CLBlast/test/routines/levelx/xaxpybatched.hpp

178 lines
8 KiB
C++

// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
// Cedric Nugteren <www.cedricnugteren.nl>
//
// This file implements a class with static methods to describe the XaxpyBatched routine. Examples of
// such 'descriptions' are how to calculate the size a of buffer or how to run the routine. These
// static methods are used by the correctness tester and the performance tester.
//
// =================================================================================================
#ifndef CLBLAST_TEST_ROUTINES_XAXPYBATCHED_H_
#define CLBLAST_TEST_ROUTINES_XAXPYBATCHED_H_
#include "test/routines/common.hpp"
namespace clblast {
// =================================================================================================
// See comment at top of file for a description of the class
template <typename T>
class TestXaxpyBatched {
public:
// Although it is a non-BLAS routine, it can still be tested against level-1 routines in a loop
static size_t BLASLevel() { return 1; }
// The list of arguments relevant for this routine
static std::vector<std::string> GetOptions() {
return {kArgN,
kArgXInc, kArgYInc,
kArgBatchCount, kArgAlpha};
}
static std::vector<std::string> BuffersIn() { return {kBufVecX, kBufVecY}; }
static std::vector<std::string> BuffersOut() { return {kBufVecY}; }
// Helper for the sizes per batch
static size_t PerBatchSizeX(const Arguments<T> &args) { return args.n * args.x_inc; }
static size_t PerBatchSizeY(const Arguments<T> &args) { return args.n * args.y_inc; }
// Describes how to obtain the sizes of the buffers
static size_t GetSizeX(const Arguments<T> &args) {
return PerBatchSizeX(args) * args.batch_count + args.x_offset;
}
static size_t GetSizeY(const Arguments<T> &args) {
return PerBatchSizeY(args) * args.batch_count + args.y_offset;
}
// Describes how to set the sizes of all the buffers
static void SetSizes(Arguments<T> &args, Queue&) {
args.x_size = GetSizeX(args);
args.y_size = GetSizeY(args);
// Also sets the batch-related variables
args.x_offsets = std::vector<size_t>(args.batch_count);
args.y_offsets = std::vector<size_t>(args.batch_count);
args.alphas = std::vector<T>(args.batch_count);
for (auto batch = size_t{0}; batch < args.batch_count; ++batch) {
args.x_offsets[batch] = batch * PerBatchSizeX(args) + args.x_offset;
args.y_offsets[batch] = batch * PerBatchSizeY(args) + args.y_offset;
args.alphas[batch] = args.alpha + Constant<T>(static_cast<double>(batch + 1));
}
}
// Describes what the default values of the leading dimensions of the matrices are
static size_t DefaultLDA(const Arguments<T> &) { return 1; } // N/A for this routine
static size_t DefaultLDB(const Arguments<T> &) { return 1; } // N/A for this routine
static size_t DefaultLDC(const Arguments<T> &) { return 1; } // N/A for this routine
// Describes which transpose options are relevant for this routine
using Transposes = std::vector<Transpose>;
static Transposes GetATransposes(const Transposes &) { return {}; } // N/A for this routine
static Transposes GetBTransposes(const Transposes &) { return {}; } // N/A for this routine
// Describes how to prepare the input data
static void PrepareData(const Arguments<T>&, Queue&, const int, std::vector<T>&,
std::vector<T>&, std::vector<T>&, std::vector<T>&, std::vector<T>&,
std::vector<T>&, std::vector<T>&) {} // N/A for this routine
// Describes how to run the CLBlast routine
static StatusCode RunRoutine(const Arguments<T> &args, Buffers<T> &buffers, Queue &queue) {
#ifdef OPENCL_API
auto queue_plain = queue();
auto event = cl_event{};
auto status = AxpyBatched(args.n, args.alphas.data(),
buffers.x_vec(), args.x_offsets.data(), args.x_inc,
buffers.y_vec(), args.y_offsets.data(), args.y_inc,
args.batch_count,
&queue_plain, &event);
if (status == StatusCode::kSuccess) { clWaitForEvents(1, &event); clReleaseEvent(event); }
#elif CUDA_API
auto status = AxpyBatched(args.n, args.alphas.data(),
buffers.x_vec(), args.x_offsets.data(), args.x_inc,
buffers.y_vec(), args.y_offsets.data(), args.y_inc,
args.batch_count,
queue.GetContext()(), queue.GetDevice()());
cuStreamSynchronize(queue());
#endif
return status;
}
// Describes how to run the clBLAS routine (for correctness/performance comparison)
#ifdef CLBLAST_REF_CLBLAS
static StatusCode RunReference1(const Arguments<T> &args, Buffers<T> &buffers, Queue &queue) {
auto queue_plain = queue();
for (auto batch = size_t{0}; batch < args.batch_count; ++batch) {
auto event = cl_event{};
auto status = clblasXaxpy(args.n, args.alphas[batch],
buffers.x_vec, args.x_offsets[batch], args.x_inc,
buffers.y_vec, args.y_offsets[batch], args.y_inc,
1, &queue_plain, 0, nullptr, &event);
clWaitForEvents(1, &event);
if (static_cast<StatusCode>(status) != StatusCode::kSuccess) {
return static_cast<StatusCode>(status);
}
}
return StatusCode::kSuccess;
}
#endif
// Describes how to run the CPU BLAS routine (for correctness/performance comparison)
#ifdef CLBLAST_REF_CBLAS
static StatusCode RunReference2(const Arguments<T> &args, BuffersHost<T> &buffers_host, Queue &) {
for (auto batch = size_t{0}; batch < args.batch_count; ++batch) {
cblasXaxpy(args.n, args.alphas[batch],
buffers_host.x_vec, args.x_offsets[batch], args.x_inc,
buffers_host.y_vec, args.y_offsets[batch], args.y_inc);
}
return StatusCode::kSuccess;
}
#endif
// Describes how to run the cuBLAS routine (for correctness/performance comparison)
#ifdef CLBLAST_REF_CUBLAS
static StatusCode RunReference3(const Arguments<T> &args, BuffersCUDA<T> &buffers, Queue &) {
for (auto batch = size_t{0}; batch < args.batch_count; ++batch) {
auto status = cublasXaxpy(reinterpret_cast<cublasHandle_t>(args.cublas_handle), args.n, args.alphas[batch],
buffers.x_vec, args.x_offsets[batch], args.x_inc,
buffers.y_vec, args.y_offsets[batch], args.y_inc);
if (status != CUBLAS_STATUS_SUCCESS) { return StatusCode::kUnknownError; }
}
return StatusCode::kSuccess;
}
#endif
// Describes how to download the results of the computation
static std::vector<T> DownloadResult(const Arguments<T> &args, Buffers<T> &buffers, Queue &queue) {
std::vector<T> result(args.y_size, static_cast<T>(0));
buffers.y_vec.Read(queue, args.y_size, result);
return result;
}
// Describes how to compute the indices of the result buffer
static size_t ResultID1(const Arguments<T> &args) { return args.n; }
static size_t ResultID2(const Arguments<T> &args) { return args.batch_count; }
static size_t GetResultIndex(const Arguments<T> &args, const size_t id1, const size_t id2) {
return (id1 * args.y_inc) + args.y_offsets[id2];
}
// Describes how to compute performance metrics
static size_t GetFlops(const Arguments<T> &args) {
return args.batch_count * (2 * args.n);
}
static size_t GetBytes(const Arguments<T> &args) {
return args.batch_count * (3 * args.n) * sizeof(T);
}
};
// =================================================================================================
} // namespace clblast
// CLBLAST_TEST_ROUTINES_XAXPYBATCHED_H_
#endif