CLBlast/test/routines/level3/xher2k.hpp

167 lines
7.1 KiB
C++

// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
// Cedric Nugteren <www.cedricnugteren.nl>
//
// This file implements a class with static methods to describe the Xher2k routine. Examples of
// such 'descriptions' are how to calculate the size a of buffer or how to run the routine. These
// static methods are used by the correctness tester and the performance tester.
//
// =================================================================================================
#ifndef CLBLAST_TEST_ROUTINES_XHER2K_H_
#define CLBLAST_TEST_ROUTINES_XHER2K_H_
#include <vector>
#include <string>
#ifdef CLBLAST_REF_CLBLAS
#include "test/wrapper_clblas.hpp"
#endif
#ifdef CLBLAST_REF_CBLAS
#include "test/wrapper_cblas.hpp"
#endif
namespace clblast {
// =================================================================================================
// See comment at top of file for a description of the class
template <typename T, typename U>
class TestXher2k {
public:
// The BLAS level: 1, 2, or 3
static size_t BLASLevel() { return 3; }
// The list of arguments relevant for this routine
static std::vector<std::string> GetOptions() {
return {kArgN, kArgK,
kArgLayout, kArgTriangle, kArgATransp,
kArgALeadDim, kArgBLeadDim, kArgCLeadDim,
kArgAOffset, kArgBOffset, kArgCOffset,
kArgAlpha, kArgBeta};
}
// Describes how to obtain the sizes of the buffers
static size_t GetSizeA(const Arguments<U> &args) {
auto a_rotated = (args.layout == Layout::kColMajor && args.a_transpose != Transpose::kNo) ||
(args.layout == Layout::kRowMajor && args.a_transpose == Transpose::kNo);
auto a_two = (a_rotated) ? args.n : args.k;
return a_two * args.a_ld + args.a_offset;
}
static size_t GetSizeB(const Arguments<U> &args) {
auto b_rotated = (args.layout == Layout::kColMajor && args.a_transpose != Transpose::kNo) ||
(args.layout == Layout::kRowMajor && args.a_transpose == Transpose::kNo);
auto b_two = (b_rotated) ? args.n : args.k;
return b_two * args.b_ld + args.b_offset;
}
static size_t GetSizeC(const Arguments<U> &args) {
return args.n * args.c_ld + args.c_offset;
}
// Describes how to set the sizes of all the buffers
static void SetSizes(Arguments<U> &args) {
args.a_size = GetSizeA(args);
args.b_size = GetSizeB(args);
args.c_size = GetSizeC(args);
}
// Describes what the default values of the leading dimensions of the matrices are
static size_t DefaultLDA(const Arguments<U> &args) { return args.k; }
static size_t DefaultLDB(const Arguments<U> &args) { return args.k; }
static size_t DefaultLDC(const Arguments<U> &args) { return args.n; }
// Describes which transpose options are relevant for this routine
using Transposes = std::vector<Transpose>;
static Transposes GetATransposes(const Transposes &) { return {Transpose::kNo, Transpose::kConjugate}; }
static Transposes GetBTransposes(const Transposes &) { return {}; } // N/A for this routine
// Describes how to run the CLBlast routine
static StatusCode RunRoutine(const Arguments<U> &args, Buffers<T> &buffers, Queue &queue) {
auto queue_plain = queue();
auto event = cl_event{};
auto alpha2 = T{args.alpha, args.alpha};
auto status = Her2k(args.layout, args.triangle, args.a_transpose,
args.n, args.k, alpha2,
buffers.a_mat(), args.a_offset, args.a_ld,
buffers.b_mat(), args.b_offset, args.b_ld, args.beta,
buffers.c_mat(), args.c_offset, args.c_ld,
&queue_plain, &event);
clWaitForEvents(1, &event);
return status;
}
// Describes how to run the clBLAS routine (for correctness/performance comparison)
#ifdef CLBLAST_REF_CLBLAS
static StatusCode RunReference1(const Arguments<U> &args, Buffers<T> &buffers, Queue &queue) {
auto queue_plain = queue();
auto event = cl_event{};
auto alpha2 = T{args.alpha, args.alpha};
auto status = clblasXher2k(convertToCLBLAS(args.layout),
convertToCLBLAS(args.triangle),
convertToCLBLAS(args.a_transpose),
args.n, args.k, alpha2,
buffers.a_mat, args.a_offset, args.a_ld,
buffers.b_mat, args.b_offset, args.b_ld, args.beta,
buffers.c_mat, args.c_offset, args.c_ld,
1, &queue_plain, 0, nullptr, &event);
clWaitForEvents(1, &event);
return static_cast<StatusCode>(status);
}
#endif
// Describes how to run the CPU BLAS routine (for correctness/performance comparison)
#ifdef CLBLAST_REF_CBLAS
static StatusCode RunReference2(const Arguments<U> &args, Buffers<T> &buffers, Queue &queue) {
std::vector<T> a_mat_cpu(args.a_size, static_cast<T>(0));
std::vector<T> b_mat_cpu(args.b_size, static_cast<T>(0));
std::vector<T> c_mat_cpu(args.c_size, static_cast<T>(0));
buffers.a_mat.Read(queue, args.a_size, a_mat_cpu);
buffers.b_mat.Read(queue, args.b_size, b_mat_cpu);
buffers.c_mat.Read(queue, args.c_size, c_mat_cpu);
auto alpha2 = T{args.alpha, args.alpha};
cblasXher2k(convertToCBLAS(args.layout),
convertToCBLAS(args.triangle),
convertToCBLAS(args.a_transpose),
args.n, args.k, alpha2,
a_mat_cpu, args.a_offset, args.a_ld,
b_mat_cpu, args.b_offset, args.b_ld, args.beta,
c_mat_cpu, args.c_offset, args.c_ld);
buffers.c_mat.Write(queue, args.c_size, c_mat_cpu);
return StatusCode::kSuccess;
}
#endif
// Describes how to download the results of the computation (more importantly: which buffer)
static std::vector<T> DownloadResult(const Arguments<U> &args, Buffers<T> &buffers, Queue &queue) {
std::vector<T> result(args.c_size, static_cast<T>(0));
buffers.c_mat.Read(queue, args.c_size, result);
return result;
}
// Describes how to compute the indices of the result buffer
static size_t ResultID1(const Arguments<U> &args) { return args.n; }
static size_t ResultID2(const Arguments<U> &args) { return args.n; }
static size_t GetResultIndex(const Arguments<U> &args, const size_t id1, const size_t id2) {
return id1*args.c_ld + id2 + args.c_offset;
}
// Describes how to compute performance metrics
static size_t GetFlops(const Arguments<U> &args) {
return 2 * args.n * args.n * args.k;
}
static size_t GetBytes(const Arguments<U> &args) {
return (args.n*args.k + args.n*args.n) * sizeof(T);
}
};
// =================================================================================================
} // namespace clblast
// CLBLAST_TEST_ROUTINES_XHER2K_H_
#endif