Added the TRMM routine, tester, and client

pull/11/head
CNugteren 2015-07-02 07:16:04 +02:00
parent 500416aa38
commit d9ea0c47c6
9 changed files with 666 additions and 16 deletions

View File

@ -98,7 +98,7 @@ set(SAMPLE_PROGRAMS sgemm)
set(ROUTINES
xaxpy
xgemv
xgemm xsymm xsyrk xsyr2k)
xgemm xsymm xsyrk xsyr2k xtrmm)
# ==================================================================================================

View File

@ -0,0 +1,58 @@
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
// Cedric Nugteren <www.cedricnugteren.nl>
//
// This file implements the Xtrmm routine. The implementation is based on first transforming the
// upper/lower unit/non-unit triangular matrix into a regular matrix and then calling the GEMM
// routine. Therefore, this class inherits from the Xgemm class.
//
// =================================================================================================
#ifndef CLBLAST_ROUTINES_XTRMM_H_
#define CLBLAST_ROUTINES_XTRMM_H_
#include "internal/routines/xgemm.h"
namespace clblast {
// =================================================================================================
// See comment at top of file for a description of the class
template <typename T>
class Xtrmm: public Xgemm<T> {
public:
// Uses several variables from the Routine class
using Routine::db_;
using Routine::context_;
// Uses several helper functions from the Routine class
using Routine::RunKernel;
using Routine::ErrorIn;
using Routine::TestMatrixA;
using Routine::GetProgramFromCache;
// Uses the regular Xgemm routine
using Xgemm<T>::DoGemm;
// Constructor
Xtrmm(CommandQueue &queue, Event &event);
// Templated-precision implementation of the routine
StatusCode DoTrmm(const Layout layout, const Side side, const Triangle triangle,
const Transpose a_transpose, const Diagonal diagonal,
const size_t m, const size_t n,
const T alpha,
const Buffer &a_buffer, const size_t a_offset, const size_t a_ld,
const Buffer &b_buffer, const size_t b_offset, const size_t b_ld);
};
// =================================================================================================
} // namespace clblast
// CLBLAST_ROUTINES_XTRMM_H_
#endif

View File

@ -28,6 +28,7 @@
#include "internal/routines/xsymm.h"
#include "internal/routines/xsyrk.h"
#include "internal/routines/xsyr2k.h"
#include "internal/routines/xtrmm.h"
namespace clblast {
// =================================================================================================
@ -372,7 +373,6 @@ StatusCode Trmm(const Layout layout, const Side side, const Triangle triangle,
cl_command_queue* queue, cl_event* event) {
auto queue_cpp = CommandQueue(*queue);
auto event_cpp = Event(*event);
/*
auto routine = Xtrmm<T>(queue_cpp, event_cpp);
// Loads the kernel source-code as an include (C++11 raw string literal)
@ -394,8 +394,6 @@ StatusCode Trmm(const Layout layout, const Side side, const Triangle triangle,
return routine.DoTrmm(layout, side, triangle, a_transpose, diagonal, m, n, alpha,
Buffer(a_buffer), a_offset, a_ld,
Buffer(b_buffer), b_offset, b_ld);
*/
return StatusCode::kSuccess;
}
template StatusCode Trmm<float>(const Layout, const Side, const Triangle,
const Transpose, const Diagonal,

View File

@ -135,15 +135,15 @@ __kernel void SymmLowerToSquared(const int src_dim,
if (id_two < dest_dim && id_one < dest_dim) {
// Loads data from the lower-symmetric matrix
real value;
SetToZero(value);
real result;
SetToZero(result);
if (id_two < src_dim && id_one < src_dim) {
if (id_two <= id_one) { value = src[id_two*src_ld + id_one + src_offset]; }
else { value = src[id_one*src_ld + id_two + src_offset]; }
if (id_two <= id_one) { result = src[id_two*src_ld + id_one + src_offset]; }
else { result = src[id_one*src_ld + id_two + src_offset]; }
}
// Stores the value in the destination matrix
dest[id_two*dest_ld + id_one + dest_offset] = value;
// Stores the result in the destination matrix
dest[id_two*dest_ld + id_one + dest_offset] = result;
}
}
}
@ -168,15 +168,88 @@ __kernel void SymmUpperToSquared(const int src_dim,
if (id_two < dest_dim && id_one < dest_dim) {
// Loads data from the upper-symmetric matrix
real value;
SetToZero(value);
real result;
SetToZero(result);
if (id_two < src_dim && id_one < src_dim) {
if (id_one <= id_two) { value = src[id_two*src_ld + id_one + src_offset]; }
else { value = src[id_one*src_ld + id_two + src_offset]; }
if (id_one <= id_two) { result = src[id_two*src_ld + id_one + src_offset]; }
else { result = src[id_one*src_ld + id_two + src_offset]; }
}
// Stores the value in the destination matrix
dest[id_two*dest_ld + id_one + dest_offset] = value;
// Stores the result in the destination matrix
dest[id_two*dest_ld + id_one + dest_offset] = result;
}
}
}
}
// =================================================================================================
// Kernel to populate a squared triangular matrix, given that the triangle which holds the data is
// stored as the lower-triangle of the input matrix. This uses the padding kernel's parameters.
__attribute__((reqd_work_group_size(PAD_DIMX, PAD_DIMY, 1)))
__kernel void TrmmLowerToSquared(const int src_dim,
const int src_ld, const int src_offset,
__global const real* restrict src,
const int dest_dim,
const int dest_ld, const int dest_offset,
__global real* dest,
const int unit_diagonal) {
// Loops over the work per thread in both dimensions
#pragma unroll
for (int w_one=0; w_one<PAD_WPTX; ++w_one) {
const int id_one = (get_group_id(0)*PAD_WPTX + w_one) * PAD_DIMX + get_local_id(0);
#pragma unroll
for (int w_two=0; w_two<PAD_WPTY; ++w_two) {
const int id_two = (get_group_id(1)*PAD_WPTY + w_two) * PAD_DIMY + get_local_id(1);
if (id_two < dest_dim && id_one < dest_dim) {
// Loads data from the lower-triangular matrix
real result;
SetToZero(result);
if (id_two < src_dim && id_one < src_dim) {
if (id_two <= id_one) { result = src[id_two*src_ld + id_one + src_offset]; }
if (id_two == id_one && unit_diagonal) { SetToOne(result); }
// Else: result is zero
}
// Stores the result in the destination matrix
dest[id_two*dest_ld + id_one + dest_offset] = result;
}
}
}
}
// Same as above, but now the matrix' data is stored in the upper-triangle
__attribute__((reqd_work_group_size(PAD_DIMX, PAD_DIMY, 1)))
__kernel void TrmmUpperToSquared(const int src_dim,
const int src_ld, const int src_offset,
__global const real* restrict src,
const int dest_dim,
const int dest_ld, const int dest_offset,
__global real* dest,
const int unit_diagonal) {
// Loops over the work per thread in both dimensions
#pragma unroll
for (int w_one=0; w_one<PAD_WPTX; ++w_one) {
const int id_one = (get_group_id(0)*PAD_WPTX + w_one) * PAD_DIMX + get_local_id(0);
#pragma unroll
for (int w_two=0; w_two<PAD_WPTY; ++w_two) {
const int id_two = (get_group_id(1)*PAD_WPTY + w_two) * PAD_DIMY + get_local_id(1);
if (id_two < dest_dim && id_one < dest_dim) {
// Loads data from the upper-triangular matrix
real result;
SetToZero(result);
if (id_two < src_dim && id_one < src_dim) {
if (id_one <= id_two) { result = src[id_two*src_ld + id_one + src_offset]; }
if (id_one == id_two && unit_diagonal) { SetToOne(result); }
// Else: result is zero
}
// Stores the result in the destination matrix
dest[id_two*dest_ld + id_one + dest_offset] = result;
}
}
}

View File

@ -0,0 +1,135 @@
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
// Cedric Nugteren <www.cedricnugteren.nl>
//
// This file implements the Xtrmm class (see the header for information about the class).
//
// =================================================================================================
#include "internal/routines/xtrmm.h"
#include <string>
#include <vector>
namespace clblast {
// =================================================================================================
// Constructor: forwards to base class constructor
template <typename T>
Xtrmm<T>::Xtrmm(CommandQueue &queue, Event &event):
Xgemm<T>(queue, event) {
}
// =================================================================================================
// The main routine
template <typename T>
StatusCode Xtrmm<T>::DoTrmm(const Layout layout, const Side side, const Triangle triangle,
const Transpose a_transpose, const Diagonal diagonal,
const size_t m, const size_t n,
const T alpha,
const Buffer &a_buffer, const size_t a_offset, const size_t a_ld,
const Buffer &b_buffer, const size_t b_offset, const size_t b_ld) {
// Makes sure all dimensions are larger than zero
if ((m == 0) || (n == 0)) { return StatusCode::kInvalidDimension; }
// Computes the k dimension. This is based on whether or not matrix is A (on the left)
// or B (on the right) in the Xgemm routine.
auto k = (side == Side::kLeft) ? m : n;
// Checks for validity of the triangular A matrix
auto status = TestMatrixA(k, k, a_buffer, a_offset, a_ld, sizeof(T));
if (ErrorIn(status)) { return status; }
// Determines which kernel to run based on the layout (the Xgemm kernel assumes column-major as
// default) and on whether we are dealing with an upper or lower triangle of the triangular matrix
bool is_upper = ((triangle == Triangle::kUpper && layout != Layout::kRowMajor) ||
(triangle == Triangle::kLower && layout == Layout::kRowMajor));
auto kernel_name = (is_upper) ? "TrmmUpperToSquared" : "TrmmLowerToSquared";
// Determines whether or not the triangular matrix is unit-diagonal
auto unit_diagonal = (diagonal == Diagonal::kUnit) ? true : false;
// Temporary buffer for a copy of the triangular matrix
try {
auto temp_triangular = Buffer(context_, CL_MEM_READ_WRITE, k*k*sizeof(T));
// Creates a general matrix from the triangular matrix to be able to run the regular Xgemm
// routine afterwards
try {
auto& program = GetProgramFromCache();
auto kernel = Kernel(program, kernel_name);
// Sets the arguments for the triangular-to-squared kernel
kernel.SetArgument(0, static_cast<int>(k));
kernel.SetArgument(1, static_cast<int>(a_ld));
kernel.SetArgument(2, static_cast<int>(a_offset));
kernel.SetArgument(3, a_buffer());
kernel.SetArgument(4, static_cast<int>(k));
kernel.SetArgument(5, static_cast<int>(k));
kernel.SetArgument(6, static_cast<int>(0));
kernel.SetArgument(7, temp_triangular());
kernel.SetArgument(8, static_cast<int>(unit_diagonal));
// Uses the common padding kernel's thread configuration. This is allowed, since the
// triangular-to-squared kernel uses the same parameters.
auto global = std::vector<size_t>{Ceil(CeilDiv(k, db_["PAD_WPTX"]), db_["PAD_DIMX"]),
Ceil(CeilDiv(k, db_["PAD_WPTY"]), db_["PAD_DIMY"])};
auto local = std::vector<size_t>{db_["PAD_DIMX"], db_["PAD_DIMY"]};
status = RunKernel(kernel, global, local);
if (ErrorIn(status)) { return status; }
// Runs the regular Xgemm code with either "B := alpha*A*B" or ...
if (side == Side::kLeft) {
status = DoGemm(layout, a_transpose, Transpose::kNo,
m, n, k,
alpha,
temp_triangular, 0, k,
b_buffer, b_offset, b_ld,
static_cast<T>(0.0),
b_buffer, b_offset, b_ld);
}
// ... with "B := alpha*B*A". Note that A and B are now reversed.
else {
status = DoGemm(layout, Transpose::kNo, a_transpose,
m, n, k,
alpha,
b_buffer, b_offset, b_ld,
temp_triangular, 0, k,
static_cast<T>(0.0),
b_buffer, b_offset, b_ld);
// A and B are now reversed, so also reverse the error codes returned from the Xgemm routine
switch(status) {
case StatusCode::kInvalidMatrixA: status = StatusCode::kInvalidMatrixB; break;
case StatusCode::kInvalidMatrixB: status = StatusCode::kInvalidMatrixA; break;
case StatusCode::kInvalidLeadDimA: status = StatusCode::kInvalidLeadDimB; break;
case StatusCode::kInvalidLeadDimB: status = StatusCode::kInvalidLeadDimA; break;
case StatusCode::kInsufficientMemoryA: status = StatusCode::kInsufficientMemoryB; break;
case StatusCode::kInsufficientMemoryB: status = StatusCode::kInsufficientMemoryA; break;
}
}
// Return the status of the Xgemm routine
return status;
} catch (...) { return StatusCode::kInvalidKernel; }
} catch (...) { return StatusCode::kTempBufferAllocFailure; }
}
// =================================================================================================
// Compiles the templated class
template class Xtrmm<float>;
template class Xtrmm<double>;
template class Xtrmm<float2>;
template class Xtrmm<double2>;
// =================================================================================================
} // namespace clblast

View File

@ -0,0 +1,96 @@
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
// Cedric Nugteren <www.cedricnugteren.nl>
//
// This file implements the tests for the Xtrmm routine.
//
// =================================================================================================
#include "correctness/testblas.h"
#include "routines/xtrmm.h"
namespace clblast {
// =================================================================================================
// The correctness tester
template <typename T>
void RunTest(int argc, char *argv[], const bool silent, const std::string &name) {
// Creates a tester
TestBlas<T> tester{argc, argv, silent, name, TestXtrmm<T>::GetOptions(),
TestXtrmm<T>::RunRoutine, TestXtrmm<T>::RunReference,
TestXtrmm<T>::DownloadResult, TestXtrmm<T>::GetResultIndex,
TestXtrmm<T>::ResultID1, TestXtrmm<T>::ResultID2};
// This variable holds the arguments relevant for this routine
auto args = Arguments<T>{};
// Loops over the test-cases from a data-layout point of view
for (auto &layout: tester.kLayouts) { args.layout = layout;
for (auto &side: tester.kSides) { args.side = side;
for (auto &triangle: tester.kTriangles) { args.triangle = triangle;
for (auto &a_transpose: tester.kTransposes) { args.a_transpose = a_transpose;
for (auto &diagonal: tester.kDiagonals) { args.diagonal = diagonal;
// Creates the arguments vector for the regular tests
auto regular_test_vector = std::vector<Arguments<T>>{};
for (auto &m: tester.kMatrixDims) { args.m = m;
for (auto &n: tester.kMatrixDims) { args.n = n;
for (auto &a_ld: tester.kMatrixDims) { args.a_ld = a_ld;
for (auto &a_offset: tester.kOffsets) { args.a_offset = a_offset;
for (auto &b_ld: tester.kMatrixDims) { args.b_ld = b_ld;
for (auto &b_offset: tester.kOffsets) { args.b_offset = b_offset;
for (auto &alpha: tester.kAlphaValues) { args.alpha = alpha;
args.a_size = TestXtrmm<T>::GetSizeA(args);
args.b_size = TestXtrmm<T>::GetSizeB(args);
if (args.a_size<1 || args.b_size<1) { continue; }
regular_test_vector.push_back(args);
}
}
}
}
}
}
}
// Creates the arguments vector for the invalid-buffer tests
auto invalid_test_vector = std::vector<Arguments<T>>{};
args.m = args.n = tester.kBufferSize;
args.a_ld = args.b_ld = tester.kBufferSize;
args.a_offset = args.b_offset = 0;
for (auto &a_size: tester.kMatSizes) { args.a_size = a_size;
for (auto &b_size: tester.kMatSizes) { args.b_size = b_size;
invalid_test_vector.push_back(args);
}
}
// Runs the tests
const auto case_name = ToString(layout)+" "+ToString(side)+" "+ToString(triangle)+" "+
ToString(a_transpose)+" "+ToString(diagonal);
tester.TestRegular(regular_test_vector, case_name);
tester.TestInvalid(invalid_test_vector, case_name);
}
}
}
}
}
}
// =================================================================================================
} // namespace clblast
// Main function (not within the clblast namespace)
int main(int argc, char *argv[]) {
clblast::RunTest<float>(argc, argv, false, "STRMM");
clblast::RunTest<double>(argc, argv, true, "DTRMM");
clblast::RunTest<clblast::float2>(argc, argv, true, "CTRMM");
clblast::RunTest<clblast::double2>(argc, argv, true, "ZTRMM");
return 0;
}
// =================================================================================================

View File

@ -0,0 +1,127 @@
# ==================================================================================================
# This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
# project uses a tab-size of two spaces and a max-width of 100 characters per line.
#
# Author(s):
# Cedric Nugteren <www.cedricnugteren.nl>
#
# This file implements the performance script for the Xtrmm routine
#
# ==================================================================================================
# Includes the common functions
args <- commandArgs(trailingOnly = FALSE)
thisfile <- (normalizePath(sub("--file=", "", args[grep("--file=", args)])))
source(file.path(dirname(thisfile), "common.r"))
# ==================================================================================================
# Settings
routine_name <- "xtrmm"
parameters <- c("-m","-n","-layout","-side","-triangle","-transA","-diagonal",
"-num_steps","-step","-runs","-precision")
precision <- 32
# Sets the names of the test-cases
test_names <- list(
"multiples of 128",
"multiples of 128 (+1)",
"around m=n=512",
"around m=n=2048",
"layouts and side/triangle (m=n=1024)",
"powers of 2"
)
# Defines the test-cases
test_values <- list(
list(c(128, 128, 0, 0, 0, 0, 0, 16, 128, num_runs, precision)),
list(c(129, 129, 0, 0, 0, 0, 0, 16, 128, num_runs, precision)),
list(c(512, 512, 0, 0, 0, 0, 0, 16, 1, num_runs, precision)),
list(c(2048, 2048, 0, 0, 0, 0, 0, 16, 1, num_runs, precision)),
list(
c(1024, 1024, 0, 0, 0, 0, 0, 1, 0, num_runs, precision),
c(1024, 1024, 0, 0, 0, 0, 1, 1, 0, num_runs, precision),
c(1024, 1024, 0, 0, 0, 1, 0, 1, 0, num_runs, precision),
c(1024, 1024, 0, 0, 0, 1, 1, 1, 0, num_runs, precision),
c(1024, 1024, 0, 0, 1, 0, 0, 1, 0, num_runs, precision),
c(1024, 1024, 0, 0, 1, 0, 1, 1, 0, num_runs, precision),
c(1024, 1024, 0, 0, 1, 1, 0, 1, 0, num_runs, precision),
c(1024, 1024, 0, 0, 1, 1, 1, 1, 0, num_runs, precision),
c(1024, 1024, 0, 1, 0, 0, 0, 1, 0, num_runs, precision),
c(1024, 1024, 0, 1, 0, 0, 1, 1, 0, num_runs, precision),
c(1024, 1024, 0, 1, 0, 1, 0, 1, 0, num_runs, precision),
c(1024, 1024, 0, 1, 0, 1, 1, 1, 0, num_runs, precision),
c(1024, 1024, 0, 1, 1, 0, 0, 1, 0, num_runs, precision),
c(1024, 1024, 0, 1, 1, 0, 1, 1, 0, num_runs, precision),
c(1024, 1024, 0, 1, 1, 1, 0, 1, 0, num_runs, precision),
c(1024, 1024, 0, 1, 1, 1, 1, 1, 0, num_runs, precision),
c(1024, 1024, 0, 0, 0, 0, 0, 1, 0, num_runs, precision),
c(1024, 1024, 0, 0, 0, 0, 1, 1, 0, num_runs, precision),
c(1024, 1024, 0, 0, 0, 1, 0, 1, 0, num_runs, precision),
c(1024, 1024, 0, 0, 0, 1, 1, 1, 0, num_runs, precision),
c(1024, 1024, 0, 0, 1, 0, 0, 1, 0, num_runs, precision),
c(1024, 1024, 0, 0, 1, 0, 1, 1, 0, num_runs, precision),
c(1024, 1024, 0, 0, 1, 1, 0, 1, 0, num_runs, precision),
c(1024, 1024, 0, 0, 1, 1, 1, 1, 0, num_runs, precision),
c(1024, 1024, 1, 1, 0, 0, 0, 1, 0, num_runs, precision),
c(1024, 1024, 1, 1, 0, 0, 1, 1, 0, num_runs, precision),
c(1024, 1024, 1, 1, 0, 1, 0, 1, 0, num_runs, precision),
c(1024, 1024, 1, 1, 0, 1, 1, 1, 0, num_runs, precision),
c(1024, 1024, 1, 1, 1, 0, 0, 1, 0, num_runs, precision),
c(1024, 1024, 1, 1, 1, 0, 1, 1, 0, num_runs, precision),
c(1024, 1024, 1, 1, 1, 1, 0, 1, 0, num_runs, precision),
c(1024, 1024, 1, 1, 1, 1, 1, 1, 0, num_runs, precision)
),
list(
c(8, 8, 0, 0, 0, 0, 0, 1, 0, num_runs, precision),
c(16, 16, 0, 0, 0, 0, 0, 1, 0, num_runs, precision),
c(32, 32, 0, 0, 0, 0, 0, 1, 0, num_runs, precision),
c(64, 64, 0, 0, 0, 0, 0, 1, 0, num_runs, precision),
c(128, 128, 0, 0, 0, 0, 0, 1, 0, num_runs, precision),
c(256, 256, 0, 0, 0, 0, 0, 1, 0, num_runs, precision),
c(512, 512, 0, 0, 0, 0, 0, 1, 0, num_runs, precision),
c(1024, 1024, 0, 0, 0, 0, 0, 1, 0, num_runs, precision),
c(2048, 2048, 0, 0, 0, 0, 0, 1, 0, num_runs, precision),
c(4096, 4096, 0, 0, 0, 0, 0, 1, 0, num_runs, precision),
c(8192, 8192, 0, 0, 0, 0, 0, 1, 0, num_runs, precision)
)
)
# Defines the x-labels corresponding to the test-cases
test_xlabels <- list(
"matrix sizes (m=n)",
"matrix sizes (m=n)",
"matrix sizes (m=n)",
"matrix sizes (m=n)",
"layout (row/col), side (l/r), triangle (up/lo), transA (n/y), diag (u/nu)",
"matrix sizes (m=n)"
)
# Defines the x-axis of the test-cases
test_xaxis <- list(
c("m", ""),
c("m", ""),
c("m", ""),
c("m", ""),
list(1:32, c("row,l,up,n,u", "row,l,up,n,nu", "row,l,up,y,u", "row,l,up,y,nu",
"row,r,up,n,u", "row,r,up,n,nu", "row,r,up,y,u", "row,r,up,y,nu",
"row,l,lo,n,u", "row,l,lo,n,nu", "row,l,lo,y,u", "row,l,lo,y,nu",
"row,r,lo,n,u", "row,r,lo,n,nu", "row,r,lo,y,u", "row,r,lo,y,nu",
"col,l,up,n,u", "col,l,up,n,nu", "col,l,up,y,u", "col,l,up,y,nu",
"col,r,up,n,u", "col,r,up,n,nu", "col,r,up,y,u", "col,r,up,y,nu",
"col,l,lo,n,u", "col,l,lo,n,nu", "col,l,lo,y,u", "col,l,lo,y,nu",
"col,r,lo,n,u", "col,r,lo,n,nu", "col,r,lo,y,u", "col,r,lo,y,nu")),
c("m", "x")
)
# ==================================================================================================
# Start the script
main(routine_name=routine_name, precision=precision, test_names=test_names, test_values=test_values,
test_xlabels=test_xlabels, test_xaxis=test_xaxis, metric_gflops=TRUE)
# ==================================================================================================

View File

@ -0,0 +1,36 @@
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
// Cedric Nugteren <www.cedricnugteren.nl>
//
// This file implements the Xtrmm command-line interface performance tester.
//
// =================================================================================================
#include "performance/client.h"
#include "routines/xtrmm.h"
// =================================================================================================
// Main function (not within the clblast namespace)
int main(int argc, char *argv[]) {
switch(clblast::GetPrecision(argc, argv)) {
case clblast::Precision::kHalf:
throw std::runtime_error("Unsupported precision mode");
case clblast::Precision::kSingle:
clblast::RunClient<clblast::TestXtrmm<float>, float>(argc, argv); break;
case clblast::Precision::kDouble:
clblast::RunClient<clblast::TestXtrmm<double>, double>(argc, argv); break;
case clblast::Precision::kComplexSingle:
clblast::RunClient<clblast::TestXtrmm<clblast::float2>, clblast::float2>(argc, argv); break;
case clblast::Precision::kComplexDouble:
clblast::RunClient<clblast::TestXtrmm<clblast::double2>, clblast::double2>(argc, argv); break;
}
return 0;
}
// =================================================================================================

View File

@ -0,0 +1,127 @@
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
// Cedric Nugteren <www.cedricnugteren.nl>
//
// This file implements a class with static methods to describe the Xtrmm routine. Examples of
// such 'descriptions' are how to calculate the size a of buffer or how to run the routine. These
// static methods are used by the correctness tester and the performance tester.
//
// =================================================================================================
#ifndef CLBLAST_TEST_ROUTINES_XTRMM_H_
#define CLBLAST_TEST_ROUTINES_XTRMM_H_
#include <vector>
#include <string>
#include "wrapper_clblas.h"
namespace clblast {
// =================================================================================================
// See comment at top of file for a description of the class
template <typename T>
class TestXtrmm {
public:
// The list of arguments relevant for this routine
static std::vector<std::string> GetOptions() {
return {kArgM, kArgN,
kArgLayout, kArgSide, kArgTriangle, kArgATransp, kArgDiagonal,
kArgALeadDim, kArgBLeadDim,
kArgAOffset, kArgBOffset,
kArgAlpha};
}
// Describes how to obtain the sizes of the buffers
static size_t GetSizeA(const Arguments<T> &args) {
auto k = (args.side == Side::kLeft) ? args.m : args.n;
return k * args.a_ld + args.a_offset;
}
static size_t GetSizeB(const Arguments<T> &args) {
auto b_rotated = (args.layout == Layout::kRowMajor);
auto b_two = (b_rotated) ? args.m : args.n;
return b_two * args.b_ld + args.b_offset;
}
// Describes how to set the sizes of all the buffers
static void SetSizes(Arguments<T> &args) {
args.a_size = GetSizeA(args);
args.b_size = GetSizeB(args);
}
// Describes what the default values of the leading dimensions of the matrices are
static size_t DefaultLDA(const Arguments<T> &args) { return args.m; }
static size_t DefaultLDB(const Arguments<T> &args) { return args.n; }
static size_t DefaultLDC(const Arguments<T> &) { return 1; } // N/A for this routine
// Describes how to run the CLBlast routine
static StatusCode RunRoutine(const Arguments<T> &args, const Buffers &buffers,
CommandQueue &queue) {
auto queue_plain = queue();
auto event = cl_event{};
auto status = Trmm(args.layout, args.side, args.triangle, args.a_transpose, args.diagonal,
args.m, args.n, args.alpha,
buffers.a_mat(), args.a_offset, args.a_ld,
buffers.b_mat(), args.b_offset, args.b_ld,
&queue_plain, &event);
clWaitForEvents(1, &event);
return status;
}
// Describes how to run the clBLAS routine (for correctness/performance comparison)
static StatusCode RunReference(const Arguments<T> &args, const Buffers &buffers,
CommandQueue &queue) {
auto queue_plain = queue();
auto event = cl_event{};
auto status = clblasXtrmm(static_cast<clblasOrder>(args.layout),
static_cast<clblasSide>(args.side),
static_cast<clblasUplo>(args.triangle),
static_cast<clblasTranspose>(args.a_transpose),
static_cast<clblasDiag>(args.diagonal),
args.m, args.n, args.alpha,
buffers.a_mat(), args.a_offset, args.a_ld,
buffers.b_mat(), args.b_offset, args.b_ld,
1, &queue_plain, 0, nullptr, &event);
clWaitForEvents(1, &event);
return static_cast<StatusCode>(status);
}
// Describes how to download the results of the computation (more importantly: which buffer)
static std::vector<T> DownloadResult(const Arguments<T> &args, Buffers &buffers,
CommandQueue &queue) {
std::vector<T> result(args.b_size, static_cast<T>(0));
buffers.b_mat.ReadBuffer(queue, args.b_size*sizeof(T), result);
return result;
}
// Describes how to compute the indices of the result buffer
static size_t ResultID1(const Arguments<T> &args) { return args.m; }
static size_t ResultID2(const Arguments<T> &args) { return args.n; }
static size_t GetResultIndex(const Arguments<T> &args, const size_t id1, const size_t id2) {
return (args.layout == Layout::kRowMajor) ?
id1*args.b_ld + id2 + args.b_offset:
id2*args.b_ld + id1 + args.b_offset;
}
// Describes how to compute performance metrics
static size_t GetFlops(const Arguments<T> &args) {
auto k = (args.side == Side::kLeft) ? args.m : args.n;
return args.m * args.n * k;
}
static size_t GetBytes(const Arguments<T> &args) {
auto k = (args.side == Side::kLeft) ? args.m : args.n;
return (k*k + 2*args.m*args.n) * sizeof(T);
}
};
// =================================================================================================
} // namespace clblast
// CLBLAST_TEST_ROUTINES_XTRMM_H_
#endif