CLBlast/test/routines/levelx/xgemmbatched.hpp
2021-03-13 21:48:04 +01:00

238 lines
12 KiB
C++

// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
// Cedric Nugteren <www.cedricnugteren.nl>
//
// This file implements a class with static methods to describe the XgemmBatched routine. Examples of
// such 'descriptions' are how to calculate the size a of buffer or how to run the routine. These
// static methods are used by the correctness tester and the performance tester.
//
// =================================================================================================
#ifndef CLBLAST_TEST_ROUTINES_XGEMMBATCHED_H_
#define CLBLAST_TEST_ROUTINES_XGEMMBATCHED_H_
#include "test/routines/common.hpp"
namespace clblast {
// =================================================================================================
// See comment at top of file for a description of the class
template <typename T>
class TestXgemmBatched {
public:
// Although it is a non-BLAS routine, it can still be tested against level-3 routines in a loop
static size_t BLASLevel() { return 3; }
// The list of arguments relevant for this routine
static std::vector<std::string> GetOptions() {
return {kArgM, kArgN, kArgK,
kArgLayout, kArgATransp, kArgBTransp,
kArgALeadDim, kArgBLeadDim, kArgCLeadDim,
kArgAOffset, kArgBOffset, kArgCOffset,
kArgBatchCount, kArgAlpha, kArgBeta};
}
static std::vector<std::string> BuffersIn() { return {kBufMatA, kBufMatB, kBufMatC}; }
static std::vector<std::string> BuffersOut() { return {kBufMatC}; }
// Helper for the sizes per batch
static size_t PerBatchSizeA(const Arguments<T> &args) {
auto a_rotated = (args.layout == Layout::kColMajor && args.a_transpose != Transpose::kNo) ||
(args.layout == Layout::kRowMajor && args.a_transpose == Transpose::kNo);
auto a_two = (a_rotated) ? args.m : args.k;
return a_two * args.a_ld;
}
static size_t PerBatchSizeB(const Arguments<T> &args) {
auto b_rotated = (args.layout == Layout::kColMajor && args.b_transpose != Transpose::kNo) ||
(args.layout == Layout::kRowMajor && args.b_transpose == Transpose::kNo);
auto b_two = (b_rotated) ? args.k : args.n;
return b_two * args.b_ld;
}
static size_t PerBatchSizeC(const Arguments<T> &args) {
auto c_rotated = (args.layout == Layout::kRowMajor);
auto c_two = (c_rotated) ? args.m : args.n;
return c_two * args.c_ld;
}
// Describes how to obtain the sizes of the buffers
static size_t GetSizeA(const Arguments<T> &args) {
return PerBatchSizeA(args) * args.batch_count + args.a_offset;
}
static size_t GetSizeB(const Arguments<T> &args) {
return PerBatchSizeB(args) * args.batch_count + args.b_offset;
}
static size_t GetSizeC(const Arguments<T> &args) {
return PerBatchSizeC(args) * args.batch_count + args.c_offset;
}
// Describes how to set the sizes of all the buffers
static void SetSizes(Arguments<T> &args, Queue&) {
args.a_size = GetSizeA(args);
args.b_size = GetSizeB(args);
args.c_size = GetSizeC(args);
// Also sets the batch-related variables
args.a_offsets = std::vector<size_t>(args.batch_count);
args.b_offsets = std::vector<size_t>(args.batch_count);
args.c_offsets = std::vector<size_t>(args.batch_count);
args.alphas = std::vector<T>(args.batch_count);
args.betas = std::vector<T>(args.batch_count);
for (auto batch = size_t{0}; batch < args.batch_count; ++batch) {
args.a_offsets[batch] = batch * PerBatchSizeA(args) + args.a_offset;
args.b_offsets[batch] = batch * PerBatchSizeB(args) + args.b_offset;
args.c_offsets[batch] = batch * PerBatchSizeC(args) + args.c_offset;
args.alphas[batch] = args.alpha + Constant<T>(static_cast<double>(batch + 1));
args.betas[batch] = args.beta + Constant<T>(static_cast<double>(batch + 1));
}
}
// Describes what the default values of the leading dimensions of the matrices are
static size_t DefaultLDA(const Arguments<T> &args) { return args.k; }
static size_t DefaultLDB(const Arguments<T> &args) { return args.n; }
static size_t DefaultLDC(const Arguments<T> &args) { return args.n; }
// Describes which transpose options are relevant for this routine
using Transposes = std::vector<Transpose>;
static Transposes GetATransposes(const Transposes &all) { return all; }
static Transposes GetBTransposes(const Transposes &all) { return all; }
// Describes how to prepare the input data
static void PrepareData(const Arguments<T>&, Queue&, const int, std::vector<T>&,
std::vector<T>&, std::vector<T>&, std::vector<T>&, std::vector<T>&,
std::vector<T>&, std::vector<T>&) {} // N/A for this routine
// Describes how to run the CLBlast routine
static StatusCode RunRoutine(const Arguments<T> &args, Buffers<T> &buffers, Queue &queue) {
// Relaxed requirement on ld_a and ld_b within the library, this is here to match clBLAS
auto a_rotated = (args.layout == Layout::kColMajor && args.a_transpose != Transpose::kNo) ||
(args.layout == Layout::kRowMajor && args.a_transpose == Transpose::kNo);
auto b_rotated = (args.layout == Layout::kColMajor && args.b_transpose != Transpose::kNo) ||
(args.layout == Layout::kRowMajor && args.b_transpose == Transpose::kNo);
auto a_one = (!a_rotated) ? args.m : args.k;
auto b_one = (!b_rotated) ? args.k : args.n;
if (args.a_ld < a_one) { return StatusCode::kInvalidLeadDimA; }
if (args.b_ld < b_one) { return StatusCode::kInvalidLeadDimB; }
#ifdef OPENCL_API
auto queue_plain = queue();
auto event = cl_event{};
auto status = GemmBatched(args.layout, args.a_transpose, args.b_transpose,
args.m, args.n, args.k, args.alphas.data(),
buffers.a_mat(), args.a_offsets.data(), args.a_ld,
buffers.b_mat(), args.b_offsets.data(), args.b_ld, args.betas.data(),
buffers.c_mat(), args.c_offsets.data(), args.c_ld,
args.batch_count,
&queue_plain, &event);
if (status == StatusCode::kSuccess) { clWaitForEvents(1, &event); clReleaseEvent(event); }
#elif CUDA_API
auto status = GemmBatched(args.layout, args.a_transpose, args.b_transpose,
args.m, args.n, args.k, args.alphas.data(),
buffers.a_mat(), args.a_offsets.data(), args.a_ld,
buffers.b_mat(), args.b_offsets.data(), args.b_ld, args.betas.data(),
buffers.c_mat(), args.c_offsets.data(), args.c_ld,
args.batch_count,
queue.GetContext()(), queue.GetDevice()());
cuStreamSynchronize(queue());
#endif
return status;
}
// Describes how to run the clBLAS routine (for correctness/performance comparison)
#ifdef CLBLAST_REF_CLBLAS
static StatusCode RunReference1(const Arguments<T> &args, Buffers<T> &buffers, Queue &queue) {
auto queue_plain = queue();
for (auto batch = size_t{0}; batch < args.batch_count; ++batch) {
auto event = cl_event{};
auto status = clblasXgemm(convertToCLBLAS(args.layout),
convertToCLBLAS(args.a_transpose),
convertToCLBLAS(args.b_transpose),
args.m, args.n, args.k, args.alphas[batch],
buffers.a_mat, args.a_offsets[batch], args.a_ld,
buffers.b_mat, args.b_offsets[batch], args.b_ld, args.betas[batch],
buffers.c_mat, args.c_offsets[batch], args.c_ld,
1, &queue_plain, 0, nullptr, &event);
clWaitForEvents(1, &event);
if (static_cast<StatusCode>(status) != StatusCode::kSuccess) {
return static_cast<StatusCode>(status);
}
}
return StatusCode::kSuccess;
}
#endif
// Describes how to run the CPU BLAS routine (for correctness/performance comparison)
#ifdef CLBLAST_REF_CBLAS
static StatusCode RunReference2(const Arguments<T> &args, BuffersHost<T> &buffers_host, Queue &) {
for (auto batch = size_t{0}; batch < args.batch_count; ++batch) {
cblasXgemm(convertToCBLAS(args.layout),
convertToCBLAS(args.a_transpose),
convertToCBLAS(args.b_transpose),
args.m, args.n, args.k, args.alphas[batch],
buffers_host.a_mat, args.a_offsets[batch], args.a_ld,
buffers_host.b_mat, args.b_offsets[batch], args.b_ld, args.betas[batch],
buffers_host.c_mat, args.c_offsets[batch], args.c_ld);
}
return StatusCode::kSuccess;
}
#endif
// Describes how to run the cuBLAS routine (for correctness/performance comparison)
#ifdef CLBLAST_REF_CUBLAS
static StatusCode RunReference3(const Arguments<T> &args, BuffersCUDA<T> &buffers, Queue &) {
for (auto batch = size_t{0}; batch < args.batch_count; ++batch) {
auto status = cublasXgemm(reinterpret_cast<cublasHandle_t>(args.cublas_handle), args.layout,
convertToCUBLAS(args.a_transpose),
convertToCUBLAS(args.b_transpose),
args.m, args.n, args.k, args.alphas[batch],
buffers.a_mat, args.a_offsets[batch], args.a_ld,
buffers.b_mat, args.b_offsets[batch], args.b_ld, args.betas[batch],
buffers.c_mat, args.c_offsets[batch], args.c_ld);
if (status != CUBLAS_STATUS_SUCCESS) { return StatusCode::kUnknownError; }
}
return StatusCode::kSuccess;
}
#endif
// Describes how to download the results of the computation (more importantly: which buffer)
static std::vector<T> DownloadResult(const Arguments<T> &args, Buffers<T> &buffers, Queue &queue) {
std::vector<T> result(args.c_size, static_cast<T>(0));
buffers.c_mat.Read(queue, args.c_size, result);
return result;
}
// Describes how to compute the indices of the result buffer
static size_t ResultID1(const Arguments<T> &args) { return args.m; }
static size_t ResultID2(const Arguments<T> &args) { return args.n * args.batch_count; }
static size_t GetResultIndex(const Arguments<T> &args, const size_t id1, const size_t id2_3) {
const size_t id2 = id2_3 % args.n;
const size_t id3 = id2_3 / args.n;
return (args.layout == Layout::kRowMajor) ?
id1*args.c_ld + id2 + args.c_offsets[id3]:
id2*args.c_ld + id1 + args.c_offsets[id3];
}
// Describes how to compute performance metrics
static size_t GetFlops(const Arguments<T> &args) {
if((args.precision == Precision::kComplexSingle) || (args.precision == Precision::kComplexDouble)) {
// complex flops
return args.batch_count * args.m * args.n * (8 * args.k - 2);
} else {
// scalar flops
return args.batch_count * args.m * args.n * (2 * args.k - 1);
}
}
static size_t GetBytes(const Arguments<T> &args) {
return args.batch_count * (args.m*args.k + args.k*args.n + 2*args.m*args.n) * sizeof(T);
}
};
// =================================================================================================
} // namespace clblast
// CLBLAST_TEST_ROUTINES_XGEMMBATCHED_H_
#endif