Prepared generator for batched routines; added batched AXPY routine interface

pull/141/head
Cedric Nugteren 2017-03-05 10:38:38 +01:00
parent 37228c9098
commit f9a520b3af
12 changed files with 534 additions and 103 deletions

View File

@ -2903,6 +2903,72 @@ Requirements for OMATCOPY:
xAXPYBATCHED: Batched version of AXPY
-------------
As AXPY, but multiple operations are batched together for better performance.
C++ API:
```
template <typename T>
StatusCode AxpyBatched(const size_t n,
const T *alphas,
const cl_mem *x_buffers, const size_t x_offset, const size_t x_inc,
cl_mem *y_buffers, const size_t y_offset, const size_t y_inc,
const size_t batch_count,
cl_command_queue* queue, cl_event* event)
```
C API:
```
CLBlastStatusCode CLBlastSaxpyBatched(const size_t n,
const float *alphas,
const cl_mem *x_buffers, const size_t x_offset, const size_t x_inc,
cl_mem *y_buffers, const size_t y_offset, const size_t y_inc,
const size_t batch_count,
cl_command_queue* queue, cl_event* event)
CLBlastStatusCode CLBlastDaxpyBatched(const size_t n,
const double *alphas,
const cl_mem *x_buffers, const size_t x_offset, const size_t x_inc,
cl_mem *y_buffers, const size_t y_offset, const size_t y_inc,
const size_t batch_count,
cl_command_queue* queue, cl_event* event)
CLBlastStatusCode CLBlastCaxpyBatched(const size_t n,
const cl_float2 *alphas,
const cl_mem *x_buffers, const size_t x_offset, const size_t x_inc,
cl_mem *y_buffers, const size_t y_offset, const size_t y_inc,
const size_t batch_count,
cl_command_queue* queue, cl_event* event)
CLBlastStatusCode CLBlastZaxpyBatched(const size_t n,
const cl_double2 *alphas,
const cl_mem *x_buffers, const size_t x_offset, const size_t x_inc,
cl_mem *y_buffers, const size_t y_offset, const size_t y_inc,
const size_t batch_count,
cl_command_queue* queue, cl_event* event)
CLBlastStatusCode CLBlastHaxpyBatched(const size_t n,
const cl_half *alphas,
const cl_mem *x_buffers, const size_t x_offset, const size_t x_inc,
cl_mem *y_buffers, const size_t y_offset, const size_t y_inc,
const size_t batch_count,
cl_command_queue* queue, cl_event* event)
```
Arguments to AXPYBATCHED:
* `const size_t n`: Integer size argument. This value must be positive.
* `const T *alphas`: Input scalar constants.
* `const cl_mem *x_buffers`: OpenCL buffers to store the input x vectors.
* `const size_t x_offset`: The offset in elements from the start of the input x vectors.
* `const size_t x_inc`: Stride/increment of the input x vectors. This value must be greater than 0.
* `cl_mem *y_buffers`: OpenCL buffers to store the output y vectors.
* `const size_t y_offset`: The offset in elements from the start of the output y vectors.
* `const size_t y_inc`: Stride/increment of the output y vectors. This value must be greater than 0.
* `const size_t batch_count`: Number of batches. This value must be positive.
* `cl_command_queue* queue`: Pointer to an OpenCL command queue associated with a context and device to execute the routine on.
* `cl_event* event`: Pointer to an OpenCL event to be able to wait for completion of the routine's OpenCL kernel(s). This is an optional argument.
ClearCache: Resets the cache of compiled binaries (auxiliary function)
-------------

View File

@ -609,6 +609,15 @@ StatusCode Omatcopy(const Layout layout, const Transpose a_transpose,
cl_mem b_buffer, const size_t b_offset, const size_t b_ld,
cl_command_queue* queue, cl_event* event = nullptr);
// Batched version of AXPY: SAXPYBATCHED/DAXPYBATCHED/CAXPYBATCHED/ZAXPYBATCHED/HAXPYBATCHED
template <typename T>
StatusCode AxpyBatched(const size_t n,
const T *alphas,
const cl_mem *x_buffers, const size_t x_offset, const size_t x_inc,
cl_mem *y_buffers, const size_t y_offset, const size_t y_inc,
const size_t batch_count,
cl_command_queue* queue, cl_event* event = nullptr);
// =================================================================================================
// CLBlast stores binaries of compiled kernels into a cache in case the same kernel is used later on

View File

@ -1327,6 +1327,38 @@ CLBlastStatusCode PUBLIC_API CLBlastHomatcopy(const CLBlastLayout layout, const
cl_mem b_buffer, const size_t b_offset, const size_t b_ld,
cl_command_queue* queue, cl_event* event);
// Batched version of AXPY: SAXPYBATCHED/DAXPYBATCHED/CAXPYBATCHED/ZAXPYBATCHED/HAXPYBATCHED
CLBlastStatusCode PUBLIC_API CLBlastSaxpyBatched(const size_t n,
const float *alphas,
const cl_mem *x_buffers, const size_t x_offset, const size_t x_inc,
cl_mem *y_buffers, const size_t y_offset, const size_t y_inc,
const size_t batch_count,
cl_command_queue* queue, cl_event* event);
CLBlastStatusCode PUBLIC_API CLBlastDaxpyBatched(const size_t n,
const double *alphas,
const cl_mem *x_buffers, const size_t x_offset, const size_t x_inc,
cl_mem *y_buffers, const size_t y_offset, const size_t y_inc,
const size_t batch_count,
cl_command_queue* queue, cl_event* event);
CLBlastStatusCode PUBLIC_API CLBlastCaxpyBatched(const size_t n,
const cl_float2 *alphas,
const cl_mem *x_buffers, const size_t x_offset, const size_t x_inc,
cl_mem *y_buffers, const size_t y_offset, const size_t y_inc,
const size_t batch_count,
cl_command_queue* queue, cl_event* event);
CLBlastStatusCode PUBLIC_API CLBlastZaxpyBatched(const size_t n,
const cl_double2 *alphas,
const cl_mem *x_buffers, const size_t x_offset, const size_t x_inc,
cl_mem *y_buffers, const size_t y_offset, const size_t y_inc,
const size_t batch_count,
cl_command_queue* queue, cl_event* event);
CLBlastStatusCode PUBLIC_API CLBlastHaxpyBatched(const size_t n,
const cl_half *alphas,
const cl_mem *x_buffers, const size_t x_offset, const size_t x_inc,
cl_mem *y_buffers, const size_t y_offset, const size_t y_inc,
const size_t batch_count,
cl_command_queue* queue, cl_event* event);
// =================================================================================================
// CLBlast stores binaries of compiled kernels into a cache in case the same kernel is used later on

View File

@ -41,7 +41,7 @@ FILES = [
"/include/clblast_netlib_c.h",
"/src/clblast_netlib_c.cpp",
]
HEADER_LINES = [121, 75, 125, 23, 29, 41, 65, 32]
HEADER_LINES = [121, 76, 125, 23, 29, 41, 65, 32]
FOOTER_LINES = [25, 138, 27, 38, 6, 6, 9, 2]
HEADER_LINES_DOC = 0
FOOTER_LINES_DOC = 63
@ -101,65 +101,68 @@ bmnn = size_helper("layout == CLBlastLayoutRowMajor", "((side == CLBlastSideLeft
# Populates a list of routines
ROUTINES = [
[ # Level 1: vector-vector
Routine(False, True, "1", "rotg", T, [S,D], [], [], [], ["sa","sb","sc","ss"], ["1","1","1","1"], [], "", "Generate givens plane rotation", "", []),
Routine(False, True, "1", "rotmg", T, [S,D], [], [], ["sy1"], ["sd1","sd2","sx1","sparam"], ["1","1","1","1","1"], [], "", "Generate modified givens plane rotation", "", []),
Routine(False, True, "1", "rot", T, [S,D], ["n"], [], [], ["x","y"], [xn,yn], ["cos","sin"],"", "Apply givens plane rotation", "", []),
Routine(False, True, "1", "rotm", T, [S,D], ["n"], [], [], ["x","y","sparam"], [xn,yn,"1"], [], "", "Apply modified givens plane rotation", "", []),
Routine(True, True, "1", "swap", T, [S,D,C,Z,H], ["n"], [], [], ["x","y"], [xn,yn], [], "", "Swap two vectors", "Interchanges _n_ elements of vectors _x_ and _y_.", []),
Routine(True, True, "1", "scal", T, [S,D,C,Z,H], ["n"], [], [], ["x"], [xn], ["alpha"], "", "Vector scaling", "Multiplies _n_ elements of vector _x_ by a scalar constant _alpha_.", []),
Routine(True, True, "1", "copy", T, [S,D,C,Z,H], ["n"], [], ["x"], ["y"], [xn,yn], [], "", "Vector copy", "Copies the contents of vector _x_ into vector _y_.", []),
Routine(True, True, "1", "axpy", T, [S,D,C,Z,H], ["n"], [], ["x"], ["y"], [xn,yn], ["alpha"], "", "Vector-times-constant plus vector", "Performs the operation _y = alpha * x + y_, in which _x_ and _y_ are vectors and _alpha_ is a scalar constant.", []),
Routine(True, True, "1", "dot", T, [S,D,H], ["n"], [], ["x","y"], ["dot"], [xn,yn,"1"], [], "n", "Dot product of two vectors", "Multiplies _n_ elements of the vectors _x_ and _y_ element-wise and accumulates the results. The sum is stored in the _dot_ buffer.", []),
Routine(True, True, "1", "dotu", T, [C,Z], ["n"], [], ["x","y"], ["dot"], [xn,yn,"1"], [], "n", "Dot product of two complex vectors", "See the regular xDOT routine.", []),
Routine(True, True, "1", "dotc", T, [C,Z], ["n"], [], ["x","y"], ["dot"], [xn,yn,"1"], [], "n", "Dot product of two complex vectors, one conjugated", "See the regular xDOT routine.", []),
Routine(True, True, "1", "nrm2", T, [S,D,Sc,Dz,H], ["n"], [], ["x"], ["nrm2"], [xn,"1"], [], "2*n", "Euclidian norm of a vector", "Accumulates the square of _n_ elements in the _x_ vector and takes the square root. The resulting L2 norm is stored in the _nrm2_ buffer.", []),
Routine(True, True, "1", "asum", T, [S,D,Sc,Dz,H], ["n"], [], ["x"], ["asum"], [xn,"1"], [], "n", "Absolute sum of values in a vector", "Accumulates the absolute value of _n_ elements in the _x_ vector. The results are stored in the _asum_ buffer.", []),
Routine(True, False, "1", "sum", T, [S,D,Sc,Dz,H], ["n"], [], ["x"], ["sum"], [xn,"1"], [], "n", "Sum of values in a vector (non-BLAS function)", "Accumulates the values of _n_ elements in the _x_ vector. The results are stored in the _sum_ buffer. This routine is the non-absolute version of the xASUM BLAS routine.", []),
Routine(True, True, "1", "amax", T, [iS,iD,iC,iZ,iH], ["n"], [], ["x"], ["imax"], [xn,"1"], [], "2*n", "Index of absolute maximum value in a vector", "Finds the index of the maximum of the absolute values in the _x_ vector. The resulting integer index is stored in the _imax_ buffer.", []),
Routine(True, False, "1", "max", T, [iS,iD,iC,iZ,iH], ["n"], [], ["x"], ["imax"], [xn,"1"], [], "2*n", "Index of maximum value in a vector (non-BLAS function)", "Finds the index of the maximum of the values in the _x_ vector. The resulting integer index is stored in the _imax_ buffer. This routine is the non-absolute version of the IxAMAX BLAS routine.", []),
Routine(True, False, "1", "min", T, [iS,iD,iC,iZ,iH], ["n"], [], ["x"], ["imin"], [xn,"1"], [], "2*n", "Index of minimum value in a vector (non-BLAS function)", "Finds the index of the minimum of the values in the _x_ vector. The resulting integer index is stored in the _imin_ buffer. This routine is the non-absolute minimum version of the IxAMAX BLAS routine.", []),
Routine(False, True, False, "1", "rotg", T, [S,D], [], [], [], ["sa","sb","sc","ss"], ["1","1","1","1"], [], "", "Generate givens plane rotation", "", []),
Routine(False, True, False, "1", "rotmg", T, [S,D], [], [], ["sy1"], ["sd1","sd2","sx1","sparam"], ["1","1","1","1","1"], [], "", "Generate modified givens plane rotation", "", []),
Routine(False, True, False, "1", "rot", T, [S,D], ["n"], [], [], ["x","y"], [xn,yn], ["cos","sin"],"", "Apply givens plane rotation", "", []),
Routine(False, True, False, "1", "rotm", T, [S,D], ["n"], [], [], ["x","y","sparam"], [xn,yn,"1"], [], "", "Apply modified givens plane rotation", "", []),
Routine(True, True, False, "1", "swap", T, [S,D,C,Z,H], ["n"], [], [], ["x","y"], [xn,yn], [], "", "Swap two vectors", "Interchanges _n_ elements of vectors _x_ and _y_.", []),
Routine(True, True, False, "1", "scal", T, [S,D,C,Z,H], ["n"], [], [], ["x"], [xn], ["alpha"], "", "Vector scaling", "Multiplies _n_ elements of vector _x_ by a scalar constant _alpha_.", []),
Routine(True, True, False, "1", "copy", T, [S,D,C,Z,H], ["n"], [], ["x"], ["y"], [xn,yn], [], "", "Vector copy", "Copies the contents of vector _x_ into vector _y_.", []),
Routine(True, True, False, "1", "axpy", T, [S,D,C,Z,H], ["n"], [], ["x"], ["y"], [xn,yn], ["alpha"], "", "Vector-times-constant plus vector", "Performs the operation _y = alpha * x + y_, in which _x_ and _y_ are vectors and _alpha_ is a scalar constant.", []),
Routine(True, True, False, "1", "dot", T, [S,D,H], ["n"], [], ["x","y"], ["dot"], [xn,yn,"1"], [], "n", "Dot product of two vectors", "Multiplies _n_ elements of the vectors _x_ and _y_ element-wise and accumulates the results. The sum is stored in the _dot_ buffer.", []),
Routine(True, True, False, "1", "dotu", T, [C,Z], ["n"], [], ["x","y"], ["dot"], [xn,yn,"1"], [], "n", "Dot product of two complex vectors", "See the regular xDOT routine.", []),
Routine(True, True, False, "1", "dotc", T, [C,Z], ["n"], [], ["x","y"], ["dot"], [xn,yn,"1"], [], "n", "Dot product of two complex vectors, one conjugated", "See the regular xDOT routine.", []),
Routine(True, True, False, "1", "nrm2", T, [S,D,Sc,Dz,H], ["n"], [], ["x"], ["nrm2"], [xn,"1"], [], "2*n", "Euclidian norm of a vector", "Accumulates the square of _n_ elements in the _x_ vector and takes the square root. The resulting L2 norm is stored in the _nrm2_ buffer.", []),
Routine(True, True, False, "1", "asum", T, [S,D,Sc,Dz,H], ["n"], [], ["x"], ["asum"], [xn,"1"], [], "n", "Absolute sum of values in a vector", "Accumulates the absolute value of _n_ elements in the _x_ vector. The results are stored in the _asum_ buffer.", []),
Routine(True, False, False, "1", "sum", T, [S,D,Sc,Dz,H], ["n"], [], ["x"], ["sum"], [xn,"1"], [], "n", "Sum of values in a vector (non-BLAS function)", "Accumulates the values of _n_ elements in the _x_ vector. The results are stored in the _sum_ buffer. This routine is the non-absolute version of the xASUM BLAS routine.", []),
Routine(True, True, False, "1", "amax", T, [iS,iD,iC,iZ,iH], ["n"], [], ["x"], ["imax"], [xn,"1"], [], "2*n", "Index of absolute maximum value in a vector", "Finds the index of the maximum of the absolute values in the _x_ vector. The resulting integer index is stored in the _imax_ buffer.", []),
Routine(True, False, False, "1", "max", T, [iS,iD,iC,iZ,iH], ["n"], [], ["x"], ["imax"], [xn,"1"], [], "2*n", "Index of maximum value in a vector (non-BLAS function)", "Finds the index of the maximum of the values in the _x_ vector. The resulting integer index is stored in the _imax_ buffer. This routine is the non-absolute version of the IxAMAX BLAS routine.", []),
Routine(True, False, False, "1", "min", T, [iS,iD,iC,iZ,iH], ["n"], [], ["x"], ["imin"], [xn,"1"], [], "2*n", "Index of minimum value in a vector (non-BLAS function)", "Finds the index of the minimum of the values in the _x_ vector. The resulting integer index is stored in the _imin_ buffer. This routine is the non-absolute minimum version of the IxAMAX BLAS routine.", []),
],
[ # Level 2: matrix-vector
Routine(True, True, "2a", "gemv", T, [S,D,C,Z,H], ["m","n"], ["layout","a_transpose"], ["a","x"], ["y"], [amn,xmn,ynm], ["alpha","beta"], "", "General matrix-vector multiplication", "Performs the operation _y = alpha * A * x + beta * y_, in which _x_ is an input vector, _y_ is an input and output vector, _A_ is an input matrix, and _alpha_ and _beta_ are scalars. The matrix _A_ can optionally be transposed before performing the operation.", [ald_m]),
Routine(True, True, "2a", "gbmv", T, [S,D,C,Z,H], ["m","n","kl","ku"], ["layout","a_transpose"], ["a","x"], ["y"], [amn,xmn,ynm], ["alpha","beta"], "", "General banded matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is banded instead.", [ald_kl_ku_one]),
Routine(True, True, "2a", "hemv", T, [C,Z], ["n"], ["layout","triangle"], ["a","x"], ["y"], [an,xn,yn], ["alpha","beta"], "", "Hermitian matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is an Hermitian matrix instead.", [ald_n]),
Routine(True, True, "2a", "hbmv", T, [C,Z], ["n","k"], ["layout","triangle"], ["a","x"], ["y"], [an,xn,yn], ["alpha","beta"], "", "Hermitian banded matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is an Hermitian banded matrix instead.", [ald_k_one]),
Routine(True, True, "2a", "hpmv", T, [C,Z], ["n"], ["layout","triangle"], ["ap","x"], ["y"], [apn,xn,yn], ["alpha","beta"], "", "Hermitian packed matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is an Hermitian packed matrix instead and represented as _AP_.", []),
Routine(True, True, "2a", "symv", T, [S,D,H], ["n"], ["layout","triangle"], ["a","x"], ["y"], [an,xn,yn], ["alpha","beta"], "", "Symmetric matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is symmetric instead.", [ald_n]),
Routine(True, True, "2a", "sbmv", T, [S,D,H], ["n","k"], ["layout","triangle"], ["a","x"], ["y"], [an,xn,yn], ["alpha","beta"], "", "Symmetric banded matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is symmetric and banded instead.", [ald_k_one]),
Routine(True, True, "2a", "spmv", T, [S,D,H], ["n"], ["layout","triangle"], ["ap","x"], ["y"], [apn,xn,yn], ["alpha","beta"], "", "Symmetric packed matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is a symmetric packed matrix instead and represented as _AP_.", []),
Routine(True, True, "2a", "trmv", T, [S,D,C,Z,H], ["n"], ["layout","triangle","a_transpose","diagonal"], ["a"], ["x"], [an,xn], [], "n", "Triangular matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is triangular instead.", [ald_n]),
Routine(True, True, "2a", "tbmv", T, [S,D,C,Z,H], ["n","k"], ["layout","triangle","a_transpose","diagonal"], ["a"], ["x"], [an,xn], [], "n", "Triangular banded matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is triangular and banded instead.", [ald_k_one]),
Routine(True, True, "2a", "tpmv", T, [S,D,C,Z,H], ["n"], ["layout","triangle","a_transpose","diagonal"], ["ap"], ["x"], [apn,xn], [], "n", "Triangular packed matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is a triangular packed matrix instead and repreented as _AP_.", []),
Routine(True, True, "2a", "trsv", T, [S,D,C,Z], ["n"], ["layout","triangle","a_transpose","diagonal"], ["a"], ["x"], [an,xn], [], "", "Solves a triangular system of equations", "", []),
Routine(False, True, "2a", "tbsv", T, [S,D,C,Z], ["n","k"], ["layout","triangle","a_transpose","diagonal"], ["a"], ["x"], [an,xn], [], "", "Solves a banded triangular system of equations", "", [ald_k_one]),
Routine(False, True, "2a", "tpsv", T, [S,D,C,Z], ["n"], ["layout","triangle","a_transpose","diagonal"], ["ap"], ["x"], [apn,xn], [], "", "Solves a packed triangular system of equations", "", []),
Routine(True, True, False, "2a", "gemv", T, [S,D,C,Z,H], ["m","n"], ["layout","a_transpose"], ["a","x"], ["y"], [amn,xmn,ynm], ["alpha","beta"], "", "General matrix-vector multiplication", "Performs the operation _y = alpha * A * x + beta * y_, in which _x_ is an input vector, _y_ is an input and output vector, _A_ is an input matrix, and _alpha_ and _beta_ are scalars. The matrix _A_ can optionally be transposed before performing the operation.", [ald_m]),
Routine(True, True, False, "2a", "gbmv", T, [S,D,C,Z,H], ["m","n","kl","ku"], ["layout","a_transpose"], ["a","x"], ["y"], [amn,xmn,ynm], ["alpha","beta"], "", "General banded matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is banded instead.", [ald_kl_ku_one]),
Routine(True, True, False, "2a", "hemv", T, [C,Z], ["n"], ["layout","triangle"], ["a","x"], ["y"], [an,xn,yn], ["alpha","beta"], "", "Hermitian matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is an Hermitian matrix instead.", [ald_n]),
Routine(True, True, False, "2a", "hbmv", T, [C,Z], ["n","k"], ["layout","triangle"], ["a","x"], ["y"], [an,xn,yn], ["alpha","beta"], "", "Hermitian banded matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is an Hermitian banded matrix instead.", [ald_k_one]),
Routine(True, True, False, "2a", "hpmv", T, [C,Z], ["n"], ["layout","triangle"], ["ap","x"], ["y"], [apn,xn,yn], ["alpha","beta"], "", "Hermitian packed matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is an Hermitian packed matrix instead and represented as _AP_.", []),
Routine(True, True, False, "2a", "symv", T, [S,D,H], ["n"], ["layout","triangle"], ["a","x"], ["y"], [an,xn,yn], ["alpha","beta"], "", "Symmetric matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is symmetric instead.", [ald_n]),
Routine(True, True, False, "2a", "sbmv", T, [S,D,H], ["n","k"], ["layout","triangle"], ["a","x"], ["y"], [an,xn,yn], ["alpha","beta"], "", "Symmetric banded matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is symmetric and banded instead.", [ald_k_one]),
Routine(True, True, False, "2a", "spmv", T, [S,D,H], ["n"], ["layout","triangle"], ["ap","x"], ["y"], [apn,xn,yn], ["alpha","beta"], "", "Symmetric packed matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is a symmetric packed matrix instead and represented as _AP_.", []),
Routine(True, True, False, "2a", "trmv", T, [S,D,C,Z,H], ["n"], ["layout","triangle","a_transpose","diagonal"], ["a"], ["x"], [an,xn], [], "n", "Triangular matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is triangular instead.", [ald_n]),
Routine(True, True, False, "2a", "tbmv", T, [S,D,C,Z,H], ["n","k"], ["layout","triangle","a_transpose","diagonal"], ["a"], ["x"], [an,xn], [], "n", "Triangular banded matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is triangular and banded instead.", [ald_k_one]),
Routine(True, True, False, "2a", "tpmv", T, [S,D,C,Z,H], ["n"], ["layout","triangle","a_transpose","diagonal"], ["ap"], ["x"], [apn,xn], [], "n", "Triangular packed matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is a triangular packed matrix instead and repreented as _AP_.", []),
Routine(True, True, False, "2a", "trsv", T, [S,D,C,Z], ["n"], ["layout","triangle","a_transpose","diagonal"], ["a"], ["x"], [an,xn], [], "", "Solves a triangular system of equations", "", []),
Routine(False, True, False, "2a", "tbsv", T, [S,D,C,Z], ["n","k"], ["layout","triangle","a_transpose","diagonal"], ["a"], ["x"], [an,xn], [], "", "Solves a banded triangular system of equations", "", [ald_k_one]),
Routine(False, True, False, "2a", "tpsv", T, [S,D,C,Z], ["n"], ["layout","triangle","a_transpose","diagonal"], ["ap"], ["x"], [apn,xn], [], "", "Solves a packed triangular system of equations", "", []),
# Level 2: matrix update
Routine(True, True, "2b", "ger", T, [S,D,H], ["m","n"], ["layout"], ["x","y"], ["a"], [xm,yn,amn], ["alpha"], "", "General rank-1 matrix update", "Performs the operation _A = alpha * x * y^T + A_, in which _x_ is an input vector, _y^T_ is the transpose of the input vector _y_, _A_ is the matrix to be updated, and _alpha_ is a scalar value.", [ald_m]),
Routine(True, True, "2b", "geru", T, [C,Z], ["m","n"], ["layout"], ["x","y"], ["a"], [xm,yn,amn], ["alpha"], "", "General rank-1 complex matrix update", "Same operation as xGER, but with complex data-types.", [ald_m]),
Routine(True, True, "2b", "gerc", T, [C,Z], ["m","n"], ["layout"], ["x","y"], ["a"], [xm,yn,amn], ["alpha"], "", "General rank-1 complex conjugated matrix update", "Same operation as xGERU, but the update is done based on the complex conjugate of the input vectors.", [ald_m]),
Routine(True, True, "2b", "her", Tc, [Css,Zdd], ["n"], ["layout","triangle"], ["x"], ["a"], [xn,an], ["alpha"], "", "Hermitian rank-1 matrix update", "Performs the operation _A = alpha * x * x^T + A_, in which x is an input vector, x^T is the transpose of this vector, _A_ is the triangular Hermetian matrix to be updated, and alpha is a scalar value.", [ald_n]),
Routine(True, True, "2b", "hpr", Tc, [Css,Zdd], ["n"], ["layout","triangle"], ["x"], ["ap"], [xn,apn], ["alpha"], "", "Hermitian packed rank-1 matrix update", "Same operation as xHER, but matrix _A_ is an Hermitian packed matrix instead and represented as _AP_.", []),
Routine(True, True, "2b", "her2", T, [C,Z], ["n"], ["layout","triangle"], ["x","y"], ["a"], [xn,yn,an], ["alpha"], "", "Hermitian rank-2 matrix update", "Performs the operation _A = alpha * x * y^T + conj(alpha) * y * x^T + A_, in which _x_ is an input vector and _x^T_ its transpose, _y_ is an input vector and _y^T_ its transpose, _A_ is the triangular Hermetian matrix to be updated, _alpha_ is a scalar value and _conj(alpha)_ its complex conjugate.", [ald_n]),
Routine(True, True, "2b", "hpr2", T, [C,Z], ["n"], ["layout","triangle"], ["x","y"], ["ap"], [xn,yn,apn], ["alpha"], "", "Hermitian packed rank-2 matrix update", "Same operation as xHER2, but matrix _A_ is an Hermitian packed matrix instead and represented as _AP_.", []),
Routine(True, True, "2b", "syr", T, [S,D,H], ["n"], ["layout","triangle"], ["x"], ["a"], [xn,an], ["alpha"], "", "Symmetric rank-1 matrix update", "Same operation as xHER, but matrix A is a symmetric matrix instead.", [ald_n]),
Routine(True, True, "2b", "spr", T, [S,D,H], ["n"], ["layout","triangle"], ["x"], ["ap"], [xn,apn], ["alpha"], "", "Symmetric packed rank-1 matrix update", "Same operation as xSPR, but matrix _A_ is a symmetric packed matrix instead and represented as _AP_.", []),
Routine(True, True, "2b", "syr2", T, [S,D,H], ["n"], ["layout","triangle"], ["x","y"], ["a"], [xn,yn,an], ["alpha"], "", "Symmetric rank-2 matrix update", "Same operation as xHER2, but matrix _A_ is a symmetric matrix instead.", [ald_n]),
Routine(True, True, "2b", "spr2", T, [S,D,H], ["n"], ["layout","triangle"], ["x","y"], ["ap"], [xn,yn,apn], ["alpha"], "", "Symmetric packed rank-2 matrix update", "Same operation as xSPR2, but matrix _A_ is a symmetric packed matrix instead and represented as _AP_.", []),
Routine(True, True, False, "2b", "ger", T, [S,D,H], ["m","n"], ["layout"], ["x","y"], ["a"], [xm,yn,amn], ["alpha"], "", "General rank-1 matrix update", "Performs the operation _A = alpha * x * y^T + A_, in which _x_ is an input vector, _y^T_ is the transpose of the input vector _y_, _A_ is the matrix to be updated, and _alpha_ is a scalar value.", [ald_m]),
Routine(True, True, False, "2b", "geru", T, [C,Z], ["m","n"], ["layout"], ["x","y"], ["a"], [xm,yn,amn], ["alpha"], "", "General rank-1 complex matrix update", "Same operation as xGER, but with complex data-types.", [ald_m]),
Routine(True, True, False, "2b", "gerc", T, [C,Z], ["m","n"], ["layout"], ["x","y"], ["a"], [xm,yn,amn], ["alpha"], "", "General rank-1 complex conjugated matrix update", "Same operation as xGERU, but the update is done based on the complex conjugate of the input vectors.", [ald_m]),
Routine(True, True, False, "2b", "her", Tc, [Css,Zdd], ["n"], ["layout","triangle"], ["x"], ["a"], [xn,an], ["alpha"], "", "Hermitian rank-1 matrix update", "Performs the operation _A = alpha * x * x^T + A_, in which x is an input vector, x^T is the transpose of this vector, _A_ is the triangular Hermetian matrix to be updated, and alpha is a scalar value.", [ald_n]),
Routine(True, True, False, "2b", "hpr", Tc, [Css,Zdd], ["n"], ["layout","triangle"], ["x"], ["ap"], [xn,apn], ["alpha"], "", "Hermitian packed rank-1 matrix update", "Same operation as xHER, but matrix _A_ is an Hermitian packed matrix instead and represented as _AP_.", []),
Routine(True, True, False, "2b", "her2", T, [C,Z], ["n"], ["layout","triangle"], ["x","y"], ["a"], [xn,yn,an], ["alpha"], "", "Hermitian rank-2 matrix update", "Performs the operation _A = alpha * x * y^T + conj(alpha) * y * x^T + A_, in which _x_ is an input vector and _x^T_ its transpose, _y_ is an input vector and _y^T_ its transpose, _A_ is the triangular Hermetian matrix to be updated, _alpha_ is a scalar value and _conj(alpha)_ its complex conjugate.", [ald_n]),
Routine(True, True, False, "2b", "hpr2", T, [C,Z], ["n"], ["layout","triangle"], ["x","y"], ["ap"], [xn,yn,apn], ["alpha"], "", "Hermitian packed rank-2 matrix update", "Same operation as xHER2, but matrix _A_ is an Hermitian packed matrix instead and represented as _AP_.", []),
Routine(True, True, False, "2b", "syr", T, [S,D,H], ["n"], ["layout","triangle"], ["x"], ["a"], [xn,an], ["alpha"], "", "Symmetric rank-1 matrix update", "Same operation as xHER, but matrix A is a symmetric matrix instead.", [ald_n]),
Routine(True, True, False, "2b", "spr", T, [S,D,H], ["n"], ["layout","triangle"], ["x"], ["ap"], [xn,apn], ["alpha"], "", "Symmetric packed rank-1 matrix update", "Same operation as xSPR, but matrix _A_ is a symmetric packed matrix instead and represented as _AP_.", []),
Routine(True, True, False, "2b", "syr2", T, [S,D,H], ["n"], ["layout","triangle"], ["x","y"], ["a"], [xn,yn,an], ["alpha"], "", "Symmetric rank-2 matrix update", "Same operation as xHER2, but matrix _A_ is a symmetric matrix instead.", [ald_n]),
Routine(True, True, False, "2b", "spr2", T, [S,D,H], ["n"], ["layout","triangle"], ["x","y"], ["ap"], [xn,yn,apn], ["alpha"], "", "Symmetric packed rank-2 matrix update", "Same operation as xSPR2, but matrix _A_ is a symmetric packed matrix instead and represented as _AP_.", []),
],
[ # Level 3: matrix-matrix
Routine(True, True, "3", "gemm", T, [S,D,C,Z,H], ["m","n","k"], ["layout","a_transpose","b_transpose"], ["a","b"], ["c"], [amk,bkn,cmn], ["alpha","beta"], "", "General matrix-matrix multiplication", "Performs the matrix product _C = alpha * A * B + beta * C_, in which _A_ (_m_ by _k_) and _B_ (_k_ by _n_) are two general rectangular input matrices, _C_ (_m_ by _n_) is the matrix to be updated, and _alpha_ and _beta_ are scalar values. The matrices _A_ and/or _B_ can optionally be transposed before performing the operation.", [ald_transa_m_k, bld_transb_k_n, cld_m]),
Routine(True, True, "3", "symm", T, [S,D,C,Z,H], ["m","n"], ["layout","side","triangle"], ["a","b"], ["c"], [ammn,bmnn,cmn], ["alpha","beta"], "", "Symmetric matrix-matrix multiplication", "Same operation as xGEMM, but _A_ is symmetric instead. In case of `side == kLeft`, _A_ is a symmetric _m_ by _m_ matrix and _C = alpha * A * B + beta * C_ is performed. Otherwise, in case of `side == kRight`, _A_ is a symmtric _n_ by _n_ matrix and _C = alpha * B * A + beta * C_ is performed.", [ald_side_m_n, bld_m, cld_m]),
Routine(True, True, "3", "hemm", T, [C,Z], ["m","n"], ["layout","side","triangle"], ["a","b"], ["c"], [ammn,bmnn,cmn], ["alpha","beta"], "", "Hermitian matrix-matrix multiplication", "Same operation as xSYMM, but _A_ is an Hermitian matrix instead.", [ald_side_m_n, bld_m, cld_m]),
Routine(True, True, "3", "syrk", T, [S,D,C,Z,H], ["n","k"], ["layout","triangle","a_transpose"], ["a"], ["c"], [ank,cn], ["alpha","beta"], "", "Rank-K update of a symmetric matrix", "Performs the matrix product _C = alpha * A * A^T + beta * C_ or _C = alpha * A^T * A + beta * C_, in which _A_ is a general matrix and _A^T_ is its transpose, _C_ (_n_ by _n_) is the symmetric matrix to be updated, and _alpha_ and _beta_ are scalar values.", [ald_trans_n_k, cld_m]),
Routine(True, True, "3", "herk", Tc, [Css,Zdd], ["n","k"], ["layout","triangle","a_transpose"], ["a"], ["c"], [ank,cn], ["alpha","beta"], "", "Rank-K update of a hermitian matrix", "Same operation as xSYRK, but _C_ is an Hermitian matrix instead.", [ald_trans_n_k, cld_m]),
Routine(True, True, "3", "syr2k", T, [S,D,C,Z,H], ["n","k"], ["layout","triangle","ab_transpose"], ["a","b"], ["c"], [ankab,bnkab,cn],["alpha","beta"], "", "Rank-2K update of a symmetric matrix", "Performs the matrix product _C = alpha * A * B^T + alpha * B * A^T + beta * C_ or _C = alpha * A^T * B + alpha * B^T * A + beta * C_, in which _A_ and _B_ are general matrices and _A^T_ and _B^T_ are their transposed versions, _C_ (_n_ by _n_) is the symmetric matrix to be updated, and _alpha_ and _beta_ are scalar values.", [ald_trans_n_k, bld_trans_n_k, cld_n]),
Routine(True, True, "3", "her2k", TU, [Ccs,Zzd], ["n","k"], ["layout","triangle","ab_transpose"], ["a","b"], ["c"], [ankab,bnkab,cn],["alpha","beta"], "", "Rank-2K update of a hermitian matrix", "Same operation as xSYR2K, but _C_ is an Hermitian matrix instead.", [ald_trans_n_k, bld_trans_n_k, cld_n]),
Routine(True, True, "3", "trmm", T, [S,D,C,Z,H], ["m","n"], ["layout","side","triangle","a_transpose","diagonal"], ["a"], ["b"], [amns,bmn], ["alpha"], "", "Triangular matrix-matrix multiplication", "Performs the matrix product _B = alpha * A * B_ or _B = alpha * B * A_, in which _A_ is a unit or non-unit triangular matrix, _B_ (_m_ by _n_) is the general matrix to be updated, and _alpha_ is a scalar value.", [ald_side_m_n, bld_m]),
Routine(True, True, "3", "trsm", T, [S,D,C,Z], ["m","n"], ["layout","side","triangle","a_transpose","diagonal"], ["a"], ["b"], [amns,bmn], ["alpha"], "", "Solves a triangular system of equations", "Solves the equation _A * X = alpha * B_ for the unknown _m_ by _n_ matrix X, in which _A_ is an _n_ by _n_ unit or non-unit triangular matrix and B is an _m_ by _n_ matrix. The matrix _B_ is overwritten by the solution _X_.", []),
Routine(True, True, False, "3", "gemm", T, [S,D,C,Z,H], ["m","n","k"], ["layout","a_transpose","b_transpose"], ["a","b"], ["c"], [amk,bkn,cmn], ["alpha","beta"], "", "General matrix-matrix multiplication", "Performs the matrix product _C = alpha * A * B + beta * C_, in which _A_ (_m_ by _k_) and _B_ (_k_ by _n_) are two general rectangular input matrices, _C_ (_m_ by _n_) is the matrix to be updated, and _alpha_ and _beta_ are scalar values. The matrices _A_ and/or _B_ can optionally be transposed before performing the operation.", [ald_transa_m_k, bld_transb_k_n, cld_m]),
Routine(True, True, False, "3", "symm", T, [S,D,C,Z,H], ["m","n"], ["layout","side","triangle"], ["a","b"], ["c"], [ammn,bmnn,cmn], ["alpha","beta"], "", "Symmetric matrix-matrix multiplication", "Same operation as xGEMM, but _A_ is symmetric instead. In case of `side == kLeft`, _A_ is a symmetric _m_ by _m_ matrix and _C = alpha * A * B + beta * C_ is performed. Otherwise, in case of `side == kRight`, _A_ is a symmtric _n_ by _n_ matrix and _C = alpha * B * A + beta * C_ is performed.", [ald_side_m_n, bld_m, cld_m]),
Routine(True, True, False, "3", "hemm", T, [C,Z], ["m","n"], ["layout","side","triangle"], ["a","b"], ["c"], [ammn,bmnn,cmn], ["alpha","beta"], "", "Hermitian matrix-matrix multiplication", "Same operation as xSYMM, but _A_ is an Hermitian matrix instead.", [ald_side_m_n, bld_m, cld_m]),
Routine(True, True, False, "3", "syrk", T, [S,D,C,Z,H], ["n","k"], ["layout","triangle","a_transpose"], ["a"], ["c"], [ank,cn], ["alpha","beta"], "", "Rank-K update of a symmetric matrix", "Performs the matrix product _C = alpha * A * A^T + beta * C_ or _C = alpha * A^T * A + beta * C_, in which _A_ is a general matrix and _A^T_ is its transpose, _C_ (_n_ by _n_) is the symmetric matrix to be updated, and _alpha_ and _beta_ are scalar values.", [ald_trans_n_k, cld_m]),
Routine(True, True, False, "3", "herk", Tc, [Css,Zdd], ["n","k"], ["layout","triangle","a_transpose"], ["a"], ["c"], [ank,cn], ["alpha","beta"], "", "Rank-K update of a hermitian matrix", "Same operation as xSYRK, but _C_ is an Hermitian matrix instead.", [ald_trans_n_k, cld_m]),
Routine(True, True, False, "3", "syr2k", T, [S,D,C,Z,H], ["n","k"], ["layout","triangle","ab_transpose"], ["a","b"], ["c"], [ankab,bnkab,cn],["alpha","beta"], "", "Rank-2K update of a symmetric matrix", "Performs the matrix product _C = alpha * A * B^T + alpha * B * A^T + beta * C_ or _C = alpha * A^T * B + alpha * B^T * A + beta * C_, in which _A_ and _B_ are general matrices and _A^T_ and _B^T_ are their transposed versions, _C_ (_n_ by _n_) is the symmetric matrix to be updated, and _alpha_ and _beta_ are scalar values.", [ald_trans_n_k, bld_trans_n_k, cld_n]),
Routine(True, True, False, "3", "her2k", TU, [Ccs,Zzd], ["n","k"], ["layout","triangle","ab_transpose"], ["a","b"], ["c"], [ankab,bnkab,cn],["alpha","beta"], "", "Rank-2K update of a hermitian matrix", "Same operation as xSYR2K, but _C_ is an Hermitian matrix instead.", [ald_trans_n_k, bld_trans_n_k, cld_n]),
Routine(True, True, False, "3", "trmm", T, [S,D,C,Z,H], ["m","n"], ["layout","side","triangle","a_transpose","diagonal"], ["a"], ["b"], [amns,bmn], ["alpha"], "", "Triangular matrix-matrix multiplication", "Performs the matrix product _B = alpha * A * B_ or _B = alpha * B * A_, in which _A_ is a unit or non-unit triangular matrix, _B_ (_m_ by _n_) is the general matrix to be updated, and _alpha_ is a scalar value.", [ald_side_m_n, bld_m]),
Routine(True, True, False, "3", "trsm", T, [S,D,C,Z], ["m","n"], ["layout","side","triangle","a_transpose","diagonal"], ["a"], ["b"], [amns,bmn], ["alpha"], "", "Solves a triangular system of equations", "Solves the equation _A * X = alpha * B_ for the unknown _m_ by _n_ matrix X, in which _A_ is an _n_ by _n_ unit or non-unit triangular matrix and B is an _m_ by _n_ matrix. The matrix _B_ is overwritten by the solution _X_.", []),
],
[ # Level X: extra routines (not part of BLAS)
Routine(True, True, "x", "omatcopy", T, [S,D,C,Z,H], ["m","n"], ["layout","a_transpose"], ["a"], ["b"], [amn,bnma], ["alpha"], "", "Scaling and out-place transpose/copy (non-BLAS function)", "Performs scaling and out-of-place transposition/copying of matrices according to _B = alpha*op(A)_, in which _A_ is an input matrix (_m_ rows by _n_ columns), _B_ an output matrix, and _alpha_ a scalar value. The operation _op_ can be a normal matrix copy, a transposition or a conjugate transposition.", [ald_m, bld_n]),
# Special routines:
Routine(True, True, False, "x", "omatcopy", T, [S,D,C,Z,H], ["m","n"], ["layout","a_transpose"], ["a"], ["b"], [amn,bnma], ["alpha"], "", "Scaling and out-place transpose/copy (non-BLAS function)", "Performs scaling and out-of-place transposition/copying of matrices according to _B = alpha*op(A)_, in which _A_ is an input matrix (_m_ rows by _n_ columns), _B_ an output matrix, and _alpha_ a scalar value. The operation _op_ can be a normal matrix copy, a transposition or a conjugate transposition.", [ald_m, bld_n]),
# Batched routines:
Routine(True, True, True, "x", "axpy", T, [S,D,C,Z,H], ["n"], [], ["x"], ["y"], [xn,yn], ["alpha"], "", "Batched version of AXPY", "As AXPY, but multiple operations are batched together for better performance.", []),
]]
@ -207,9 +210,11 @@ def main(argv):
if i == 5:
body += cpp.wrapper_cblas(routine)
if i == 6:
body += cpp.clblast_netlib_c_h(routine)
if not routine.batched:
body += cpp.clblast_netlib_c_h(routine)
if i == 7:
body += cpp.clblast_netlib_c_cc(routine)
if not routine.batched:
body += cpp.clblast_netlib_c_cc(routine)
f.write("".join(file_header))
f.write(body)
f.write("".join(file_footer))
@ -219,7 +224,7 @@ def main(argv):
for routine in ROUTINES[level - 1]:
if routine.has_tests:
level_string = cpp.LEVEL_NAMES[level - 1]
routine_suffix = "level" + level_string + "/x" + routine.name + ".cpp"
routine_suffix = "level" + level_string + "/x" + routine.lowercase_name() + ".cpp"
# Correctness tests
filename = library_root + "/test/correctness/routines/" + routine_suffix

View File

@ -51,8 +51,10 @@ def clblast_cc(routine):
result += routine.routine_header_cpp(12, "") + " {" + NL
result += " try {" + NL
result += " auto queue_cpp = Queue(*queue);" + NL
result += " auto routine = X" + routine.name + "<" + routine.template.template + ">(queue_cpp, event);" + NL
result += " routine.Do" + routine.name.capitalize() + "("
result += " auto routine = X" + routine.plain_name() + "<" + routine.template.template + ">(queue_cpp, event);" + NL
if routine.batched:
result += " " + (NL + " ").join(routine.batched_transform_to_cpp()) + NL
result += " routine.Do" + routine.capitalized_name() + "("
result += ("," + NL + indent1).join([a for a in routine.arguments_clcudaapi()])
result += ");" + NL
result += " return StatusCode::kSuccess;" + NL
@ -63,7 +65,7 @@ def clblast_cc(routine):
result += "}" + NL
for flavour in routine.flavours:
indent2 = " " * (34 + routine.length() + len(flavour.template))
result += "template StatusCode PUBLIC_API " + routine.name.capitalize() + "<" + flavour.template + ">("
result += "template StatusCode PUBLIC_API " + routine.capitalized_name() + "<" + flavour.template + ">("
result += ("," + NL + indent2).join([a for a in routine.arguments_type(flavour)])
result += "," + NL + indent2 + "cl_command_queue*, cl_event*);" + NL
return result
@ -84,9 +86,11 @@ def clblast_c_cc(routine):
template = "<" + flavour.template + ">" if routine.no_scalars() else ""
indent = " " * (16 + routine.length() + len(template))
result += routine.routine_header_c(flavour, 27, "") + " {" + NL
if routine.batched:
result += " " + (NL + " ").join(routine.batched_transform_to_complex(flavour)) + NL
result += " try {" + NL
result += " return static_cast<CLBlastStatusCode>(" + NL
result += " clblast::" + routine.name.capitalize() + template + "("
result += " clblast::" + routine.capitalized_name() + template + "("
result += ("," + NL + indent).join([a for a in routine.arguments_cast(flavour, indent)])
result += "," + NL + indent + "queue, event)" + NL
result += " );" + NL
@ -290,7 +294,7 @@ def performance_test(routine, level_string):
"""Generates the body of a performance test for a specific routine"""
result = ""
result += "#include \"test/performance/client.hpp\"" + NL
result += "#include \"test/routines/level" + level_string + "/x" + routine.name + ".hpp\"" + NL + NL
result += "#include \"test/routines/level" + level_string + "/x" + routine.lowercase_name() + ".hpp\"" + NL + NL
result += "// Shortcuts to the clblast namespace" + NL
result += "using float2 = clblast::float2;" + NL
result += "using double2 = clblast::double2;" + NL + NL
@ -304,7 +308,7 @@ def performance_test(routine, level_string):
found = False
for flavour in routine.flavours:
if flavour.precision_name == precision:
result += NL + " clblast::RunClient<clblast::TestX" + routine.name + flavour.test_template()
result += NL + " clblast::RunClient<clblast::TestX" + routine.plain_name() + flavour.test_template()
result += ">(argc, argv); break;" + NL
found = True
if not found:
@ -319,7 +323,7 @@ def correctness_test(routine, level_string):
"""Generates the body of a correctness test for a specific routine"""
result = ""
result += "#include \"test/correctness/testblas.hpp\"" + NL
result += "#include \"test/routines/level" + level_string + "/x" + routine.name + ".hpp\"" + NL + NL
result += "#include \"test/routines/level" + level_string + "/x" + routine.lowercase_name() + ".hpp\"" + NL + NL
result += "// Shortcuts to the clblast namespace" + NL
result += "using float2 = clblast::float2;" + NL
result += "using double2 = clblast::double2;" + NL + NL
@ -328,8 +332,8 @@ def correctness_test(routine, level_string):
result += " auto errors = size_t{0};" + NL
not_first = "false"
for flavour in routine.flavours:
result += " errors += clblast::RunTests<clblast::TestX" + routine.name + flavour.test_template()
result += ">(argc, argv, " + not_first + ", \"" + flavour.name + routine.name.upper() + "\");" + NL
result += " errors += clblast::RunTests<clblast::TestX" + routine.plain_name() + flavour.test_template()
result += ">(argc, argv, " + not_first + ", \"" + flavour.name + routine.upper_name() + "\");" + NL
not_first = "true"
result += " if (errors > 0) { return 1; } else { return 0; }" + NL
result += "}" + NL

View File

@ -30,17 +30,17 @@ class DataType:
self.beta_cl = scalars[3]
self.buffer_type = buffer_type
def use_alpha(self):
def use_alpha(self, postfix=""):
"""Outputs the name of the data-type (alpha/beta), possibly transforming into the right type"""
if self.alpha_cpp in [D_FLOAT2, D_DOUBLE2]:
return self.alpha_cpp + "{alpha.s[0], alpha.s[1]}"
return "alpha"
return self.alpha_cpp + "{alpha" + postfix + ".s[0], alpha" + postfix + ".s[1]}"
return "alpha" + postfix
def use_beta(self):
def use_beta(self, postfix=""):
"""As above, but for beta instead of alpha"""
if self.beta_cpp in [D_FLOAT2, D_DOUBLE2]:
return self.beta_cpp + "{beta.s[0], beta.s[1]}"
return "beta"
return self.beta_cpp + "{beta" + postfix + ".s[0], beta" + postfix + ".s[1]}"
return "beta" + postfix
def use_alpha_opencl(self):
"""As above, but the transformation is in the opposite direction"""

View File

@ -20,7 +20,7 @@ def generate(routine):
result = ""
# Routine header
result += "x" + routine.name.upper() + ": " + routine.description + NL
result += "x" + routine.upper_name() + ": " + routine.description + NL
result += "-------------" + NL + NL
result += routine.details + NL + NL
@ -36,7 +36,7 @@ def generate(routine):
result += "```" + NL + NL
# Routine arguments
result += "Arguments to " + routine.name.upper() + ":" + NL + NL
result += "Arguments to " + routine.upper_name() + ":" + NL + NL
for argument in routine.arguments_doc():
result += "* " + argument + NL
result += "* `cl_command_queue* queue`: "
@ -47,7 +47,7 @@ def generate(routine):
# Routine requirements
if len(routine.requirements_doc()) > 0:
result += "Requirements for " + routine.name.upper() + ":" + NL + NL
result += "Requirements for " + routine.upper_name() + ":" + NL + NL
for requirement in routine.requirements_doc():
result += "* " + requirement + NL
result += NL

View File

@ -12,11 +12,12 @@ import generator.convert as convert
class Routine:
"""Class holding routine-specific information (e.g. name, which arguments, which precisions)"""
def __init__(self, implemented, has_tests, level, name, template, flavours, sizes, options,
def __init__(self, implemented, has_tests, batched, level, name, template, flavours, sizes, options,
inputs, outputs, buffer_sizes, scalars, scratch,
description, details, requirements):
self.implemented = implemented
self.has_tests = has_tests
self.batched = batched
self.level = level
self.name = name
self.template = template
@ -32,6 +33,69 @@ class Routine:
self.details = details
self.requirements = requirements
def lowercase_name(self):
postfix = "batched" if self.batched else ""
return self.name + postfix
def plain_name(self):
postfix = "Batched" if self.batched else ""
return self.name + postfix
def capitalized_name(self):
postfix = "Batched" if self.batched else ""
return self.name.capitalize() + postfix
def upper_name(self):
postfix = "BATCHED" if self.batched else ""
return self.name.upper() + postfix
def b_star(self):
return "*" if self.batched else ""
def b_s(self):
return "s" if self.batched else ""
def batch_count_def(self):
return ["const size_t batch_count"] if self.batched else []
def batch_count_list(self):
return ["batch_count"] if self.batched else []
def batch_count_type(self):
return ["const size_t"] if self.batched else []
def batch_count_doc(self):
return ["`const size_t batch_count`: Number of batches. This value must be positive."] if self.batched else []
def batched_transform_to_cpp(self):
result = []
for scalar in self.scalars:
result.append("auto " + scalar + "s_cpp = std::vector<T>();")
for buffer_name in self.inputs + self.outputs:
result.append("auto " + buffer_name + "_buffers_cpp = std::vector<Buffer<T>>();")
result.append("for (auto batch = size_t{0}; batch < batch_count; ++batch) {")
for scalar in self.scalars:
result.append(" " + scalar + "s_cpp.push_back(" + scalar + "s[batch]);")
for buffer_name in self.inputs + self.outputs:
result.append(" " + buffer_name + "_buffers_cpp.push_back(Buffer<T>(" + buffer_name + "_buffers[batch]));")
result.append("}")
return result
def batched_transform_to_complex(self, flavour):
result = []
for scalar in self.scalars:
result.append("auto " + scalar + "s_cpp = std::vector<" + flavour.buffer_type + ">();")
result.append("for (auto batch = size_t{0}; batch < batch_count; ++batch) {")
for scalar in self.scalars:
content = scalar
if scalar == "alpha":
content = flavour.use_alpha(postfix="s[batch]")
elif scalar == "beta":
content = flavour.use_beta(postfix="s[batch]")
result.append(" " + scalar + "s_cpp.push_back(" + content + ");")
result.append("}")
return result
@staticmethod
def scalar_buffers_first():
"""List of scalar buffers"""
@ -127,7 +191,7 @@ class Routine:
def length(self):
"""Retrieves the number of characters in the routine's name"""
return len(self.name)
return len(self.capitalized_name())
def no_scalars(self):
"""Determines whether or not this routine has scalar arguments (alpha/beta)"""
@ -135,13 +199,13 @@ class Routine:
def short_names(self):
"""Returns the upper-case names of these routines (all flavours)"""
return "/".join([f.name + self.name.upper() for f in self.flavours])
return "/".join([f.name + self.upper_name() for f in self.flavours])
def short_names_tested(self):
"""As above, but excludes some"""
names = [f.name + self.name.upper() for f in self.flavours]
if "H" + self.name.upper() in names:
names.remove("H" + self.name.upper())
names = [f.name + self.upper_name() for f in self.flavours]
if "H" + self.upper_name() in names:
names.remove("H" + self.upper_name())
return "/".join(names)
def buffers_first(self):
@ -158,7 +222,7 @@ class Routine:
def buffer(self, name):
"""Retrieves a variable name for a specific input/output vector/matrix (e.g. 'x')"""
if name in self.inputs or name in self.outputs:
a = [name + "_buffer"]
a = [name + "_buffer" + self.b_s()]
b = [name + "_offset"]
c = [name + "_" + self.postfix(name)] if (name not in self.buffers_without_ld_inc()) else []
return [", ".join(a + b + c)]
@ -186,7 +250,7 @@ class Routine:
"""As above but with data-types"""
prefix = "const " if name in self.inputs else ""
if name in self.inputs or name in self.outputs:
a = [prefix + "cl_mem " + name + "_buffer"]
a = [prefix + "cl_mem " + self.b_star() + name + "_buffer" + self.b_s()]
b = ["const size_t " + name + "_offset"]
c = ["const size_t " + name + "_" + self.postfix(name)] if name not in self.buffers_without_ld_inc() else []
return [", ".join(a + b + c)]
@ -227,7 +291,10 @@ class Routine:
"""As above but with CLCudaAPI buffers"""
if name in self.inputs or name in self.outputs:
buffer_type = "unsigned int" if (name in self.index_buffers()) else self.template.buffer_type
a = ["Buffer<" + buffer_type + ">(" + name + "_buffer)"]
if self.batched:
a = [name + "_buffers_cpp"]
else:
a = ["Buffer<" + buffer_type + ">(" + name + "_buffer)"]
b = [name + "_offset"]
c = [name + "_" + self.postfix(name)] if (name not in self.buffers_without_ld_inc()) else []
return [", ".join(a + b + c)]
@ -269,7 +336,7 @@ class Routine:
"""As above, but only data-types"""
prefix = "const " if (name in self.inputs) else ""
if (name in self.inputs) or (name in self.outputs):
a = [prefix + "cl_mem"]
a = [prefix + "cl_mem" + self.b_star()]
b = ["const size_t"]
c = ["const size_t"] if (name not in self.buffers_without_ld_inc()) else []
return [", ".join(a + b + c)]
@ -280,9 +347,9 @@ class Routine:
prefix = "const " if (name in self.inputs) else ""
inout = "input" if (name in self.inputs) else "output"
if (name in self.inputs) or (name in self.outputs):
math_name = name.upper() + " matrix" if (name in self.buffers_matrix()) else name + " vector"
math_name = name.upper() + " matrix" + self.b_s() if (name in self.buffers_matrix()) else name + " vector" + self.b_s()
inc_ld_description = "Leading dimension " if (name in self.buffers_matrix()) else "Stride/increment "
a = ["`" + prefix + "cl_mem " + name + "_buffer`: OpenCL buffer to store the " + inout + " " + math_name + "."]
a = ["`" + prefix + "cl_mem " + self.b_star() + name + "_buffer" + self.b_s() + "`: OpenCL buffer" + self.b_s() + " to store the " + inout + " " + math_name + "."]
b = ["`const size_t " + name + "_offset`: The offset in elements from the start of the " + inout + " " + math_name + "."]
if name not in self.buffers_without_ld_inc():
c = ["`const size_t " + name + "_" + self.postfix(name) + "`: " +
@ -295,6 +362,8 @@ class Routine:
def scalar(self, name):
"""Retrieves the name of a scalar (alpha/beta)"""
if name in self.scalars:
if self.batched:
return [name + "s_cpp"]
return [name]
return []
@ -314,8 +383,12 @@ class Routine:
"""Retrieves the use of a scalar (alpha/beta)"""
if name in self.scalars:
if name == "alpha":
if self.batched:
return ["alphas_cpp.data()"]
return [flavour.use_alpha()]
elif name == "beta":
if self.batched:
return ["betas_cpp.data()"]
return [flavour.use_beta()]
return [name]
return []
@ -342,16 +415,16 @@ class Routine:
"""Retrieves the definition of a scalar (alpha/beta)"""
if name in self.scalars:
if name == "alpha":
return ["const " + flavour.alpha_cl + " " + name]
return ["const " + flavour.beta_cl + " " + name]
return ["const " + flavour.alpha_cl + " " + self.b_star() + name + self.b_s()]
return ["const " + flavour.beta_cl + " " + self.b_star() + name + self.b_s()]
return []
def scalar_def_plain(self, name, flavour):
"""As above, but without 'cl_' prefix"""
if name in self.scalars:
if name == "alpha":
return ["const " + flavour.alpha_cpp + " " + name]
return ["const " + flavour.beta_cpp + " " + name]
return ["const " + flavour.alpha_cpp + " " + self.b_star() + name + self.b_s()]
return ["const " + flavour.beta_cpp + " " + self.b_star() + name + self.b_s()]
return []
def scalar_def_void(self, name, flavour):
@ -368,16 +441,16 @@ class Routine:
"""Retrieves the type of a scalar (alpha/beta)"""
if name in self.scalars:
if name == "alpha":
return ["const " + flavour.alpha_cpp]
return ["const " + flavour.beta_cpp]
return ["const " + flavour.alpha_cpp + self.b_star()]
return ["const " + flavour.beta_cpp + self.b_star()]
return []
def scalar_doc(self, name):
"""Retrieves the documentation of a scalar"""
if name in self.scalars:
if name == "alpha":
return ["`const " + self.template.alpha_cpp + " " + name + "`: Input scalar constant."]
return ["`const " + self.template.beta_cpp + " " + name + "`: Input scalar constant."]
return ["`const " + self.template.alpha_cpp + " " + self.b_star() + name + self.b_s() + "`: Input scalar constant" + self.b_s() + "."]
return ["`const " + self.template.beta_cpp + " " + self.b_star() + name + self.b_s() + "`: Input scalar constant" + self.b_s() + "."]
return []
def scalar_create_cpp(self, flavour):
@ -507,7 +580,8 @@ class Routine:
self.scalar("beta") +
list(chain(*[self.buffer_clcudaapi(b) for b in self.buffers_second()])) +
list(chain(*[self.buffer_clcudaapi(b) for b in self.scalar_buffers_second()])) +
list(chain(*[self.scalar(s) for s in self.other_scalars()])))
list(chain(*[self.scalar(s) for s in self.other_scalars()])) +
self.batch_count_list())
def arguments_cast(self, flavour, indent):
"""As above, but with CLBlast casts"""
@ -518,7 +592,8 @@ class Routine:
self.scalar_use("beta", flavour) +
list(chain(*[self.buffer(b) for b in self.buffers_second()])) +
list(chain(*[self.buffer(b) for b in self.scalar_buffers_second()])) +
list(chain(*[self.scalar_use(s, flavour) for s in self.other_scalars()])))
list(chain(*[self.scalar_use(s, flavour) for s in self.other_scalars()])) +
self.batch_count_list())
def arguments_netlib(self, flavour, indent):
"""As above, but for the Netlib CBLAS API"""
@ -561,7 +636,8 @@ class Routine:
self.scalar_def("beta", flavour) +
list(chain(*[self.buffer_def(b) for b in self.buffers_second()])) +
list(chain(*[self.buffer_def(b) for b in self.scalar_buffers_second()])) +
list(chain(*[self.scalar_def(s, flavour) for s in self.other_scalars()])))
list(chain(*[self.scalar_def(s, flavour) for s in self.other_scalars()])) +
self.batch_count_def())
def arguments_def_netlib(self, flavour):
"""As above, but for the Netlib CBLAS API"""
@ -574,6 +650,7 @@ class Routine:
list(chain(*[self.scalar_def(s, flavour) for s in self.other_scalars()])))
if self.name in self.routines_scalar_no_return():
result += list(chain(*[self.buffer_def_pointer(b, flavour) for b in self.scalar_buffers_first()]))
result += self.batch_count_def()
return result
def arguments_def_c(self, flavour):
@ -585,7 +662,8 @@ class Routine:
self.scalar_def("beta", flavour) +
list(chain(*[self.buffer_def(b) for b in self.buffers_second()])) +
list(chain(*[self.buffer_def(b) for b in self.scalar_buffers_second()])) +
list(chain(*[self.scalar_def(s, flavour) for s in self.other_scalars()])))
list(chain(*[self.scalar_def(s, flavour) for s in self.other_scalars()])) +
self.batch_count_def())
def arguments_def_wrapper_clblas(self, flavour):
"""As above, but clBLAS wrapper plain data-types"""
@ -618,7 +696,8 @@ class Routine:
self.scalar_type("beta", flavour) +
list(chain(*[self.buffer_type(b) for b in self.buffers_second()])) +
list(chain(*[self.buffer_type(b) for b in self.scalar_buffers_second()])) +
list(chain(*[self.scalar_type(s, flavour) for s in self.other_scalars()])))
list(chain(*[self.scalar_type(s, flavour) for s in self.other_scalars()])) +
self.batch_count_type())
def arguments_doc(self):
"""Retrieves a combination of all the argument types"""
@ -630,7 +709,8 @@ class Routine:
self.scalar_doc("beta") +
list(chain(*[self.buffer_doc(b) for b in self.buffers_second()])) +
list(chain(*[self.buffer_doc(b) for b in self.scalar_buffers_second()])) +
list(chain(*[self.scalar_doc(s) for s in self.other_scalars()])))
list(chain(*[self.scalar_doc(s) for s in self.other_scalars()])) +
self.batch_count_doc())
def requirements_doc(self):
"""Retrieves a list of routine requirements for documentation"""
@ -640,7 +720,7 @@ class Routine:
"""Retrieves the C++ templated definition for a routine"""
indent = " " * (spaces + self.length())
result = "template <" + self.template.name + ">\n"
result += "StatusCode " + self.name.capitalize() + "("
result += "StatusCode " + self.capitalized_name() + "("
result += (",\n" + indent).join([a for a in self.arguments_def(self.template)])
result += ",\n" + indent + "cl_command_queue* queue, cl_event* event" + default_event + ")"
return result
@ -649,7 +729,7 @@ class Routine:
"""As above, but now without variable names"""
indent = " " * (spaces + self.length())
result = "template <" + self.template.name + ">\n"
result += "StatusCode " + self.name.capitalize() + "("
result += "StatusCode " + self.capitalized_name() + "("
result += (",\n" + indent).join([a for a in self.arguments_type(self.template)])
result += ",\n" + indent + "cl_command_queue*, cl_event*)"
return result
@ -657,7 +737,7 @@ class Routine:
def routine_header_c(self, flavour, spaces, extra_qualifier):
"""As above, but now for C"""
indent = " " * (spaces + self.length())
result = "CLBlastStatusCode" + extra_qualifier + " CLBlast" + flavour.name + self.name + "("
result = "CLBlastStatusCode" + extra_qualifier + " CLBlast" + flavour.name + self.plain_name() + "("
result += (",\n" + indent).join([a for a in self.arguments_def_c(flavour)])
result += ",\n" + indent + "cl_command_queue* queue, cl_event* event)"
return result
@ -677,6 +757,8 @@ class Routine:
if self.name in self.routines_scalar_no_return():
routine_name += "_sub"
indent += " "
if self.batched:
routine_name += "batched"
result = return_type + extra_qualifier + " cblas_" + flavour.name.lower() + routine_name + "("
result += (",\n" + indent).join([a for a in self.arguments_def_netlib(flavour)]) + ")"
return result

View File

@ -71,6 +71,7 @@
// Level-x includes (non-BLAS)
#include "routines/levelx/xomatcopy.hpp"
#include "routines/levelx/xaxpybatched.hpp"
namespace clblast {
@ -2172,6 +2173,64 @@ template StatusCode PUBLIC_API Omatcopy<half>(const Layout, const Transpose,
const cl_mem, const size_t, const size_t,
cl_mem, const size_t, const size_t,
cl_command_queue*, cl_event*);
// Batched version of AXPY: SAXPYBATCHED/DAXPYBATCHED/CAXPYBATCHED/ZAXPYBATCHED/HAXPYBATCHED
template <typename T>
StatusCode AxpyBatched(const size_t n,
const T *alphas,
const cl_mem *x_buffers, const size_t x_offset, const size_t x_inc,
cl_mem *y_buffers, const size_t y_offset, const size_t y_inc,
const size_t batch_count,
cl_command_queue* queue, cl_event* event) {
try {
auto queue_cpp = Queue(*queue);
auto routine = XaxpyBatched<T>(queue_cpp, event);
auto alphas_cpp = std::vector<T>();
auto x_buffers_cpp = std::vector<Buffer<T>>();
auto y_buffers_cpp = std::vector<Buffer<T>>();
for (auto batch = size_t{0}; batch < batch_count; ++batch) {
alphas_cpp.push_back(alphas[batch]);
x_buffers_cpp.push_back(Buffer<T>(x_buffers[batch]));
y_buffers_cpp.push_back(Buffer<T>(y_buffers[batch]));
}
routine.DoAxpyBatched(n,
alphas_cpp,
x_buffers_cpp, x_offset, x_inc,
y_buffers_cpp, y_offset, y_inc,
batch_count);
return StatusCode::kSuccess;
} catch (...) { return DispatchException(); }
}
template StatusCode PUBLIC_API AxpyBatched<float>(const size_t,
const float*,
const cl_mem*, const size_t, const size_t,
cl_mem*, const size_t, const size_t,
const size_t,
cl_command_queue*, cl_event*);
template StatusCode PUBLIC_API AxpyBatched<double>(const size_t,
const double*,
const cl_mem*, const size_t, const size_t,
cl_mem*, const size_t, const size_t,
const size_t,
cl_command_queue*, cl_event*);
template StatusCode PUBLIC_API AxpyBatched<float2>(const size_t,
const float2*,
const cl_mem*, const size_t, const size_t,
cl_mem*, const size_t, const size_t,
const size_t,
cl_command_queue*, cl_event*);
template StatusCode PUBLIC_API AxpyBatched<double2>(const size_t,
const double2*,
const cl_mem*, const size_t, const size_t,
cl_mem*, const size_t, const size_t,
const size_t,
cl_command_queue*, cl_event*);
template StatusCode PUBLIC_API AxpyBatched<half>(const size_t,
const half*,
const cl_mem*, const size_t, const size_t,
cl_mem*, const size_t, const size_t,
const size_t,
cl_command_queue*, cl_event*);
// =================================================================================================
// Clears the cache of stored binaries

View File

@ -3447,6 +3447,113 @@ CLBlastStatusCode CLBlastHomatcopy(const CLBlastLayout layout, const CLBlastTran
} catch (...) { return static_cast<CLBlastStatusCode>(clblast::DispatchExceptionForC()); }
}
// AXPY
CLBlastStatusCode CLBlastSaxpyBatched(const size_t n,
const float *alphas,
const cl_mem *x_buffers, const size_t x_offset, const size_t x_inc,
cl_mem *y_buffers, const size_t y_offset, const size_t y_inc,
const size_t batch_count,
cl_command_queue* queue, cl_event* event) {
auto alphas_cpp = std::vector<float>();
for (auto batch = size_t{0}; batch < batch_count; ++batch) {
alphas_cpp.push_back(alphas[batch]);
}
try {
return static_cast<CLBlastStatusCode>(
clblast::AxpyBatched(n,
alphas_cpp.data(),
x_buffers, x_offset, x_inc,
y_buffers, y_offset, y_inc,
batch_count,
queue, event)
);
} catch (...) { return static_cast<CLBlastStatusCode>(clblast::DispatchExceptionForC()); }
}
CLBlastStatusCode CLBlastDaxpyBatched(const size_t n,
const double *alphas,
const cl_mem *x_buffers, const size_t x_offset, const size_t x_inc,
cl_mem *y_buffers, const size_t y_offset, const size_t y_inc,
const size_t batch_count,
cl_command_queue* queue, cl_event* event) {
auto alphas_cpp = std::vector<double>();
for (auto batch = size_t{0}; batch < batch_count; ++batch) {
alphas_cpp.push_back(alphas[batch]);
}
try {
return static_cast<CLBlastStatusCode>(
clblast::AxpyBatched(n,
alphas_cpp.data(),
x_buffers, x_offset, x_inc,
y_buffers, y_offset, y_inc,
batch_count,
queue, event)
);
} catch (...) { return static_cast<CLBlastStatusCode>(clblast::DispatchExceptionForC()); }
}
CLBlastStatusCode CLBlastCaxpyBatched(const size_t n,
const cl_float2 *alphas,
const cl_mem *x_buffers, const size_t x_offset, const size_t x_inc,
cl_mem *y_buffers, const size_t y_offset, const size_t y_inc,
const size_t batch_count,
cl_command_queue* queue, cl_event* event) {
auto alphas_cpp = std::vector<float2>();
for (auto batch = size_t{0}; batch < batch_count; ++batch) {
alphas_cpp.push_back(float2{alphas[batch].s[0], alphas[batch].s[1]});
}
try {
return static_cast<CLBlastStatusCode>(
clblast::AxpyBatched(n,
alphas_cpp.data(),
x_buffers, x_offset, x_inc,
y_buffers, y_offset, y_inc,
batch_count,
queue, event)
);
} catch (...) { return static_cast<CLBlastStatusCode>(clblast::DispatchExceptionForC()); }
}
CLBlastStatusCode CLBlastZaxpyBatched(const size_t n,
const cl_double2 *alphas,
const cl_mem *x_buffers, const size_t x_offset, const size_t x_inc,
cl_mem *y_buffers, const size_t y_offset, const size_t y_inc,
const size_t batch_count,
cl_command_queue* queue, cl_event* event) {
auto alphas_cpp = std::vector<double2>();
for (auto batch = size_t{0}; batch < batch_count; ++batch) {
alphas_cpp.push_back(double2{alphas[batch].s[0], alphas[batch].s[1]});
}
try {
return static_cast<CLBlastStatusCode>(
clblast::AxpyBatched(n,
alphas_cpp.data(),
x_buffers, x_offset, x_inc,
y_buffers, y_offset, y_inc,
batch_count,
queue, event)
);
} catch (...) { return static_cast<CLBlastStatusCode>(clblast::DispatchExceptionForC()); }
}
CLBlastStatusCode CLBlastHaxpyBatched(const size_t n,
const cl_half *alphas,
const cl_mem *x_buffers, const size_t x_offset, const size_t x_inc,
cl_mem *y_buffers, const size_t y_offset, const size_t y_inc,
const size_t batch_count,
cl_command_queue* queue, cl_event* event) {
auto alphas_cpp = std::vector<half>();
for (auto batch = size_t{0}; batch < batch_count; ++batch) {
alphas_cpp.push_back(alphas[batch]);
}
try {
return static_cast<CLBlastStatusCode>(
clblast::AxpyBatched(n,
alphas_cpp.data(),
x_buffers, x_offset, x_inc,
y_buffers, y_offset, y_inc,
batch_count,
queue, event)
);
} catch (...) { return static_cast<CLBlastStatusCode>(clblast::DispatchExceptionForC()); }
}
// =================================================================================================
// Clears the cache of stored binaries

View File

@ -0,0 +1,30 @@
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
// Cedric Nugteren <www.cedricnugteren.nl>
//
// =================================================================================================
#include "test/correctness/testblas.hpp"
#include "test/routines/levelx/xaxpybatched.hpp"
// Shortcuts to the clblast namespace
using float2 = clblast::float2;
using double2 = clblast::double2;
// Main function (not within the clblast namespace)
int main(int argc, char *argv[]) {
auto errors = size_t{0};
errors += clblast::RunTests<clblast::TestXaxpyBatched<float>, float, float>(argc, argv, false, "SAXPYBATCHED");
errors += clblast::RunTests<clblast::TestXaxpyBatched<double>, double, double>(argc, argv, true, "DAXPYBATCHED");
errors += clblast::RunTests<clblast::TestXaxpyBatched<float2>, float2, float2>(argc, argv, true, "CAXPYBATCHED");
errors += clblast::RunTests<clblast::TestXaxpyBatched<double2>, double2, double2>(argc, argv, true, "ZAXPYBATCHED");
errors += clblast::RunTests<clblast::TestXaxpyBatched<half>, half, half>(argc, argv, true, "HAXPYBATCHED");
if (errors > 0) { return 1; } else { return 0; }
}
// =================================================================================================

View File

@ -0,0 +1,37 @@
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
// Cedric Nugteren <www.cedricnugteren.nl>
//
// =================================================================================================
#include "test/performance/client.hpp"
#include "test/routines/levelx/xaxpybatched.hpp"
// Shortcuts to the clblast namespace
using float2 = clblast::float2;
using double2 = clblast::double2;
// Main function (not within the clblast namespace)
int main(int argc, char *argv[]) {
const auto command_line_args = clblast::RetrieveCommandLineArguments(argc, argv);
switch(clblast::GetPrecision(command_line_args, clblast::Precision::kSingle)) {
case clblast::Precision::kHalf:
clblast::RunClient<clblast::TestXaxpyBatched<half>, half, half>(argc, argv); break;
case clblast::Precision::kSingle:
clblast::RunClient<clblast::TestXaxpyBatched<float>, float, float>(argc, argv); break;
case clblast::Precision::kDouble:
clblast::RunClient<clblast::TestXaxpyBatched<double>, double, double>(argc, argv); break;
case clblast::Precision::kComplexSingle:
clblast::RunClient<clblast::TestXaxpyBatched<float2>, float2, float2>(argc, argv); break;
case clblast::Precision::kComplexDouble:
clblast::RunClient<clblast::TestXaxpyBatched<double2>, double2, double2>(argc, argv); break;
}
return 0;
}
// =================================================================================================