Merge pull request #19 from CNugteren/basic_level2_routines

Level-2 routines: HEMV and SYMV
This commit is contained in:
Cedric Nugteren 2015-08-04 08:19:42 +02:00
commit e4aa4519c2
19 changed files with 963 additions and 68 deletions

View file

@ -2,6 +2,9 @@
Development version (next release)
- Now using the Claduc C++11 interface to OpenCL
- Removed clBLAS sources, it should now be installed separately for testing
- Added level-2 routines:
* CHEMV/ZHEMV
* SSYMV/DSYMV
Version 0.3.0
- Re-organized test/client infrastructure to avoid code duplication

View file

@ -105,7 +105,7 @@ include_directories(${clblast_SOURCE_DIR}/include ${OPENCL_INCLUDE_DIRS})
set(KERNELS copy pad transpose padtranspose xaxpy xgemv xgemm)
set(SAMPLE_PROGRAMS sgemm)
set(LEVEL1_ROUTINES xaxpy)
set(LEVEL2_ROUTINES xgemv)
set(LEVEL2_ROUTINES xgemv xhemv xsymv)
set(LEVEL3_ROUTINES xgemm xsymm xhemm xsyrk xherk xsyr2k xher2k xtrmm)
set(ROUTINES ${LEVEL1_ROUTINES} ${LEVEL2_ROUTINES} ${LEVEL3_ROUTINES})

View file

@ -149,10 +149,10 @@ CLBlast is in active development and currently does not support the full set of
| ---------|---|---|---|---|---------|
| xGEMV | ✔ | ✔ | ✔ | ✔ | |
| xGBMV | | | | | |
| xHEMV | - | - | | | |
| xHEMV | - | - | ✔ | ✔ | |
| xHBMV | - | - | | | |
| xHPMV | - | - | | | |
| xSYMV | | | - | - | |
| xSYMV | ✔ | ✔ | - | - | |
| xSBMV | | | - | - | |
| xSPMV | | | - | - | |
| xTRMV | | | | | |

View file

@ -105,6 +105,28 @@ StatusCode Gemv(const Layout layout, const Transpose a_transpose,
cl_mem y_buffer, const size_t y_offset, const size_t y_inc,
cl_command_queue* queue, cl_event* event);
// Templated-precision hermitian matrix-vector multiplication: SHEMV/DHEMV
template <typename T>
StatusCode Hemv(const Layout layout, const Triangle triangle,
const size_t n,
const T alpha,
const cl_mem a_buffer, const size_t a_offset, const size_t a_ld,
const cl_mem x_buffer, const size_t x_offset, const size_t x_inc,
const T beta,
cl_mem y_buffer, const size_t y_offset, const size_t y_inc,
cl_command_queue* queue, cl_event* event);
// Templated-precision symmetric matrix-vector multiplication: SSYMV/DSYMV
template <typename T>
StatusCode Symv(const Layout layout, const Triangle triangle,
const size_t n,
const T alpha,
const cl_mem a_buffer, const size_t a_offset, const size_t a_ld,
const cl_mem x_buffer, const size_t x_offset, const size_t x_inc,
const T beta,
cl_mem y_buffer, const size_t y_offset, const size_t y_inc,
cl_command_queue* queue, cl_event* event);
// =================================================================================================
// BLAS level-3 (matrix-matrix) routines

View file

@ -36,7 +36,7 @@ class Xgemv: public Routine<T> {
using Routine<T>::ErrorIn;
// Constructor
Xgemv(Queue &queue, Event &event);
Xgemv(Queue &queue, Event &event, const std::string &name = "GEMV");
// Templated-precision implementation of the routine
StatusCode DoGemv(const Layout layout, const Transpose a_transpose,

View file

@ -0,0 +1,56 @@
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
// Cedric Nugteren <www.cedricnugteren.nl>
//
// This file implements the Xhemv routine. It is based on the generalized matrix multiplication
// routine (Xgemv). The implementation is very similar to the Xsymv routine.
//
// =================================================================================================
#ifndef CLBLAST_ROUTINES_XHEMV_H_
#define CLBLAST_ROUTINES_XHEMV_H_
#include "internal/routines/level2/xgemv.h"
namespace clblast {
// =================================================================================================
// See comment at top of file for a description of the class
template <typename T>
class Xhemv: public Xgemv<T> {
public:
// Members and methods from the base class
using Routine<T>::db_;
using Routine<T>::context_;
using Routine<T>::GetProgramFromCache;
using Routine<T>::TestMatrixA;
using Routine<T>::RunKernel;
using Routine<T>::ErrorIn;
// Uses the regular Xgemv routine
using Xgemv<T>::DoGemv;
// Constructor
Xhemv(Queue &queue, Event &event, const std::string &name = "HEMV");
// Templated-precision implementation of the routine
StatusCode DoHemv(const Layout layout, const Triangle triangle,
const size_t n,
const T alpha,
const Buffer<T> &a_buffer, const size_t a_offset, const size_t a_ld,
const Buffer<T> &x_buffer, const size_t x_offset, const size_t x_inc,
const T beta,
const Buffer<T> &y_buffer, const size_t y_offset, const size_t y_inc);
};
// =================================================================================================
} // namespace clblast
// CLBLAST_ROUTINES_XHEMV_H_
#endif

View file

@ -0,0 +1,58 @@
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
// Cedric Nugteren <www.cedricnugteren.nl>
//
// This file implements the Xsymv routine. It is based on the generalized mat-vec multiplication
// routine (Xgemv). The Xsymv class inherits from the templated class Xgemv, allowing it to call the
// "DoGemm" function directly. The "DoSymv" function first preprocesses the symmetric matrix by
// transforming it into a general matrix, and then calls the regular GEMV code.
//
// =================================================================================================
#ifndef CLBLAST_ROUTINES_XSYMV_H_
#define CLBLAST_ROUTINES_XSYMV_H_
#include "internal/routines/level2/xgemv.h"
namespace clblast {
// =================================================================================================
// See comment at top of file for a description of the class
template <typename T>
class Xsymv: public Xgemv<T> {
public:
// Members and methods from the base class
using Routine<T>::db_;
using Routine<T>::context_;
using Routine<T>::GetProgramFromCache;
using Routine<T>::TestMatrixA;
using Routine<T>::RunKernel;
using Routine<T>::ErrorIn;
// Uses the regular Xgemv routine
using Xgemv<T>::DoGemv;
// Constructor
Xsymv(Queue &queue, Event &event, const std::string &name = "SYMV");
// Templated-precision implementation of the routine
StatusCode DoSymv(const Layout layout, const Triangle triangle,
const size_t n,
const T alpha,
const Buffer<T> &a_buffer, const size_t a_offset, const size_t a_ld,
const Buffer<T> &x_buffer, const size_t x_offset, const size_t x_inc,
const T beta,
const Buffer<T> &y_buffer, const size_t y_offset, const size_t y_inc);
};
// =================================================================================================
} // namespace clblast
// CLBLAST_ROUTINES_XSYMV_H_
#endif

View file

@ -22,6 +22,8 @@
// BLAS level-2 includes
#include "internal/routines/level2/xgemv.h"
#include "internal/routines/level2/xhemv.h"
#include "internal/routines/level2/xsymv.h"
// BLAS level-3 includes
#include "internal/routines/level3/xgemm.h"
@ -36,6 +38,7 @@
namespace clblast {
// =================================================================================================
// BLAS level-1 (vector-vector) routines
// =================================================================================================
// AXPY
template <typename T>
@ -75,6 +78,7 @@ template StatusCode Axpy<double2>(const size_t, const double2,
// =================================================================================================
// BLAS level-2 (matrix-vector) routines
// =================================================================================================
// GEMV
template <typename T>
@ -124,8 +128,85 @@ template StatusCode Gemv<double2>(const Layout, const Transpose,
cl_mem, const size_t, const size_t,
cl_command_queue*, cl_event*);
// =================================================================================================
// HEMV
template <typename T>
StatusCode Hemv(const Layout layout, const Triangle triangle,
const size_t n, const T alpha,
const cl_mem a_buffer, const size_t a_offset, const size_t a_ld,
const cl_mem x_buffer, const size_t x_offset, const size_t x_inc, const T beta,
cl_mem y_buffer, const size_t y_offset, const size_t y_inc,
cl_command_queue* queue, cl_event* event) {
auto queue_cpp = Queue(*queue);
auto event_cpp = Event(*event);
auto routine = Xhemv<T>(queue_cpp, event_cpp);
// Compiles the routine's device kernels
auto status = routine.SetUp();
if (status != StatusCode::kSuccess) { return status; }
// Runs the routine
return routine.DoHemv(layout, triangle, n, alpha,
Buffer<T>(a_buffer), a_offset, a_ld,
Buffer<T>(x_buffer), x_offset, x_inc, beta,
Buffer<T>(y_buffer), y_offset, y_inc);
}
template StatusCode Hemv<float2>(const Layout, const Triangle,
const size_t, const float2,
const cl_mem, const size_t, const size_t,
const cl_mem, const size_t, const size_t, const float2,
cl_mem, const size_t, const size_t,
cl_command_queue*, cl_event*);
template StatusCode Hemv<double2>(const Layout, const Triangle,
const size_t, const double2,
const cl_mem, const size_t, const size_t,
const cl_mem, const size_t, const size_t, const double2,
cl_mem, const size_t, const size_t,
cl_command_queue*, cl_event*);
// =================================================================================================
// SYMV
template <typename T>
StatusCode Symv(const Layout layout, const Triangle triangle,
const size_t n, const T alpha,
const cl_mem a_buffer, const size_t a_offset, const size_t a_ld,
const cl_mem x_buffer, const size_t x_offset, const size_t x_inc, const T beta,
cl_mem y_buffer, const size_t y_offset, const size_t y_inc,
cl_command_queue* queue, cl_event* event) {
auto queue_cpp = Queue(*queue);
auto event_cpp = Event(*event);
auto routine = Xsymv<T>(queue_cpp, event_cpp);
// Compiles the routine's device kernels
auto status = routine.SetUp();
if (status != StatusCode::kSuccess) { return status; }
// Runs the routine
return routine.DoSymv(layout, triangle, n, alpha,
Buffer<T>(a_buffer), a_offset, a_ld,
Buffer<T>(x_buffer), x_offset, x_inc, beta,
Buffer<T>(y_buffer), y_offset, y_inc);
}
template StatusCode Symv<float>(const Layout, const Triangle,
const size_t, const float,
const cl_mem, const size_t, const size_t,
const cl_mem, const size_t, const size_t, const float,
cl_mem, const size_t, const size_t,
cl_command_queue*, cl_event*);
template StatusCode Symv<double>(const Layout, const Triangle,
const size_t, const double,
const cl_mem, const size_t, const size_t,
const cl_mem, const size_t, const size_t, const double,
cl_mem, const size_t, const size_t,
cl_command_queue*, cl_event*);
// =================================================================================================
// BLAS level-3 (matrix-matrix) routines
// =================================================================================================
// GEMM
template <typename T>

View file

@ -52,6 +52,53 @@ R"(
// =================================================================================================
// Data-widths for the 'fast' kernel
#if VW2 == 1
typedef real realVF;
#elif VW2 == 2
typedef real2 realVF;
#elif VW2 == 4
typedef real4 realVF;
#elif VW2 == 8
typedef real8 realVF;
#elif VW2 == 16
typedef real16 realVF;
#endif
// Data-widths for the 'fast' kernel with rotated matrix
#if VW3 == 1
typedef real realVFR;
#elif VW3 == 2
typedef real2 realVFR;
#elif VW3 == 4
typedef real4 realVFR;
#elif VW3 == 8
typedef real8 realVFR;
#elif VW3 == 16
typedef real16 realVFR;
#endif
// =================================================================================================
// Defines how to load the input matrix in the regular case
// Loads a scalar input value
inline real LoadMatrixA(const __global real* restrict agm, const int x, const int y,
const int a_ld, const int a_offset) {
return agm[x + a_ld*y + a_offset];
}
// Loads a vector input value (1/2)
inline realVF LoadMatrixAVF(const __global realVF* restrict agm, const int x, const int y,
const int a_ld) {
return agm[x + a_ld*y];
}
// Loads a vector input value (2/2): as before, but different data-type
inline realVFR LoadMatrixAVFR(const __global realVFR* restrict agm, const int x, const int y,
const int a_ld) {
return agm[x + a_ld*y];
}
// =================================================================================================
// Full version of the kernel
__attribute__((reqd_work_group_size(WGS1, 1, 1)))
__kernel void Xgemv(const int m, const int n, const real alpha, const real beta,
@ -96,7 +143,7 @@ __kernel void Xgemv(const int m, const int n, const real alpha, const real beta,
#pragma unroll
for (int kl=0; kl<WGS1; ++kl) {
const int k = kwg + kl;
real value = agm[gid + a_ld*k + a_offset];
real value = LoadMatrixA(agm, gid, k, a_ld, a_offset);
if (do_conjugate == 1) { COMPLEX_CONJUGATE(value); }
MultiplyAdd(acc[w], xlm[kl], value);
}
@ -105,7 +152,7 @@ __kernel void Xgemv(const int m, const int n, const real alpha, const real beta,
#pragma unroll
for (int kl=0; kl<WGS1; ++kl) {
const int k = kwg + kl;
real value = agm[k + a_ld*gid + a_offset];
real value = LoadMatrixA(agm, k, gid, a_ld, a_offset);
if (do_conjugate == 1) { COMPLEX_CONJUGATE(value); }
MultiplyAdd(acc[w], xlm[kl], value);
}
@ -127,7 +174,7 @@ __kernel void Xgemv(const int m, const int n, const real alpha, const real beta,
if (a_rotated == 0) { // Not rotated
#pragma unroll
for (int k=n_floor; k<n; ++k) {
real value = agm[gid + a_ld*k + a_offset];
real value = LoadMatrixA(agm, gid, k, a_ld, a_offset);
if (do_conjugate == 1) { COMPLEX_CONJUGATE(value); }
MultiplyAdd(acc[w], xgm[k*x_inc + x_offset], value);
}
@ -135,7 +182,7 @@ __kernel void Xgemv(const int m, const int n, const real alpha, const real beta,
else { // Transposed
#pragma unroll
for (int k=n_floor; k<n; ++k) {
real value = agm[k + a_ld*gid + a_offset];
real value = LoadMatrixA(agm, k, gid, a_ld, a_offset);
if (do_conjugate == 1) { COMPLEX_CONJUGATE(value); }
MultiplyAdd(acc[w], xgm[k*x_inc + x_offset], value);
}
@ -150,19 +197,6 @@ __kernel void Xgemv(const int m, const int n, const real alpha, const real beta,
// =================================================================================================
// Data-widths for the 'fast' kernel
#if VW2 == 1
typedef real realVF;
#elif VW2 == 2
typedef real2 realVF;
#elif VW2 == 4
typedef real4 realVF;
#elif VW2 == 8
typedef real8 realVF;
#elif VW2 == 16
typedef real16 realVF;
#endif
// Faster version of the kernel, assuming that:
// --> 'm' and 'n' are multiples of WGS2
// --> 'a_offset' is 0
@ -203,42 +237,43 @@ __kernel void XgemvFast(const int m, const int n, const real alpha, const real b
#pragma unroll
for (int w=0; w<WPT2/VW2; ++w) {
const int gid = (WPT2/VW2)*get_global_id(0) + w;
realVF avec = LoadMatrixAVF(agm, gid, k, a_ld/VW2);
#if VW2 == 1
MultiplyAdd(acc[VW2*w+0], xlm[kl], agm[gid + (a_ld/VW2)*k]);
MultiplyAdd(acc[VW2*w+0], xlm[kl], avec);
#elif VW2 == 2
MultiplyAdd(acc[VW2*w+0], xlm[kl], agm[gid + (a_ld/VW2)*k].x);
MultiplyAdd(acc[VW2*w+1], xlm[kl], agm[gid + (a_ld/VW2)*k].y);
MultiplyAdd(acc[VW2*w+0], xlm[kl], avec.x);
MultiplyAdd(acc[VW2*w+1], xlm[kl], avec.y);
#elif VW2 == 4
MultiplyAdd(acc[VW2*w+0], xlm[kl], agm[gid + (a_ld/VW2)*k].x);
MultiplyAdd(acc[VW2*w+1], xlm[kl], agm[gid + (a_ld/VW2)*k].y);
MultiplyAdd(acc[VW2*w+2], xlm[kl], agm[gid + (a_ld/VW2)*k].z);
MultiplyAdd(acc[VW2*w+3], xlm[kl], agm[gid + (a_ld/VW2)*k].w);
MultiplyAdd(acc[VW2*w+0], xlm[kl], avec.x);
MultiplyAdd(acc[VW2*w+1], xlm[kl], avec.y);
MultiplyAdd(acc[VW2*w+2], xlm[kl], avec.z);
MultiplyAdd(acc[VW2*w+3], xlm[kl], avec.w);
#elif VW2 == 8
MultiplyAdd(acc[VW2*w+0], xlm[kl], agm[gid + (a_ld/VW2)*k].s0);
MultiplyAdd(acc[VW2*w+1], xlm[kl], agm[gid + (a_ld/VW2)*k].s1);
MultiplyAdd(acc[VW2*w+2], xlm[kl], agm[gid + (a_ld/VW2)*k].s2);
MultiplyAdd(acc[VW2*w+3], xlm[kl], agm[gid + (a_ld/VW2)*k].s3);
MultiplyAdd(acc[VW2*w+4], xlm[kl], agm[gid + (a_ld/VW2)*k].s4);
MultiplyAdd(acc[VW2*w+5], xlm[kl], agm[gid + (a_ld/VW2)*k].s5);
MultiplyAdd(acc[VW2*w+6], xlm[kl], agm[gid + (a_ld/VW2)*k].s6);
MultiplyAdd(acc[VW2*w+7], xlm[kl], agm[gid + (a_ld/VW2)*k].s7);
MultiplyAdd(acc[VW2*w+0], xlm[kl], avec.s0);
MultiplyAdd(acc[VW2*w+1], xlm[kl], avec.s1);
MultiplyAdd(acc[VW2*w+2], xlm[kl], avec.s2);
MultiplyAdd(acc[VW2*w+3], xlm[kl], avec.s3);
MultiplyAdd(acc[VW2*w+4], xlm[kl], avec.s4);
MultiplyAdd(acc[VW2*w+5], xlm[kl], avec.s5);
MultiplyAdd(acc[VW2*w+6], xlm[kl], avec.s6);
MultiplyAdd(acc[VW2*w+7], xlm[kl], avec.s7);
#elif VW2 == 16
MultiplyAdd(acc[VW2*w+0], xlm[kl], agm[gid + (a_ld/VW2)*k].s0);
MultiplyAdd(acc[VW2*w+1], xlm[kl], agm[gid + (a_ld/VW2)*k].s1);
MultiplyAdd(acc[VW2*w+2], xlm[kl], agm[gid + (a_ld/VW2)*k].s2);
MultiplyAdd(acc[VW2*w+3], xlm[kl], agm[gid + (a_ld/VW2)*k].s3);
MultiplyAdd(acc[VW2*w+4], xlm[kl], agm[gid + (a_ld/VW2)*k].s4);
MultiplyAdd(acc[VW2*w+5], xlm[kl], agm[gid + (a_ld/VW2)*k].s5);
MultiplyAdd(acc[VW2*w+6], xlm[kl], agm[gid + (a_ld/VW2)*k].s6);
MultiplyAdd(acc[VW2*w+7], xlm[kl], agm[gid + (a_ld/VW2)*k].s7);
MultiplyAdd(acc[VW2*w+8], xlm[kl], agm[gid + (a_ld/VW2)*k].s8);
MultiplyAdd(acc[VW2*w+9], xlm[kl], agm[gid + (a_ld/VW2)*k].s9);
MultiplyAdd(acc[VW2*w+10], xlm[kl], agm[gid + (a_ld/VW2)*k].sA);
MultiplyAdd(acc[VW2*w+11], xlm[kl], agm[gid + (a_ld/VW2)*k].sB);
MultiplyAdd(acc[VW2*w+12], xlm[kl], agm[gid + (a_ld/VW2)*k].sC);
MultiplyAdd(acc[VW2*w+13], xlm[kl], agm[gid + (a_ld/VW2)*k].sD);
MultiplyAdd(acc[VW2*w+14], xlm[kl], agm[gid + (a_ld/VW2)*k].sE);
MultiplyAdd(acc[VW2*w+15], xlm[kl], agm[gid + (a_ld/VW2)*k].sF);
MultiplyAdd(acc[VW2*w+0], xlm[kl], avec.s0);
MultiplyAdd(acc[VW2*w+1], xlm[kl], avec.s1);
MultiplyAdd(acc[VW2*w+2], xlm[kl], avec.s2);
MultiplyAdd(acc[VW2*w+3], xlm[kl], avec.s3);
MultiplyAdd(acc[VW2*w+4], xlm[kl], avec.s4);
MultiplyAdd(acc[VW2*w+5], xlm[kl], avec.s5);
MultiplyAdd(acc[VW2*w+6], xlm[kl], avec.s6);
MultiplyAdd(acc[VW2*w+7], xlm[kl], avec.s7);
MultiplyAdd(acc[VW2*w+8], xlm[kl], avec.s8);
MultiplyAdd(acc[VW2*w+9], xlm[kl], avec.s9);
MultiplyAdd(acc[VW2*w+10], xlm[kl], avec.sA);
MultiplyAdd(acc[VW2*w+11], xlm[kl], avec.sB);
MultiplyAdd(acc[VW2*w+12], xlm[kl], avec.sC);
MultiplyAdd(acc[VW2*w+13], xlm[kl], avec.sD);
MultiplyAdd(acc[VW2*w+14], xlm[kl], avec.sE);
MultiplyAdd(acc[VW2*w+15], xlm[kl], avec.sF);
#endif
}
}
@ -258,19 +293,6 @@ __kernel void XgemvFast(const int m, const int n, const real alpha, const real b
// =================================================================================================
// Data-widths for the 'fast' kernel with rotated matrix
#if VW3 == 1
typedef real realVFR;
#elif VW3 == 2
typedef real2 realVFR;
#elif VW3 == 4
typedef real4 realVFR;
#elif VW3 == 8
typedef real8 realVFR;
#elif VW3 == 16
typedef real16 realVFR;
#endif
// Faster version of the kernel, assuming that:
// --> 'm' and 'n' are multiples of WGS3
// --> 'a_offset' is 0
@ -311,7 +333,7 @@ __kernel void XgemvFastRot(const int m, const int n, const real alpha, const rea
#pragma unroll
for (int w=0; w<WPT3; ++w) {
const int gid = WPT3*get_global_id(0) + w;
realVFR avec = agm[k + (a_ld/VW3)*gid];
realVFR avec = LoadMatrixAVFR(agm, k, gid, a_ld/VW3);
#if VW3 == 1
MultiplyAdd(acc[w], xlm[VW3*kl+0], avec);
#elif VW3 == 2

View file

@ -29,9 +29,10 @@ template <> const Precision Xgemv<double2>::precision_ = Precision::kComplexDoub
// Constructor: forwards to base class constructor
template <typename T>
Xgemv<T>::Xgemv(Queue &queue, Event &event):
Routine<T>(queue, event, "GEMV", {"Xgemv"}, precision_) {
Xgemv<T>::Xgemv(Queue &queue, Event &event, const std::string &name):
Routine<T>(queue, event, name, {"Pad", "Xgemv"}, precision_) {
source_string_ =
#include "../../kernels/pad.opencl" // For {Herm,Symm}{Upper,Lower}ToSquared (for HEMV/SYMV)
#include "../../kernels/xgemv.opencl"
;
}

View file

@ -0,0 +1,100 @@
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
// Cedric Nugteren <www.cedricnugteren.nl>
//
// This file implements the Xhemv class (see the header for information about the class).
//
// =================================================================================================
#include "internal/routines/level2/xhemv.h"
#include <string>
#include <vector>
namespace clblast {
// =================================================================================================
// Constructor: forwards to base class constructor
template <typename T>
Xhemv<T>::Xhemv(Queue &queue, Event &event, const std::string &name):
Xgemv<T>(queue, event, name) {
}
// =================================================================================================
// The main routine
template <typename T>
StatusCode Xhemv<T>::DoHemv(const Layout layout, const Triangle triangle,
const size_t n,
const T alpha,
const Buffer<T> &a_buffer, const size_t a_offset, const size_t a_ld,
const Buffer<T> &x_buffer, const size_t x_offset, const size_t x_inc,
const T beta,
const Buffer<T> &y_buffer, const size_t y_offset, const size_t y_inc) {
// Makes sure all dimensions are larger than zero
if (n == 0) { return StatusCode::kInvalidDimension; }
// Checks for validity of the squared A matrix
auto status = TestMatrixA(n, n, a_buffer, a_offset, a_ld, sizeof(T));
if (ErrorIn(status)) { return status; }
// Determines which kernel to run based on the layout (the Xgemv kernel assumes column-major as
// default) and on whether we are dealing with an upper or lower triangle of the hermitian matrix
bool is_upper = ((triangle == Triangle::kUpper && layout != Layout::kRowMajor) ||
(triangle == Triangle::kLower && layout == Layout::kRowMajor));
auto kernel_name = (is_upper) ? "HermUpperToSquared" : "HermLowerToSquared";
// Temporary buffer for a copy of the hermitian matrix
try {
auto temp_herm = Buffer<T>(context_, n*n);
// Creates a general matrix from the hermitian matrix to be able to run the regular Xgemv
// routine afterwards
try {
auto& program = GetProgramFromCache();
auto kernel = Kernel(program, kernel_name);
// Sets the arguments for the hermitian-to-squared kernel
kernel.SetArgument(0, static_cast<int>(n));
kernel.SetArgument(1, static_cast<int>(a_ld));
kernel.SetArgument(2, static_cast<int>(a_offset));
kernel.SetArgument(3, a_buffer());
kernel.SetArgument(4, static_cast<int>(n));
kernel.SetArgument(5, static_cast<int>(n));
kernel.SetArgument(6, static_cast<int>(0));
kernel.SetArgument(7, temp_herm());
// Uses the common padding kernel's thread configuration. This is allowed, since the
// hermitian-to-squared kernel uses the same parameters.
auto global = std::vector<size_t>{Ceil(CeilDiv(n, db_["PAD_WPTX"]), db_["PAD_DIMX"]),
Ceil(CeilDiv(n, db_["PAD_WPTY"]), db_["PAD_DIMY"])};
auto local = std::vector<size_t>{db_["PAD_DIMX"], db_["PAD_DIMY"]};
status = RunKernel(kernel, global, local);
if (ErrorIn(status)) { return status; }
// Runs the regular Xgemv code
status = DoGemv(layout, Transpose::kNo, n, n, alpha,
temp_herm, 0, n,
x_buffer, x_offset, x_inc, beta,
y_buffer, y_offset, y_inc);
// Return the status of the Xgemv routine
return status;
} catch (...) { return StatusCode::kInvalidKernel; }
} catch (...) { return StatusCode::kTempBufferAllocFailure; }
}
// =================================================================================================
// Compiles the templated class
template class Xhemv<float2>;
template class Xhemv<double2>;
// =================================================================================================
} // namespace clblast

View file

@ -0,0 +1,100 @@
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
// Cedric Nugteren <www.cedricnugteren.nl>
//
// This file implements the Xsymv class (see the header for information about the class).
//
// =================================================================================================
#include "internal/routines/level2/xsymv.h"
#include <string>
#include <vector>
namespace clblast {
// =================================================================================================
// Constructor: forwards to base class constructor
template <typename T>
Xsymv<T>::Xsymv(Queue &queue, Event &event, const std::string &name):
Xgemv<T>(queue, event, name) {
}
// =================================================================================================
// The main routine
template <typename T>
StatusCode Xsymv<T>::DoSymv(const Layout layout, const Triangle triangle,
const size_t n,
const T alpha,
const Buffer<T> &a_buffer, const size_t a_offset, const size_t a_ld,
const Buffer<T> &x_buffer, const size_t x_offset, const size_t x_inc,
const T beta,
const Buffer<T> &y_buffer, const size_t y_offset, const size_t y_inc) {
// Makes sure all dimensions are larger than zero
if (n == 0) { return StatusCode::kInvalidDimension; }
// Checks for validity of the squared A matrix
auto status = TestMatrixA(n, n, a_buffer, a_offset, a_ld, sizeof(T));
if (ErrorIn(status)) { return status; }
// Determines which kernel to run based on the layout (the Xgemv kernel assumes column-major as
// default) and on whether we are dealing with an upper or lower triangle of the symmetric matrix
bool is_upper = ((triangle == Triangle::kUpper && layout != Layout::kRowMajor) ||
(triangle == Triangle::kLower && layout == Layout::kRowMajor));
auto kernel_name = (is_upper) ? "SymmUpperToSquared" : "SymmLowerToSquared";
// Temporary buffer for a copy of the symmetric matrix
try {
auto temp_symm = Buffer<T>(context_, n*n);
// Creates a general matrix from the symmetric matrix to be able to run the regular Xgemv
// routine afterwards
try {
auto& program = GetProgramFromCache();
auto kernel = Kernel(program, kernel_name);
// Sets the arguments for the symmetric-to-squared kernel
kernel.SetArgument(0, static_cast<int>(n));
kernel.SetArgument(1, static_cast<int>(a_ld));
kernel.SetArgument(2, static_cast<int>(a_offset));
kernel.SetArgument(3, a_buffer());
kernel.SetArgument(4, static_cast<int>(n));
kernel.SetArgument(5, static_cast<int>(n));
kernel.SetArgument(6, static_cast<int>(0));
kernel.SetArgument(7, temp_symm());
// Uses the common padding kernel's thread configuration. This is allowed, since the
// symmetric-to-squared kernel uses the same parameters.
auto global = std::vector<size_t>{Ceil(CeilDiv(n, db_["PAD_WPTX"]), db_["PAD_DIMX"]),
Ceil(CeilDiv(n, db_["PAD_WPTY"]), db_["PAD_DIMY"])};
auto local = std::vector<size_t>{db_["PAD_DIMX"], db_["PAD_DIMY"]};
status = RunKernel(kernel, global, local);
if (ErrorIn(status)) { return status; }
// Runs the regular Xgemv code
status = DoGemv(layout, Transpose::kNo, n, n, alpha,
temp_symm, 0, n,
x_buffer, x_offset, x_inc, beta,
y_buffer, y_offset, y_inc);
// Return the status of the Xgemv routine
return status;
} catch (...) { return StatusCode::kInvalidKernel; }
} catch (...) { return StatusCode::kTempBufferAllocFailure; }
}
// =================================================================================================
// Compiles the templated class
template class Xsymv<float>;
template class Xsymv<double>;
// =================================================================================================
} // namespace clblast

View file

@ -0,0 +1,30 @@
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
// Cedric Nugteren <www.cedricnugteren.nl>
//
// This file implements the tests for the Xhemv routine.
//
// =================================================================================================
#include "correctness/testblas.h"
#include "routines/level2/xhemv.h"
// =================================================================================================
// Shortcuts to the clblast namespace
using float2 = clblast::float2;
using double2 = clblast::double2;
// Main function (not within the clblast namespace)
int main(int argc, char *argv[]) {
clblast::RunTests<clblast::TestXhemv<float2>, float2, float2>(argc, argv, false, "CHEMV");
clblast::RunTests<clblast::TestXhemv<double2>, double2, double2>(argc, argv, true, "ZHEMV");
return 0;
}
// =================================================================================================

View file

@ -0,0 +1,26 @@
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
// Cedric Nugteren <www.cedricnugteren.nl>
//
// This file implements the tests for the Xsymv routine.
//
// =================================================================================================
#include "correctness/testblas.h"
#include "routines/level2/xsymv.h"
// =================================================================================================
// Main function (not within the clblast namespace)
int main(int argc, char *argv[]) {
clblast::RunTests<clblast::TestXsymv<float>, float, float>(argc, argv, false, "SSYMV");
clblast::RunTests<clblast::TestXsymv<double>, double, double>(argc, argv, true, "DSYMV");
return 0;
}
// =================================================================================================

View file

@ -0,0 +1,40 @@
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
// Cedric Nugteren <www.cedricnugteren.nl>
//
// This file implements the Xhemv command-line interface performance tester.
//
// =================================================================================================
#include "performance/client.h"
#include "routines/level2/xhemv.h"
// =================================================================================================
// Shortcuts to the clblast namespace
using float2 = clblast::float2;
using double2 = clblast::double2;
// Main function (not within the clblast namespace)
int main(int argc, char *argv[]) {
switch(clblast::GetPrecision(argc, argv)) {
case clblast::Precision::kHalf:
throw std::runtime_error("Unsupported precision mode");
case clblast::Precision::kSingle:
throw std::runtime_error("Unsupported precision mode");
case clblast::Precision::kDouble:
throw std::runtime_error("Unsupported precision mode");
case clblast::Precision::kComplexSingle:
clblast::RunClient<clblast::TestXhemv<float2>, float2, float2>(argc, argv); break;
case clblast::Precision::kComplexDouble:
clblast::RunClient<clblast::TestXhemv<double2>, double2, double2>(argc, argv); break;
}
return 0;
}
// =================================================================================================

View file

@ -0,0 +1,36 @@
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
// Cedric Nugteren <www.cedricnugteren.nl>
//
// This file implements the Xsymv command-line interface performance tester.
//
// =================================================================================================
#include "performance/client.h"
#include "routines/level2/xsymv.h"
// =================================================================================================
// Main function (not within the clblast namespace)
int main(int argc, char *argv[]) {
switch(clblast::GetPrecision(argc, argv)) {
case clblast::Precision::kHalf:
throw std::runtime_error("Unsupported precision mode");
case clblast::Precision::kSingle:
clblast::RunClient<clblast::TestXsymv<float>, float, float>(argc, argv); break;
case clblast::Precision::kDouble:
clblast::RunClient<clblast::TestXsymv<double>, double, double>(argc, argv); break;
case clblast::Precision::kComplexSingle:
throw std::runtime_error("Unsupported precision mode");
case clblast::Precision::kComplexDouble:
throw std::runtime_error("Unsupported precision mode");
}
return 0;
}
// =================================================================================================

View file

@ -0,0 +1,130 @@
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
// Cedric Nugteren <www.cedricnugteren.nl>
//
// This file implements a class with static methods to describe the Xhemv routine. Examples of
// such 'descriptions' are how to calculate the size a of buffer or how to run the routine. These
// static methods are used by the correctness tester and the performance tester.
//
// =================================================================================================
#ifndef CLBLAST_TEST_ROUTINES_XHEMV_H_
#define CLBLAST_TEST_ROUTINES_XHEMV_H_
#include <vector>
#include <string>
#include "wrapper_clblas.h"
namespace clblast {
// =================================================================================================
// See comment at top of file for a description of the class
template <typename T>
class TestXhemv {
public:
// The BLAS level: 1, 2, or 3
static size_t BLASLevel() { return 2; }
// The list of arguments relevant for this routine
static std::vector<std::string> GetOptions() {
return {kArgN,
kArgLayout, kArgTriangle,
kArgALeadDim, kArgXInc, kArgYInc,
kArgAOffset, kArgXOffset, kArgYOffset,
kArgAlpha, kArgBeta};
}
// Describes how to obtain the sizes of the buffers
static size_t GetSizeX(const Arguments<T> &args) {
return args.n * args.x_inc + args.x_offset;
}
static size_t GetSizeY(const Arguments<T> &args) {
return args.n * args.y_inc + args.y_offset;
}
static size_t GetSizeA(const Arguments<T> &args) {
return args.n * args.a_ld + args.a_offset;
}
// Describes how to set the sizes of all the buffers
static void SetSizes(Arguments<T> &args) {
args.a_size = GetSizeA(args);
args.x_size = GetSizeX(args);
args.y_size = GetSizeY(args);
}
// Describes what the default values of the leading dimensions of the matrices are
static size_t DefaultLDA(const Arguments<T> &args) { return args.n; }
static size_t DefaultLDB(const Arguments<T> &) { return 1; } // N/A for this routine
static size_t DefaultLDC(const Arguments<T> &) { return 1; } // N/A for this routine
// Describes which transpose options are relevant for this routine
using Transposes = std::vector<Transpose>;
static Transposes GetATransposes(const Transposes &) { return {}; } // N/A for this routine
static Transposes GetBTransposes(const Transposes &) { return {}; } // N/A for this routine
// Describes how to run the CLBlast routine
static StatusCode RunRoutine(const Arguments<T> &args, const Buffers<T> &buffers, Queue &queue) {
auto queue_plain = queue();
auto event = cl_event{};
auto status = Hemv(args.layout, args.triangle,
args.n, args.alpha,
buffers.a_mat(), args.a_offset, args.a_ld,
buffers.x_vec(), args.x_offset, args.x_inc, args.beta,
buffers.y_vec(), args.y_offset, args.y_inc,
&queue_plain, &event);
clWaitForEvents(1, &event);
return status;
}
// Describes how to run the clBLAS routine (for correctness/performance comparison)
static StatusCode RunReference(const Arguments<T> &args, const Buffers<T> &buffers, Queue &queue) {
auto queue_plain = queue();
auto event = cl_event{};
auto status = clblasXhemv(static_cast<clblasOrder>(args.layout),
static_cast<clblasUplo>(args.triangle),
args.n, args.alpha,
buffers.a_mat(), args.a_offset, args.a_ld,
buffers.x_vec(), args.x_offset, args.x_inc, args.beta,
buffers.y_vec(), args.y_offset, args.y_inc,
1, &queue_plain, 0, nullptr, &event);
clWaitForEvents(1, &event);
return static_cast<StatusCode>(status);
}
// Describes how to download the results of the computation (more importantly: which buffer)
static std::vector<T> DownloadResult(const Arguments<T> &args, Buffers<T> &buffers, Queue &queue) {
std::vector<T> result(args.y_size, static_cast<T>(0));
buffers.y_vec.Read(queue, args.y_size, result);
return result;
}
// Describes how to compute the indices of the result buffer
static size_t ResultID1(const Arguments<T> &args) {
return args.n;
}
static size_t ResultID2(const Arguments<T> &) { return 1; } // N/A for this routine
static size_t GetResultIndex(const Arguments<T> &args, const size_t id1, const size_t) {
return id1*args.y_inc + args.y_offset;
}
// Describes how to compute performance metrics
static size_t GetFlops(const Arguments<T> &args) {
return 2 * args.n * args.n;
}
static size_t GetBytes(const Arguments<T> &args) {
return (args.n*args.n + 2*args.n + args.n) * sizeof(T);
}
};
// =================================================================================================
} // namespace clblast
// CLBLAST_TEST_ROUTINES_XHEMV_H_
#endif

View file

@ -0,0 +1,130 @@
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
// Cedric Nugteren <www.cedricnugteren.nl>
//
// This file implements a class with static methods to describe the Xsymv routine. Examples of
// such 'descriptions' are how to calculate the size a of buffer or how to run the routine. These
// static methods are used by the correctness tester and the performance tester.
//
// =================================================================================================
#ifndef CLBLAST_TEST_ROUTINES_XSYMV_H_
#define CLBLAST_TEST_ROUTINES_XSYMV_H_
#include <vector>
#include <string>
#include "wrapper_clblas.h"
namespace clblast {
// =================================================================================================
// See comment at top of file for a description of the class
template <typename T>
class TestXsymv {
public:
// The BLAS level: 1, 2, or 3
static size_t BLASLevel() { return 2; }
// The list of arguments relevant for this routine
static std::vector<std::string> GetOptions() {
return {kArgN,
kArgLayout, kArgTriangle,
kArgALeadDim, kArgXInc, kArgYInc,
kArgAOffset, kArgXOffset, kArgYOffset,
kArgAlpha, kArgBeta};
}
// Describes how to obtain the sizes of the buffers
static size_t GetSizeX(const Arguments<T> &args) {
return args.n * args.x_inc + args.x_offset;
}
static size_t GetSizeY(const Arguments<T> &args) {
return args.n * args.y_inc + args.y_offset;
}
static size_t GetSizeA(const Arguments<T> &args) {
return args.n * args.a_ld + args.a_offset;
}
// Describes how to set the sizes of all the buffers
static void SetSizes(Arguments<T> &args) {
args.a_size = GetSizeA(args);
args.x_size = GetSizeX(args);
args.y_size = GetSizeY(args);
}
// Describes what the default values of the leading dimensions of the matrices are
static size_t DefaultLDA(const Arguments<T> &args) { return args.n; }
static size_t DefaultLDB(const Arguments<T> &) { return 1; } // N/A for this routine
static size_t DefaultLDC(const Arguments<T> &) { return 1; } // N/A for this routine
// Describes which transpose options are relevant for this routine
using Transposes = std::vector<Transpose>;
static Transposes GetATransposes(const Transposes &) { return {}; } // N/A for this routine
static Transposes GetBTransposes(const Transposes &) { return {}; } // N/A for this routine
// Describes how to run the CLBlast routine
static StatusCode RunRoutine(const Arguments<T> &args, const Buffers<T> &buffers, Queue &queue) {
auto queue_plain = queue();
auto event = cl_event{};
auto status = Symv(args.layout, args.triangle,
args.n, args.alpha,
buffers.a_mat(), args.a_offset, args.a_ld,
buffers.x_vec(), args.x_offset, args.x_inc, args.beta,
buffers.y_vec(), args.y_offset, args.y_inc,
&queue_plain, &event);
clWaitForEvents(1, &event);
return status;
}
// Describes how to run the clBLAS routine (for correctness/performance comparison)
static StatusCode RunReference(const Arguments<T> &args, const Buffers<T> &buffers, Queue &queue) {
auto queue_plain = queue();
auto event = cl_event{};
auto status = clblasXsymv(static_cast<clblasOrder>(args.layout),
static_cast<clblasUplo>(args.triangle),
args.n, args.alpha,
buffers.a_mat(), args.a_offset, args.a_ld,
buffers.x_vec(), args.x_offset, args.x_inc, args.beta,
buffers.y_vec(), args.y_offset, args.y_inc,
1, &queue_plain, 0, nullptr, &event);
clWaitForEvents(1, &event);
return static_cast<StatusCode>(status);
}
// Describes how to download the results of the computation (more importantly: which buffer)
static std::vector<T> DownloadResult(const Arguments<T> &args, Buffers<T> &buffers, Queue &queue) {
std::vector<T> result(args.y_size, static_cast<T>(0));
buffers.y_vec.Read(queue, args.y_size, result);
return result;
}
// Describes how to compute the indices of the result buffer
static size_t ResultID1(const Arguments<T> &args) {
return args.n;
}
static size_t ResultID2(const Arguments<T> &) { return 1; } // N/A for this routine
static size_t GetResultIndex(const Arguments<T> &args, const size_t id1, const size_t) {
return id1*args.y_inc + args.y_offset;
}
// Describes how to compute performance metrics
static size_t GetFlops(const Arguments<T> &args) {
return 2 * args.n * args.n;
}
static size_t GetBytes(const Arguments<T> &args) {
return (args.n*args.n + 2*args.n + args.n) * sizeof(T);
}
};
// =================================================================================================
} // namespace clblast
// CLBLAST_TEST_ROUTINES_XSYMV_H_
#endif

View file

@ -132,6 +132,66 @@ clblasStatus clblasXgemv(
num_queues, queues, num_wait_events, wait_events, events);
}
// Calls {clblasChemv, clblasZhemv} with the arguments forwarded.
clblasStatus clblasXhemv(
clblasOrder layout, clblasUplo triangle, size_t n, float2 alpha,
const cl_mem a_mat, size_t a_offset, size_t a_ld,
const cl_mem x_vec, size_t x_offset, size_t x_inc, float2 beta,
const cl_mem y_vec, size_t y_offset, size_t y_inc,
cl_uint num_queues, cl_command_queue *queues,
cl_uint num_wait_events, const cl_event *wait_events, cl_event *events) {
auto cl_alpha = cl_float2{{alpha.real(), alpha.imag()}};
auto cl_beta = cl_float2{{beta.real(), beta.imag()}};
return clblasChemv(layout, triangle, n, cl_alpha,
a_mat, a_offset, a_ld,
x_vec, x_offset, static_cast<int>(x_inc), cl_beta,
y_vec, y_offset, static_cast<int>(y_inc),
num_queues, queues, num_wait_events, wait_events, events);
}
clblasStatus clblasXhemv(
clblasOrder layout, clblasUplo triangle, size_t n, double2 alpha,
const cl_mem a_mat, size_t a_offset, size_t a_ld,
const cl_mem x_vec, size_t x_offset, size_t x_inc, double2 beta,
const cl_mem y_vec, size_t y_offset, size_t y_inc,
cl_uint num_queues, cl_command_queue *queues,
cl_uint num_wait_events, const cl_event *wait_events, cl_event *events) {
auto cl_alpha = cl_double2{{alpha.real(), alpha.imag()}};
auto cl_beta = cl_double2{{beta.real(), beta.imag()}};
return clblasZhemv(layout, triangle, n, cl_alpha,
a_mat, a_offset, a_ld,
x_vec, x_offset, static_cast<int>(x_inc), cl_beta,
y_vec, y_offset, static_cast<int>(y_inc),
num_queues, queues, num_wait_events, wait_events, events);
}
// Calls {clblasSsymv, clblasDsymv} with the arguments forwarded.
clblasStatus clblasXsymv(
clblasOrder layout, clblasUplo triangle, size_t n, float alpha,
const cl_mem a_mat, size_t a_offset, size_t a_ld,
const cl_mem x_vec, size_t x_offset, size_t x_inc, float beta,
const cl_mem y_vec, size_t y_offset, size_t y_inc,
cl_uint num_queues, cl_command_queue *queues,
cl_uint num_wait_events, const cl_event *wait_events, cl_event *events) {
return clblasSsymv(layout, triangle, n, alpha,
a_mat, a_offset, a_ld,
x_vec, x_offset, static_cast<int>(x_inc), beta,
y_vec, y_offset, static_cast<int>(y_inc),
num_queues, queues, num_wait_events, wait_events, events);
}
clblasStatus clblasXsymv(
clblasOrder layout, clblasUplo triangle, size_t n, double alpha,
const cl_mem a_mat, size_t a_offset, size_t a_ld,
const cl_mem x_vec, size_t x_offset, size_t x_inc, double beta,
const cl_mem y_vec, size_t y_offset, size_t y_inc,
cl_uint num_queues, cl_command_queue *queues,
cl_uint num_wait_events, const cl_event *wait_events, cl_event *events) {
return clblasDsymv(layout, triangle, n, alpha,
a_mat, a_offset, a_ld,
x_vec, x_offset, static_cast<int>(x_inc), beta,
y_vec, y_offset, static_cast<int>(y_inc),
num_queues, queues, num_wait_events, wait_events, events);
}
// =================================================================================================
// BLAS level-3 (matrix-matrix) routines