CLBlast/test/routines/level2/xgemv.hpp

180 lines
8 KiB
C++

// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
// Cedric Nugteren <www.cedricnugteren.nl>
//
// This file implements a class with static methods to describe the Xgemv routine. Examples of
// such 'descriptions' are how to calculate the size a of buffer or how to run the routine. These
// static methods are used by the correctness tester and the performance tester.
//
// =================================================================================================
#ifndef CLBLAST_TEST_ROUTINES_XGEMV_H_
#define CLBLAST_TEST_ROUTINES_XGEMV_H_
#include "test/routines/common.hpp"
namespace clblast {
// =================================================================================================
// See comment at top of file for a description of the class
template <typename T>
class TestXgemv {
public:
// The BLAS level: 1, 2, or 3
static size_t BLASLevel() { return 2; }
// The list of arguments relevant for this routine
static std::vector<std::string> GetOptions() {
return {kArgM, kArgN,
kArgLayout, kArgATransp,
kArgALeadDim, kArgXInc, kArgYInc,
kArgAOffset, kArgXOffset, kArgYOffset,
kArgAlpha, kArgBeta};
}
static std::vector<std::string> BuffersIn() { return {kBufMatA, kBufVecX, kBufVecY}; }
static std::vector<std::string> BuffersOut() { return {kBufVecY}; }
// Describes how to obtain the sizes of the buffers
static size_t GetSizeX(const Arguments<T> &args) {
auto a_transposed = (args.a_transpose != Transpose::kNo);
auto n_real = (a_transposed) ? args.m : args.n;
return n_real * args.x_inc + args.x_offset;
}
static size_t GetSizeY(const Arguments<T> &args) {
auto a_transposed = (args.a_transpose != Transpose::kNo);
auto m_real = (a_transposed) ? args.n : args.m;
return m_real * args.y_inc + args.y_offset;
}
static size_t GetSizeA(const Arguments<T> &args) {
auto a_rotated = (args.layout == Layout::kRowMajor);
auto a_two = (a_rotated) ? args.m : args.n;
return a_two * args.a_ld + args.a_offset;
}
// Describes how to set the sizes of all the buffers
static void SetSizes(Arguments<T> &args, Queue&) {
args.a_size = GetSizeA(args);
args.x_size = GetSizeX(args);
args.y_size = GetSizeY(args);
}
// Describes what the default values of the leading dimensions of the matrices are
static size_t DefaultLDA(const Arguments<T> &args) { return args.n; }
static size_t DefaultLDB(const Arguments<T> &) { return 1; } // N/A for this routine
static size_t DefaultLDC(const Arguments<T> &) { return 1; } // N/A for this routine
// Describes which transpose options are relevant for this routine
using Transposes = std::vector<Transpose>;
static Transposes GetATransposes(const Transposes &all) { return all; }
static Transposes GetBTransposes(const Transposes &) { return {}; } // N/A for this routine
// Describes how to prepare the input data
static void PrepareData(const Arguments<T>&, Queue&, const int, std::vector<T>&,
std::vector<T>&, std::vector<T>&, std::vector<T>&, std::vector<T>&,
std::vector<T>&, std::vector<T>&) {} // N/A for this routine
// Describes how to run the CLBlast routine
static StatusCode RunRoutine(const Arguments<T> &args, Buffers<T> &buffers, Queue &queue) {
#ifdef OPENCL_API
auto queue_plain = queue();
auto event = cl_event{};
auto status = Gemv(args.layout, args.a_transpose,
args.m, args.n, args.alpha,
buffers.a_mat(), args.a_offset, args.a_ld,
buffers.x_vec(), args.x_offset, args.x_inc, args.beta,
buffers.y_vec(), args.y_offset, args.y_inc,
&queue_plain, &event);
if (status == StatusCode::kSuccess) { clWaitForEvents(1, &event); clReleaseEvent(event); }
#elif CUDA_API
auto status = Gemv(args.layout, args.a_transpose,
args.m, args.n, args.alpha,
buffers.a_mat(), args.a_offset, args.a_ld,
buffers.x_vec(), args.x_offset, args.x_inc, args.beta,
buffers.y_vec(), args.y_offset, args.y_inc,
queue.GetContext()(), queue.GetDevice()());
cuStreamSynchronize(queue());
#endif
return status;
}
// Describes how to run the clBLAS routine (for correctness/performance comparison)
#ifdef CLBLAST_REF_CLBLAS
static StatusCode RunReference1(const Arguments<T> &args, Buffers<T> &buffers, Queue &queue) {
auto queue_plain = queue();
auto event = cl_event{};
auto status = clblasXgemv(convertToCLBLAS(args.layout),
convertToCLBLAS(args.a_transpose),
args.m, args.n, args.alpha,
buffers.a_mat, args.a_offset, args.a_ld,
buffers.x_vec, args.x_offset, args.x_inc, args.beta,
buffers.y_vec, args.y_offset, args.y_inc,
1, &queue_plain, 0, nullptr, &event);
clWaitForEvents(1, &event);
return static_cast<StatusCode>(status);
}
#endif
// Describes how to run the CPU BLAS routine (for correctness/performance comparison)
#ifdef CLBLAST_REF_CBLAS
static StatusCode RunReference2(const Arguments<T> &args, BuffersHost<T> &buffers_host, Queue &) {
cblasXgemv(convertToCBLAS(args.layout),
convertToCBLAS(args.a_transpose),
args.m, args.n, args.alpha,
buffers_host.a_mat, args.a_offset, args.a_ld,
buffers_host.x_vec, args.x_offset, args.x_inc, args.beta,
buffers_host.y_vec, args.y_offset, args.y_inc);
return StatusCode::kSuccess;
}
#endif
// Describes how to run the cuBLAS routine (for correctness/performance comparison)
#ifdef CLBLAST_REF_CUBLAS
static StatusCode RunReference3(const Arguments<T> &args, BuffersCUDA<T> &buffers, Queue &) {
auto status = cublasXgemv(reinterpret_cast<cublasHandle_t>(args.cublas_handle), args.layout,
convertToCUBLAS(args.a_transpose),
args.m, args.n, args.alpha,
buffers.a_mat, args.a_offset, args.a_ld,
buffers.x_vec, args.x_offset, args.x_inc, args.beta,
buffers.y_vec, args.y_offset, args.y_inc);
if (status == CUBLAS_STATUS_SUCCESS) { return StatusCode::kSuccess; } else { return StatusCode::kUnknownError; }
}
#endif
// Describes how to download the results of the computation (more importantly: which buffer)
static std::vector<T> DownloadResult(const Arguments<T> &args, Buffers<T> &buffers, Queue &queue) {
std::vector<T> result(args.y_size, static_cast<T>(0));
buffers.y_vec.Read(queue, args.y_size, result);
return result;
}
// Describes how to compute the indices of the result buffer
static size_t ResultID1(const Arguments<T> &args) {
auto a_transposed = (args.a_transpose != Transpose::kNo);
return (a_transposed) ? args.n : args.m;
}
static size_t ResultID2(const Arguments<T> &) { return 1; } // N/A for this routine
static size_t GetResultIndex(const Arguments<T> &args, const size_t id1, const size_t) {
return id1*args.y_inc + args.y_offset;
}
// Describes how to compute performance metrics
static size_t GetFlops(const Arguments<T> &args) {
return 2 * args.m * args.n;
}
static size_t GetBytes(const Arguments<T> &args) {
return (args.m*args.n + 2*args.m + args.n) * sizeof(T);
}
};
// =================================================================================================
} // namespace clblast
// CLBLAST_TEST_ROUTINES_XGEMV_H_
#endif