CUDA: Implemented row flattening for non-glm RoPE (#2468)

This commit is contained in:
Johannes Gäßler 2023-07-31 14:32:30 +02:00 committed by GitHub
parent 2dbf518911
commit 1215ed7d5c
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -3150,7 +3150,8 @@ static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne,
} }
// rope == RoPE == rotary positional embedding // rope == RoPE == rotary positional embedding
static __global__ void rope_f32(const float * x, float * dst, const int ncols, const float p, const float theta_scale) { static __global__ void rope_f32(const float * x, float * dst, const int ncols, const float p0,
const float p_delta, const int p_delta_rows, const float theta_scale) {
const int col = 2*(blockDim.x*blockIdx.x + threadIdx.x); const int col = 2*(blockDim.x*blockIdx.x + threadIdx.x);
if (col >= ncols) { if (col >= ncols) {
@ -3160,7 +3161,7 @@ static __global__ void rope_f32(const float * x, float * dst, const int ncols, c
const int row = blockDim.y*blockIdx.y + threadIdx.y; const int row = blockDim.y*blockIdx.y + threadIdx.y;
const int i = row*ncols + col; const int i = row*ncols + col;
const float theta = p*powf(theta_scale, col/2); const float theta = (p0 + p_delta * (row/p_delta_rows))*powf(theta_scale, col/2);
const float sin_theta = sinf(theta); const float sin_theta = sinf(theta);
const float cos_theta = cosf(theta); const float cos_theta = cosf(theta);
@ -3764,12 +3765,13 @@ static void scale_f32_cuda(const float * x, float * dst, const float scale, cons
scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, k); scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, k);
} }
static void rope_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p, const float theta_scale, cudaStream_t stream) { static void rope_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p0,
const float p_delta, const int p_delta_rows, const float theta_scale, cudaStream_t stream) {
GGML_ASSERT(nrows % 2 == 0); GGML_ASSERT(nrows % 2 == 0);
const dim3 block_dims(2*CUDA_ROPE_BLOCK_SIZE, 1, 1); const dim3 block_dims(2*CUDA_ROPE_BLOCK_SIZE, 1, 1);
const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE); const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
const dim3 block_nums(num_blocks_x, nrows, 1); const dim3 block_nums(num_blocks_x, nrows, 1);
rope_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p, theta_scale); rope_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p0, p_delta, p_delta_rows, theta_scale);
} }
static void rope_glm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p, const float block_p, const float theta_scale, cudaStream_t stream) { static void rope_glm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p, const float block_p, const float theta_scale, cudaStream_t stream) {
@ -4465,6 +4467,7 @@ inline void ggml_cuda_op_rope(
GGML_ASSERT(dst_ddf_i != nullptr); GGML_ASSERT(dst_ddf_i != nullptr);
const int64_t ne00 = src0->ne[0]; const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const int64_t i01_diff = i01_high - i01_low; const int64_t i01_diff = i01_high - i01_low;
const int n_past = ((int32_t *) dst->op_params)[0]; const int n_past = ((int32_t *) dst->op_params)[0];
@ -4478,17 +4481,18 @@ inline void ggml_cuda_op_rope(
memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float)); memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
const float theta_scale = powf(freq_base, -2.0f/n_dims); const float theta_scale = powf(freq_base, -2.0f/n_dims);
const float p = (((mode & 1) == 0 ? n_past + i02 : i02)) * freq_scale;
bool is_glm = mode & 4; const bool is_glm = mode & 4;
// compute // compute
if (is_glm) { if (is_glm) {
const float p = (((mode & 1) == 0 ? n_past + i02 : i02)) * freq_scale;
const float id_p = min(p, n_ctx - 2.f); const float id_p = min(p, n_ctx - 2.f);
const float block_p = max(p - (n_ctx - 2.f), 0.f); const float block_p = max(p - (n_ctx - 2.f), 0.f);
rope_glm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, id_p, block_p, theta_scale, cudaStream_main); rope_glm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, id_p, block_p, theta_scale, cudaStream_main);
} else { } else {
rope_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p, theta_scale, cudaStream_main); const float p0 = (((mode & 1) == 0 ? n_past : 0)) * freq_scale;
rope_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p0, freq_scale, ne01, theta_scale, cudaStream_main);
} }
(void) src1; (void) src1;
@ -5103,7 +5107,10 @@ void ggml_cuda_soft_max(const ggml_tensor * src0, const ggml_tensor * src1, ggml
void ggml_cuda_rope(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { void ggml_cuda_rope(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rope, true, false); // FIXME flatten changes results
const int mode = ((int32_t *) dst->op_params)[2];
const bool is_glm = mode & 4;
ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rope, true, !is_glm); // flatten support not implemented for glm
} }
void ggml_cuda_nop(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { void ggml_cuda_nop(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {