel. It implements a squared norm computation using reduction
// kernels. Reduction is split in two parts. In the first (main) kernel the X vector is squared,
// followed by a per-thread and a per-workgroup reduction. The second (epilogue) kernel
// is executed with a single workgroup only, computing the final result.
//
// =================================================================================================
@ -29,7 +29,7 @@ R"(
// =================================================================================================
// The main reduction kernel, performing the multiplication and the majority of the sum operation
// The main reduction kernel, performing the multiplication and the majority of the operation
__attribute__((reqd_work_group_size(WGS1, 1, 1)))
__kernel void Xnrm2(const int n,
const __global real* restrict xgm, const int x_offset, const int x_inc,
@ -70,7 +70,7 @@ __kernel void Xnrm2(const int n,
// =================================================================================================
// The epilogue reduction kernel, performing the final bit of the sum operation. This kernel has to
// The epilogue reduction kernel, performing the final bit of the operation. This kernel has to
// be launched with a single workgroup only.
__attribute__((reqd_work_group_size(WGS2, 1, 1)))
__kernel void Xnrm2Epilogue(const __global real* restrict input,

View file

@ -0,0 +1,112 @@
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
// Cedric Nugteren <www.cedricnugteren.nl>
//
// This file implements the Xamax class (see the header for information about the class).
//
// =================================================================================================
#include "internal/routines/level1/xamax.h"
#include <string>
#include <vector>
namespace clblast {
// =================================================================================================
// Specific implementations to get the memory-type based on a template argument
template <> const Precision Xamax<float>::precision_ = Precision::kSingle;
template <> const Precision Xamax<double>::precision_ = Precision::kDouble;
template <> const Precision Xamax<float2>::precision_ = Precision::kComplexSingle;
template <> const Precision Xamax<double2>::precision_ = Precision::kComplexDouble;
// =================================================================================================
// Constructor: forwards to base class constructor
template <typename T>
Xamax<T>::Xamax(Queue &queue, EventPointer event, const std::string &name):
Routine<T>(queue, event, name, {"Xdot"}, precision_) {
source_string_ =
#include "../../kernels/level1/xamax.opencl"
;
}
// =================================================================================================
// The main routine
template <typename T>
StatusCode Xamax<T>::DoAmax(const size_t n,
const Buffer<T> &imax_buffer, const size_t imax_offset,
const Buffer<T> &x_buffer, const size_t x_offset, const size_t x_inc) {
// Makes sure all dimensions are larger than zero
if (n == 0) { return StatusCode::kInvalidDimension; }
// Tests the vectors for validity
auto status = TestVectorX(n, x_buffer, x_offset, x_inc, sizeof(T));
if (ErrorIn(status)) { return status; }
status = TestVectorDot(1, imax_buffer, imax_offset, sizeof(T));
if (ErrorIn(status)) { return status; }
// Retrieves the Xamax kernels from the compiled binary
try {
auto& program = GetProgramFromCache();
auto kernel1 = Kernel(program, "Xamax");
auto kernel2 = Kernel(program, "XamaxEpilogue");
// Creates the buffer for intermediate values
auto temp_size = 2*db_["WGS2"];
auto temp_buffer1 = Buffer<T>(context_, temp_size);
auto temp_buffer2 = Buffer<unsigned int>(context_, temp_size);
// Sets the kernel arguments
kernel1.SetArgument(0, static_cast<int>(n));
kernel1.SetArgument(1, x_buffer());
kernel1.SetArgument(2, static_cast<int>(x_offset));
kernel1.SetArgument(3, static_cast<int>(x_inc));
kernel1.SetArgument(4, temp_buffer1());
kernel1.SetArgument(5, temp_buffer2());
// Event waiting list
auto eventWaitList = std::vector<Event>();
// Launches the main kernel
auto global1 = std::vector<size_t>{db_["WGS1"]*temp_size};
auto local1 = std::vector<size_t>{db_["WGS1"]};
auto kernelEvent = Event();
status = RunKernel(kernel1, global1, local1, kernelEvent.pointer());
if (ErrorIn(status)) { return status; }
eventWaitList.push_back(kernelEvent);
// Sets the arguments for the epilogue kernel
kernel2.SetArgument(0, temp_buffer1());
kernel2.SetArgument(1, temp_buffer2());
kernel2.SetArgument(2, imax_buffer());
kernel2.SetArgument(3, static_cast<int>(imax_offset));
// Launches the epilogue kernel
auto global2 = std::vector<size_t>{db_["WGS2"]};
auto local2 = std::vector<size_t>{db_["WGS2"]};
status = RunKernel(kernel2, global2, local2, event_, eventWaitList);
if (ErrorIn(status)) { return status; }
// Succesfully finished the computation
return StatusCode::kSuccess;
} catch (...) { return StatusCode::kInvalidKernel; }
}
// =================================================================================================
// Compiles the templated class
template class Xamax<float>;
template class Xamax<double>;
template class Xamax<float2>;
template class Xamax<double2>;
// =================================================================================================
} // namespace clblast

View file

@ -0,0 +1,109 @@
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
// Cedric Nugteren <www.cedricnugteren.nl>
//
// This file implements the Xasum class (see the header for information about the class).
//
// =================================================================================================
#include "internal/routines/level1/xasum.h"
#include <string>
#include <vector>
namespace clblast {
// =================================================================================================
// Specific implementations to get the memory-type based on a template argument
template <> const Precision Xasum<float>::precision_ = Precision::kSingle;
template <> const Precision Xasum<double>::precision_ = Precision::kDouble;
template <> const Precision Xasum<float2>::precision_ = Precision::kComplexSingle;
template <> const Precision Xasum<double2>::precision_ = Precision::kComplexDouble;
// =================================================================================================
// Constructor: forwards to base class constructor
template <typename T>
Xasum<T>::Xasum(Queue &queue, EventPointer event, const std::string &name):
Routine<T>(queue, event, name, {"Xdot"}, precision_) {
source_string_ =
#include "../../kernels/level1/xasum.opencl"
;
}
// =================================================================================================
// The main routine
template <typename T>
StatusCode Xasum<T>::DoAsum(const size_t n,
const Buffer<T> &asum_buffer, const size_t asum_offset,
const Buffer<T> &x_buffer, const size_t x_offset, const size_t x_inc) {
// Makes sure all dimensions are larger than zero
if (n == 0) { return StatusCode::kInvalidDimension; }
// Tests the vectors for validity
auto status = TestVectorX(n, x_buffer, x_offset, x_inc, sizeof(T));
if (ErrorIn(status)) { return status; }
status = TestVectorDot(1, asum_buffer, asum_offset, sizeof(T));
if (ErrorIn(status)) { return status; }
// Retrieves the Xasum kernels from the compiled binary
try {
auto& program = GetProgramFromCache();
auto kernel1 = Kernel(program, "Xasum");
auto kernel2 = Kernel(program, "XasumEpilogue");
// Creates the buffer for intermediate values
auto temp_size = 2*db_["WGS2"];
auto temp_buffer = Buffer<T>(context_, temp_size);
// Sets the kernel arguments
kernel1.SetArgument(0, static_cast<int>(n));
kernel1.SetArgument(1, x_buffer());
kernel1.SetArgument(2, static_cast<int>(x_offset));
kernel1.SetArgument(3, static_cast<int>(x_inc));
kernel1.SetArgument(4, temp_buffer());
// Event waiting list
auto eventWaitList = std::vector<Event>();
// Launches the main kernel
auto global1 = std::vector<size_t>{db_["WGS1"]*temp_size};
auto local1 = std::vector<size_t>{db_["WGS1"]};
auto kernelEvent = Event();
status = RunKernel(kernel1, global1, local1, kernelEvent.pointer());
if (ErrorIn(status)) { return status; }
eventWaitList.push_back(kernelEvent);
// Sets the arguments for the epilogue kernel
kernel2.SetArgument(0, temp_buffer());
kernel2.SetArgument(1, asum_buffer());
kernel2.SetArgument(2, static_cast<int>(asum_offset));
// Launches the epilogue kernel
auto global2 = std::vector<size_t>{db_["WGS2"]};
auto local2 = std::vector<size_t>{db_["WGS2"]};
status = RunKernel(kernel2, global2, local2, event_, eventWaitList);
if (ErrorIn(status)) { return status; }
// Succesfully finished the computation
return StatusCode::kSuccess;
} catch (...) { return StatusCode::kInvalidKernel; }
}
// =================================================================================================
// Compiles the templated class
template class Xasum<float>;
template class Xasum<double>;
template class Xasum<float2>;
template class Xasum<double2>;
// =================================================================================================
} // namespace clblast

View file

@ -69,6 +69,7 @@ StatusCode Xnrm2<T>::DoNrm2(const size_t n,
kernel1.SetArgument(2, static_cast<int>(x_offset));
kernel1.SetArgument(3, static_cast<int>(x_inc));
kernel1.SetArgument(4, temp_buffer());
// Event waiting list
auto eventWaitList = std::vector<Event>();

View file

@ -22,13 +22,13 @@ namespace clblast {
// =================================================================================================
// See comment at top of file for a description of the class
template <typename T>
template <typename T, int V>
class TuneXdot {
public:
// The representative kernel and the source code
static std::string KernelFamily() { return "xdot"; }
static std::string KernelName() { return "Xdot"; }
static std::string KernelFamily() { return "xdot_"+std::to_string(V); }
static std::string KernelName() { return (V==1) ? "Xdot" : "XdotEpilogue"; }
static std::string GetSources() {
return
#include "../src/kernels/common.opencl"
@ -44,7 +44,7 @@ class TuneXdot {
// Sets the default values for the arguments
static size_t DefaultM() { return 1; } // N/A for this kernel
static size_t DefaultN() { return 4096*1024; }
static size_t DefaultN() { return 64*1024*1024; }
static size_t DefaultK() { return 1; } // N/A for this kernel
static double DefaultFraction() { return 1.0; } // N/A for this kernel
@ -58,9 +58,7 @@ class TuneXdot {
// Sets the tuning parameters and their possible values
static void SetParameters(cltune::Tuner &tuner, const size_t id) {
tuner.AddParameter(id, "WGS1", {32, 64, 128, 256, 512, 1024});
tuner.AddParameter(id, "WGS2", {32, 64, 128, 256, 512, 1024});
tuner.AddParameter(id, "VW", {1});
tuner.AddParameter(id, "WGS"+std::to_string(V), {32, 64, 128, 256, 512, 1024});
}
// Sets the constraints and local memory size
@ -68,16 +66,16 @@ class TuneXdot {
static void SetLocalMemorySize(cltune::Tuner &, const size_t, const Arguments<T> &) { }
// Sets the base thread configuration
static std::vector<size_t> GlobalSize(const Arguments<T> &) { return {2}; }
static std::vector<size_t> GlobalSizeRef(const Arguments<T> &) { return {2*64*64}; }
static std::vector<size_t> GlobalSize(const Arguments<T> &) { return (V==1) ? std::vector<size_t>{2*64} : std::vector<size_t>{1}; }
static std::vector<size_t> GlobalSizeRef(const Arguments<T> &) { return (V==1) ? std::vector<size_t>{2*64*64} : std::vector<size_t>{64}; }
static std::vector<size_t> LocalSize() { return {1}; }
static std::vector<size_t> LocalSizeRef() { return {64}; }
// Transforms the thread configuration based on the parameters
using TransformVector = std::vector<std::vector<std::string>>;
static TransformVector MulLocal() { return {{"WGS1"}}; }
static TransformVector MulLocal() { return (V==1) ? TransformVector{{"WGS1"}} : TransformVector{{"WGS2"}}; }
static TransformVector DivLocal() { return {}; }
static TransformVector MulGlobal() { return {{"WGS1"},{"WGS2"}}; }
static TransformVector MulGlobal() { return (V==1) ? TransformVector{{"WGS1"}} : TransformVector{{"WGS2"}}; }
static TransformVector DivGlobal() { return {}; }
// Sets the kernel's arguments
@ -85,22 +83,29 @@ class TuneXdot {
std::vector<T> &x_vec, std::vector<T> &y_vec,
std::vector<T> &, std::vector<T> &, std::vector<T> &,
std::vector<T> &temp) {
tuner.AddArgumentScalar(static_cast<int>(args.n));
tuner.AddArgumentInput(x_vec);
tuner.AddArgumentScalar(0);
tuner.AddArgumentScalar(1);
tuner.AddArgumentInput(y_vec);
tuner.AddArgumentScalar(0);
tuner.AddArgumentScalar(1);
tuner.AddArgumentInput(temp); // No output checking for the result - size varies
tuner.AddArgumentScalar(static_cast<int>(false));
if (V == 1) {
tuner.AddArgumentScalar(static_cast<int>(args.n));
tuner.AddArgumentInput(x_vec);
tuner.AddArgumentScalar(0);
tuner.AddArgumentScalar(1);
tuner.AddArgumentInput(y_vec);
tuner.AddArgumentScalar(0);
tuner.AddArgumentScalar(1);
tuner.AddArgumentInput(temp); // No output checking for the result - size varies
tuner.AddArgumentScalar(static_cast<int>(false));
}
else {
tuner.AddArgumentInput(temp);
tuner.AddArgumentInput(x_vec); // No output checking for the result - store somewhere
tuner.AddArgumentScalar(0);
}
}
// Describes how to compute the performance metrics
static size_t GetMetric(const Arguments<T> &args) {
return (2*args.n + 1) * GetBytes(args.precision);
return (V==1) ? (2*args.n + 1) * GetBytes(args.precision) : 1 * GetBytes(args.precision);
}
static std::string PerformanceUnit() { return "GB/s"; }
static std::string PerformanceUnit() { return (V==1) ? "GB/s" : "N/A"; }
};
// =================================================================================================
@ -110,15 +115,22 @@ class TuneXdot {
using float2 = clblast::float2;
using double2 = clblast::double2;
// Main function (not within the clblast namespace)
int main(int argc, char *argv[]) {
// Function to tune a specific variation V (not within the clblast namespace)
template <int V>
void StartVariation(int argc, char *argv[]) {
switch(clblast::GetPrecision(argc, argv)) {
case clblast::Precision::kHalf: throw std::runtime_error("Unsupported precision mode");
case clblast::Precision::kSingle: clblast::Tuner<clblast::TuneXdot<float>, float>(argc, argv); break;
case clblast::Precision::kDouble: clblast::Tuner<clblast::TuneXdot<double>, double>(argc, argv); break;
case clblast::Precision::kComplexSingle: clblast::Tuner<clblast::TuneXdot<float2>, float2>(argc, argv); break;
case clblast::Precision::kComplexDouble: clblast::Tuner<clblast::TuneXdot<double2>, double2>(argc, argv); break;
case clblast::Precision::kSingle: clblast::Tuner<clblast::TuneXdot<float, V>, float>(argc, argv); break;
case clblast::Precision::kDouble: clblast::Tuner<clblast::TuneXdot<double, V>, double>(argc, argv); break;
case clblast::Precision::kComplexSingle: clblast::Tuner<clblast::TuneXdot<float2, V>, float2>(argc, argv); break;
case clblast::Precision::kComplexDouble: clblast::Tuner<clblast::TuneXdot<double2, V>, double2>(argc, argv); break;
}
}
// Main function (not within the clblast namespace)
int main(int argc, char *argv[]) {
StartVariation<1>(argc, argv);
StartVariation<2>(argc, argv);
return 0;
}

View file

@ -0,0 +1,28 @@
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
// Cedric Nugteren <www.cedricnugteren.nl>
//
// =================================================================================================
#include "correctness/testblas.h"
#include "routines/level1/xamax.h"
// Shortcuts to the clblast namespace
using float2 = clblast::float2;
using double2 = clblast::double2;
// Main function (not within the clblast namespace)
int main(int argc, char *argv[]) {
clblast::RunTests<clblast::TestXamax<float>, float, float>(argc, argv, false, "iSAMAX");
clblast::RunTests<clblast::TestXamax<double>, double, double>(argc, argv, true, "iDAMAX");
clblast::RunTests<clblast::TestXamax<float2>, float2, float2>(argc, argv, true, "iCAMAX");
clblast::RunTests<clblast::TestXamax<double2>, double2, double2>(argc, argv, true, "iZAMAX");
return 0;
}
// =================================================================================================

View file

@ -0,0 +1,28 @@
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
// Cedric Nugteren <www.cedricnugteren.nl>
//
// =================================================================================================
#include "correctness/testblas.h"
#include "routines/level1/xasum.h"
// Shortcuts to the clblast namespace
using float2 = clblast::float2;
using double2 = clblast::double2;
// Main function (not within the clblast namespace)
int main(int argc, char *argv[]) {
clblast::RunTests<clblast::TestXasum<float>, float, float>(argc, argv, false, "SASUM");
clblast::RunTests<clblast::TestXasum<double>, double, double>(argc, argv, true, "DASUM");
clblast::RunTests<clblast::TestXasum<float2>, float2, float2>(argc, argv, true, "ScASUM");
clblast::RunTests<clblast::TestXasum<double2>, double2, double2>(argc, argv, true, "DzASUM");
return 0;
}
// =================================================================================================

View file

@ -153,6 +153,8 @@ void RunTests(int argc, char *argv[], const bool silent, const std::string &name
auto ap_offsets = std::vector<size_t>{args.ap_offset};
auto dot_offsets = std::vector<size_t>{args.dot_offset};
auto nrm2_offsets = std::vector<size_t>{args.nrm2_offset};
auto asum_offsets = std::vector<size_t>{args.asum_offset};
auto imax_offsets = std::vector<size_t>{args.imax_offset};
auto alphas = std::vector<U>{args.alpha};
auto betas = std::vector<U>{args.beta};
auto x_sizes = std::vector<size_t>{args.x_size};
@ -193,6 +195,8 @@ void RunTests(int argc, char *argv[], const bool silent, const std::string &name
if (option == kArgAPOffset) { ap_offsets = tester.kOffsets; }
if (option == kArgDotOffset) { dot_offsets = tester.kOffsets; }
if (option == kArgNrm2Offset) { nrm2_offsets = tester.kOffsets; }
if (option == kArgAsumOffset) { asum_offsets = tester.kOffsets; }
if (option == kArgImaxOffset) { imax_offsets = tester.kOffsets; }
if (option == kArgAlpha) { alphas = tester.kAlphaValues; }
if (option == kArgBeta) { betas = tester.kBetaValues; }
@ -233,10 +237,14 @@ void RunTests(int argc, char *argv[], const bool silent, const std::string &name
for (auto &ap_offset: ap_offsets) { r_args.ap_offset = ap_offset;
for (auto &dot_offset: dot_offsets) { r_args.dot_offset = dot_offset;
for (auto &nrm2_offset: nrm2_offsets) { r_args.nrm2_offset = nrm2_offset;
for (auto &alpha: alphas) { r_args.alpha = alpha;
for (auto &beta: betas) { r_args.beta = beta;
C::SetSizes(r_args);
regular_test_vector.push_back(r_args);
for (auto &asum_offset: asum_offsets) { r_args.asum_offset = asum_offset;
for (auto &imax_offset: imax_offsets) { r_args.imax_offset = imax_offset;
for (auto &alpha: alphas) { r_args.alpha = alpha;
for (auto &beta: betas) { r_args.beta = beta;
C::SetSizes(r_args);
regular_test_vector.push_back(r_args);
}
}
}
}
}

View file

@ -80,8 +80,11 @@ Arguments<U> Client<T,U>::ParseArguments(int argc, char *argv[], const GetMetric
if (o == kArgCOffset) { args.c_offset = GetArgument(argc, argv, help, kArgCOffset, size_t{0}); }
if (o == kArgAPOffset) { args.ap_offset= GetArgument(argc, argv, help, kArgAPOffset, size_t{0}); }
// Dot arguments
// Scalar result arguments
if (o == kArgDotOffset) { args.dot_offset = GetArgument(argc, argv, help, kArgDotOffset, size_t{0}); }
if (o == kArgNrm2Offset) { args.nrm2_offset = GetArgument(argc, argv, help, kArgNrm2Offset, size_t{0}); }
if (o == kArgAsumOffset) { args.asum_offset = GetArgument(argc, argv, help, kArgAsumOffset, size_t{0}); }
if (o == kArgImaxOffset) { args.imax_offset = GetArgument(argc, argv, help, kArgImaxOffset, size_t{0}); }
// Scalar values
if (o == kArgAlpha) { args.alpha = GetArgument(argc, argv, help, kArgAlpha, GetScalar<U>()); }
@ -292,6 +295,8 @@ void Client<T,U>::PrintTableRow(const Arguments<U>& args,
else if (o == kArgAPOffset) { integers.push_back(args.ap_offset); }
else if (o == kArgDotOffset) {integers.push_back(args.dot_offset); }
else if (o == kArgNrm2Offset){integers.push_back(args.nrm2_offset); }
else if (o == kArgAsumOffset){integers.push_back(args.asum_offset); }
else if (o == kArgImaxOffset){integers.push_back(args.imax_offset); }
}
auto strings = std::vector<std::string>{};
for (auto &o: options_) {

View file

@ -0,0 +1,35 @@
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
// Cedric Nugteren <www.cedricnugteren.nl>
//
// =================================================================================================
#include "performance/client.h"
#include "routines/level1/xamax.h"
// Shortcuts to the clblast namespace
using float2 = clblast::float2;
using double2 = clblast::double2;
// Main function (not within the clblast namespace)
int main(int argc, char *argv[]) {
switch(clblast::GetPrecision(argc, argv, clblast::Precision::kSingle)) {
case clblast::Precision::kHalf: throw std::runtime_error("Unsupported precision mode");
case clblast::Precision::kSingle:
clblast::RunClient<clblast::TestXamax<float>, float, float>(argc, argv); break;
case clblast::Precision::kDouble:
clblast::RunClient<clblast::TestXamax<double>, double, double>(argc, argv); break;
case clblast::Precision::kComplexSingle:
clblast::RunClient<clblast::TestXamax<float2>, float2, float2>(argc, argv); break;
case clblast::Precision::kComplexDouble:
clblast::RunClient<clblast::TestXamax<double2>, double2, double2>(argc, argv); break;
}
return 0;
}
// =================================================================================================

View file

@ -0,0 +1,35 @@
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
// Cedric Nugteren <www.cedricnugteren.nl>
//
// =================================================================================================
#include "performance/client.h"
#include "routines/level1/xasum.h"
// Shortcuts to the clblast namespace
using float2 = clblast::float2;
using double2 = clblast::double2;
// Main function (not within the clblast namespace)
int main(int argc, char *argv[]) {
switch(clblast::GetPrecision(argc, argv, clblast::Precision::kSingle)) {
case clblast::Precision::kHalf: throw std::runtime_error("Unsupported precision mode");
case clblast::Precision::kSingle:
clblast::RunClient<clblast::TestXasum<float>, float, float>(argc, argv); break;
case clblast::Precision::kDouble:
clblast::RunClient<clblast::TestXasum<double>, double, double>(argc, argv); break;
case clblast::Precision::kComplexSingle:
clblast::RunClient<clblast::TestXasum<float2>, float2, float2>(argc, argv); break;
case clblast::Precision::kComplexDouble:
clblast::RunClient<clblast::TestXasum<double2>, double2, double2>(argc, argv); break;
}
return 0;
}
// =================================================================================================

View file

@ -0,0 +1,139 @@
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
// Cedric Nugteren <www.cedricnugteren.nl>
//
// This file implements a class with static methods to describe the Xamax routine. Examples of
// such 'descriptions' are how to calculate the size a of buffer or how to run the routine. These
// static methods are used by the correctness tester and the performance tester.
//
// =================================================================================================
#ifndef CLBLAST_TEST_ROUTINES_XAMAX_H_
#define CLBLAST_TEST_ROUTINES_XAMAX_H_
#include <vector>
#include <string>
#ifdef CLBLAST_REF_CLBLAS
#include "wrapper_clblas.h"
#endif
#ifdef CLBLAST_REF_CBLAS
#include "wrapper_cblas.h"
#endif
namespace clblast {
// =================================================================================================
// See comment at top of file for a description of the class
template <typename T>
class TestXamax {
public:
// The BLAS level: 1, 2, or 3
static size_t BLASLevel() { return 1; }
// The list of arguments relevant for this routine
static std::vector<std::string> GetOptions() {
return {kArgN,
kArgXInc,
kArgXOffset, kArgImaxOffset};
}
// Describes how to obtain the sizes of the buffers
static size_t GetSizeX(const Arguments<T> &args) {
return args.n * args.x_inc + args.x_offset;
}
static size_t GetSizeImax(const Arguments<T> &args) {
return 1 + args.imax_offset;
}
// Describes how to set the sizes of all the buffers
static void SetSizes(Arguments<T> &args) {
args.x_size = GetSizeX(args);
args.scalar_size = GetSizeImax(args);
}
// Describes what the default values of the leading dimensions of the matrices are
static size_t DefaultLDA(const Arguments<T> &) { return 1; } // N/A for this routine
static size_t DefaultLDB(const Arguments<T> &) { return 1; } // N/A for this routine
static size_t DefaultLDC(const Arguments<T> &) { return 1; } // N/A for this routine
// Describes which transpose options are relevant for this routine
using Transposes = std::vector<Transpose>;
static Transposes GetATransposes(const Transposes &) { return {}; } // N/A for this routine
static Transposes GetBTransposes(const Transposes &) { return {}; } // N/A for this routine
// Describes how to run the CLBlast routine
static StatusCode RunRoutine(const Arguments<T> &args, Buffers<T> &buffers, Queue &queue) {
auto queue_plain = queue();
auto event = cl_event{};
auto status = Amax<T>(args.n,
buffers.scalar(), args.imax_offset,
buffers.x_vec(), args.x_offset, args.x_inc,
&queue_plain, &event);
clWaitForEvents(1, &event);
return status;
}
// Describes how to run the clBLAS routine (for correctness/performance comparison)
#ifdef CLBLAST_REF_CLBLAS
static StatusCode RunReference1(const Arguments<T> &args, Buffers<T> &buffers, Queue &queue) {
auto queue_plain = queue();
auto event = cl_event{};
auto status = clblasXamax<T>(args.n,
buffers.scalar(), args.imax_offset,
buffers.x_vec(), args.x_offset, args.x_inc,
1, &queue_plain, 0, nullptr, &event);
clWaitForEvents(1, &event);
return static_cast<StatusCode>(status);
}
#endif
// Describes how to run the CPU BLAS routine (for correctness/performance comparison)
#ifdef CLBLAST_REF_CBLAS
static StatusCode RunReference2(const Arguments<T> &args, Buffers<T> &buffers, Queue &queue) {
std::vector<T> scalar_cpu(args.scalar_size, static_cast<T>(0));
std::vector<T> x_vec_cpu(args.x_size, static_cast<T>(0));
buffers.scalar.Read(queue, args.scalar_size, scalar_cpu);
buffers.x_vec.Read(queue, args.x_size, x_vec_cpu);
cblasXamax(args.n,
scalar_cpu, args.imax_offset,
x_vec_cpu, args.x_offset, args.x_inc);
buffers.scalar.Write(queue, args.scalar_size, scalar_cpu);
return StatusCode::kSuccess;
}
#endif
// Describes how to download the results of the computation (more importantly: which buffer)
static std::vector<T> DownloadResult(const Arguments<T> &args, Buffers<T> &buffers, Queue &queue) {
std::vector<T> result(args.scalar_size, static_cast<T>(0));
buffers.scalar.Read(queue, args.scalar_size, result);
return result;
}
// Describes how to compute the indices of the result buffer
static size_t ResultID1(const Arguments<T> &) { return 1; } // N/A for this routine
static size_t ResultID2(const Arguments<T> &) { return 1; } // N/A for this routine
static size_t GetResultIndex(const Arguments<T> &args, const size_t, const size_t) {
return args.imax_offset;
}
// Describes how to compute performance metrics
static size_t GetFlops(const Arguments<T> &args) {
return args.n;
}
static size_t GetBytes(const Arguments<T> &args) {
return ((args.n) + 1) * sizeof(T);
}
};
// =================================================================================================
} // namespace clblast
// CLBLAST_TEST_ROUTINES_XAMAX_H_
#endif

View file

@ -0,0 +1,139 @@
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
// Cedric Nugteren <www.cedricnugteren.nl>
//
// This file implements a class with static methods to describe the Xasum routine. Examples of
// such 'descriptions' are how to calculate the size a of buffer or how to run the routine. These
// static methods are used by the correctness tester and the performance tester.
//
// =================================================================================================
#ifndef CLBLAST_TEST_ROUTINES_XASUM_H_
#define CLBLAST_TEST_ROUTINES_XASUM_H_
#include <vector>
#include <string>
#ifdef CLBLAST_REF_CLBLAS
#include "wrapper_clblas.h"
#endif
#ifdef CLBLAST_REF_CBLAS
#include "wrapper_cblas.h"
#endif
namespace clblast {
// =================================================================================================
// See comment at top of file for a description of the class
template <typename T>
class TestXasum {
public:
// The BLAS level: 1, 2, or 3
static size_t BLASLevel() { return 1; }
// The list of arguments relevant for this routine
static std::vector<std::string> GetOptions() {
return {kArgN,
kArgXInc,
kArgXOffset, kArgAsumOffset};
}
// Describes how to obtain the sizes of the buffers
static size_t GetSizeX(const Arguments<T> &args) {
return args.n * args.x_inc + args.x_offset;
}
static size_t GetSizeAsum(const Arguments<T> &args) {
return 1 + args.asum_offset;
}
// Describes how to set the sizes of all the buffers
static void SetSizes(Arguments<T> &args) {
args.x_size = GetSizeX(args);
args.scalar_size = GetSizeAsum(args);
}
// Describes what the default values of the leading dimensions of the matrices are
static size_t DefaultLDA(const Arguments<T> &) { return 1; } // N/A for this routine
static size_t DefaultLDB(const Arguments<T> &) { return 1; } // N/A for this routine
static size_t DefaultLDC(const Arguments<T> &) { return 1; } // N/A for this routine
// Describes which transpose options are relevant for this routine
using Transposes = std::vector<Transpose>;
static Transposes GetATransposes(const Transposes &) { return {}; } // N/A for this routine
static Transposes GetBTransposes(const Transposes &) { return {}; } // N/A for this routine
// Describes how to run the CLBlast routine
static StatusCode RunRoutine(const Arguments<T> &args, Buffers<T> &buffers, Queue &queue) {
auto queue_plain = queue();
auto event = cl_event{};
auto status = Asum<T>(args.n,
buffers.scalar(), args.asum_offset,
buffers.x_vec(), args.x_offset, args.x_inc,
&queue_plain, &event);
clWaitForEvents(1, &event);
return status;
}
// Describes how to run the clBLAS routine (for correctness/performance comparison)
#ifdef CLBLAST_REF_CLBLAS
static StatusCode RunReference1(const Arguments<T> &args, Buffers<T> &buffers, Queue &queue) {
auto queue_plain = queue();
auto event = cl_event{};
auto status = clblasXasum<T>(args.n,
buffers.scalar(), args.asum_offset,
buffers.x_vec(), args.x_offset, args.x_inc,
1, &queue_plain, 0, nullptr, &event);
clWaitForEvents(1, &event);
return static_cast<StatusCode>(status);
}
#endif
// Describes how to run the CPU BLAS routine (for correctness/performance comparison)
#ifdef CLBLAST_REF_CBLAS
static StatusCode RunReference2(const Arguments<T> &args, Buffers<T> &buffers, Queue &queue) {
std::vector<T> scalar_cpu(args.scalar_size, static_cast<T>(0));
std::vector<T> x_vec_cpu(args.x_size, static_cast<T>(0));
buffers.scalar.Read(queue, args.scalar_size, scalar_cpu);
buffers.x_vec.Read(queue, args.x_size, x_vec_cpu);
cblasXasum(args.n,
scalar_cpu, args.asum_offset,
x_vec_cpu, args.x_offset, args.x_inc);
buffers.scalar.Write(queue, args.scalar_size, scalar_cpu);
return StatusCode::kSuccess;
}
#endif
// Describes how to download the results of the computation (more importantly: which buffer)
static std::vector<T> DownloadResult(const Arguments<T> &args, Buffers<T> &buffers, Queue &queue) {
std::vector<T> result(args.scalar_size, static_cast<T>(0));
buffers.scalar.Read(queue, args.scalar_size, result);
return result;
}
// Describes how to compute the indices of the result buffer
static size_t ResultID1(const Arguments<T> &) { return 1; } // N/A for this routine
static size_t ResultID2(const Arguments<T> &) { return 1; } // N/A for this routine
static size_t GetResultIndex(const Arguments<T> &args, const size_t, const size_t) {
return args.asum_offset;
}
// Describes how to compute performance metrics
static size_t GetFlops(const Arguments<T> &args) {
return args.n;
}
static size_t GetBytes(const Arguments<T> &args) {
return ((args.n) + 1) * sizeof(T);
}
};
// =================================================================================================
} // namespace clblast
// CLBLAST_TEST_ROUTINES_XASUM_H_
#endif

View file

@ -345,6 +345,58 @@ void cblasXnrm2(const size_t n,
reinterpret_cast<const double*>(&x_buffer[x_offset]), static_cast<int>(x_inc));
}
// Forwards the Netlib BLAS calls for SASUM/DASUM/ScASUM/DzASUM
void cblasXasum(const size_t n,
std::vector<float>& asum_buffer, const size_t asum_offset,
const std::vector<float>& x_buffer, const size_t x_offset, const size_t x_inc) {
asum_buffer[asum_offset] = cblas_sasum(n,
&x_buffer[x_offset], static_cast<int>(x_inc));
}
void cblasXasum(const size_t n,
std::vector<double>& asum_buffer, const size_t asum_offset,
const std::vector<double>& x_buffer, const size_t x_offset, const size_t x_inc) {
asum_buffer[asum_offset] = cblas_dasum(n,
&x_buffer[x_offset], static_cast<int>(x_inc));
}
void cblasXasum(const size_t n,
std::vector<float2>& asum_buffer, const size_t asum_offset,
const std::vector<float2>& x_buffer, const size_t x_offset, const size_t x_inc) {
asum_buffer[asum_offset] = cblas_scasum(n,
reinterpret_cast<const float*>(&x_buffer[x_offset]), static_cast<int>(x_inc));
}
void cblasXasum(const size_t n,
std::vector<double2>& asum_buffer, const size_t asum_offset,
const std::vector<double2>& x_buffer, const size_t x_offset, const size_t x_inc) {
asum_buffer[asum_offset] = cblas_dzasum(n,
reinterpret_cast<const double*>(&x_buffer[x_offset]), static_cast<int>(x_inc));
}
// Forwards the Netlib BLAS calls for iSAMAX/iDAMAX/iCAMAX/iZAMAX
void cblasXamax(const size_t n,
std::vector<float>& imax_buffer, const size_t imax_offset,
const std::vector<float>& x_buffer, const size_t x_offset, const size_t x_inc) {
imax_buffer[imax_offset] = cblas_isamax(n,
&x_buffer[x_offset], static_cast<int>(x_inc));
}
void cblasXamax(const size_t n,
std::vector<double>& imax_buffer, const size_t imax_offset,
const std::vector<double>& x_buffer, const size_t x_offset, const size_t x_inc) {
imax_buffer[imax_offset] = cblas_idamax(n,
&x_buffer[x_offset], static_cast<int>(x_inc));
}
void cblasXamax(const size_t n,
std::vector<float2>& imax_buffer, const size_t imax_offset,
const std::vector<float2>& x_buffer, const size_t x_offset, const size_t x_inc) {
imax_buffer[imax_offset] = cblas_icamax(n,
reinterpret_cast<const float*>(&x_buffer[x_offset]), static_cast<int>(x_inc));
}
void cblasXamax(const size_t n,
std::vector<double2>& imax_buffer, const size_t imax_offset,
const std::vector<double2>& x_buffer, const size_t x_offset, const size_t x_inc) {
imax_buffer[imax_offset] = cblas_izamax(n,
reinterpret_cast<const double*>(&x_buffer[x_offset]), static_cast<int>(x_inc));
}
// =================================================================================================
// BLAS level-2 (matrix-vector) routines
// =================================================================================================

View file

@ -558,6 +558,142 @@ clblasStatus clblasXnrm2<double2>(const size_t n,
num_queues, queues, num_wait_events, wait_events, events);
}
// Forwards the clBLAS calls for SASUM/DASUM/ScASUM/DzASUM
template <typename T>
clblasStatus clblasXasum(const size_t n,
cl_mem asum_buffer, const size_t asum_offset,
const cl_mem x_buffer, const size_t x_offset, const size_t x_inc,
cl_uint num_queues, cl_command_queue *queues,
cl_uint num_wait_events, const cl_event *wait_events, cl_event *events);
template <>
clblasStatus clblasXasum<float>(const size_t n,
cl_mem asum_buffer, const size_t asum_offset,
const cl_mem x_buffer, const size_t x_offset, const size_t x_inc,
cl_uint num_queues, cl_command_queue *queues,
cl_uint num_wait_events, const cl_event *wait_events, cl_event *events) {
auto queue = Queue(queues[0]);
auto context = queue.GetContext();
auto scratch_buffer = Buffer<float>(context, n);
return clblasSasum(n,
asum_buffer, asum_offset,
x_buffer, x_offset, static_cast<int>(x_inc),
scratch_buffer(),
num_queues, queues, num_wait_events, wait_events, events);
}
template <>
clblasStatus clblasXasum<double>(const size_t n,
cl_mem asum_buffer, const size_t asum_offset,
const cl_mem x_buffer, const size_t x_offset, const size_t x_inc,
cl_uint num_queues, cl_command_queue *queues,
cl_uint num_wait_events, const cl_event *wait_events, cl_event *events) {
auto queue = Queue(queues[0]);
auto context = queue.GetContext();
auto scratch_buffer = Buffer<double>(context, n);
return clblasDasum(n,
asum_buffer, asum_offset,
x_buffer, x_offset, static_cast<int>(x_inc),
scratch_buffer(),
num_queues, queues, num_wait_events, wait_events, events);
}
template <>
clblasStatus clblasXasum<float2>(const size_t n,
cl_mem asum_buffer, const size_t asum_offset,
const cl_mem x_buffer, const size_t x_offset, const size_t x_inc,
cl_uint num_queues, cl_command_queue *queues,
cl_uint num_wait_events, const cl_event *wait_events, cl_event *events) {
auto queue = Queue(queues[0]);
auto context = queue.GetContext();
auto scratch_buffer = Buffer<float2>(context, n);
return clblasScasum(n,
asum_buffer, asum_offset,
x_buffer, x_offset, static_cast<int>(x_inc),
scratch_buffer(),
num_queues, queues, num_wait_events, wait_events, events);
}
template <>
clblasStatus clblasXasum<double2>(const size_t n,
cl_mem asum_buffer, const size_t asum_offset,
const cl_mem x_buffer, const size_t x_offset, const size_t x_inc,
cl_uint num_queues, cl_command_queue *queues,
cl_uint num_wait_events, const cl_event *wait_events, cl_event *events) {
auto queue = Queue(queues[0]);
auto context = queue.GetContext();
auto scratch_buffer = Buffer<double2>(context, n);
return clblasDzasum(n,
asum_buffer, asum_offset,
x_buffer, x_offset, static_cast<int>(x_inc),
scratch_buffer(),
num_queues, queues, num_wait_events, wait_events, events);
}
// Forwards the clBLAS calls for iSAMAX/iDAMAX/iCAMAX/iZAMAX
template <typename T>
clblasStatus clblasXamax(const size_t n,
cl_mem imax_buffer, const size_t imax_offset,
const cl_mem x_buffer, const size_t x_offset, const size_t x_inc,
cl_uint num_queues, cl_command_queue *queues,
cl_uint num_wait_events, const cl_event *wait_events, cl_event *events);
template <>
clblasStatus clblasXamax<float>(const size_t n,
cl_mem imax_buffer, const size_t imax_offset,
const cl_mem x_buffer, const size_t x_offset, const size_t x_inc,
cl_uint num_queues, cl_command_queue *queues,
cl_uint num_wait_events, const cl_event *wait_events, cl_event *events) {
auto queue = Queue(queues[0]);
auto context = queue.GetContext();
auto scratch_buffer = Buffer<float>(context, 2*n);
return clblasiSamax(n,
imax_buffer, imax_offset,
x_buffer, x_offset, static_cast<int>(x_inc),
scratch_buffer(),
num_queues, queues, num_wait_events, wait_events, events);
}
template <>
clblasStatus clblasXamax<double>(const size_t n,
cl_mem imax_buffer, const size_t imax_offset,
const cl_mem x_buffer, const size_t x_offset, const size_t x_inc,
cl_uint num_queues, cl_command_queue *queues,
cl_uint num_wait_events, const cl_event *wait_events, cl_event *events) {
auto queue = Queue(queues[0]);
auto context = queue.GetContext();
auto scratch_buffer = Buffer<double>(context, 2*n);
return clblasiDamax(n,
imax_buffer, imax_offset,
x_buffer, x_offset, static_cast<int>(x_inc),
scratch_buffer(),
num_queues, queues, num_wait_events, wait_events, events);
}
template <>
clblasStatus clblasXamax<float2>(const size_t n,
cl_mem imax_buffer, const size_t imax_offset,
const cl_mem x_buffer, const size_t x_offset, const size_t x_inc,
cl_uint num_queues, cl_command_queue *queues,
cl_uint num_wait_events, const cl_event *wait_events, cl_event *events) {
auto queue = Queue(queues[0]);
auto context = queue.GetContext();
auto scratch_buffer = Buffer<float2>(context, 2*n);
return clblasiCamax(n,
imax_buffer, imax_offset,
x_buffer, x_offset, static_cast<int>(x_inc),
scratch_buffer(),
num_queues, queues, num_wait_events, wait_events, events);
}
template <>
clblasStatus clblasXamax<double2>(const size_t n,
cl_mem imax_buffer, const size_t imax_offset,
const cl_mem x_buffer, const size_t x_offset, const size_t x_inc,
cl_uint num_queues, cl_command_queue *queues,
cl_uint num_wait_events, const cl_event *wait_events, cl_event *events) {
auto queue = Queue(queues[0]);
auto context = queue.GetContext();
auto scratch_buffer = Buffer<double2>(context, 2*n);
return clblasiZamax(n,
imax_buffer, imax_offset,
x_buffer, x_offset, static_cast<int>(x_inc),
scratch_buffer(),
num_queues, queues, num_wait_events, wait_events, events);
}
// =================================================================================================
// BLAS level-2 (matrix-vector) routines
// =================================================================================================