From f5fe98d11bdf9e7797bcfb05c0c3601ffc4b9d26 Mon Sep 17 00:00:00 2001 From: Evan Jones Date: Tue, 22 Aug 2023 21:01:57 -0400 Subject: [PATCH] docs : add grammar docs (#2701) * docs : add grammar docs * tweaks to grammar guide * rework GBNF example to be a commented grammar --- README.md | 12 ++++++ examples/main/README.md | 4 ++ grammars/README.md | 91 +++++++++++++++++++++++++++++++++++++++++ 3 files changed, 107 insertions(+) create mode 100644 grammars/README.md diff --git a/README.md b/README.md index 82e070ac3..f746c49eb 100644 --- a/README.md +++ b/README.md @@ -39,6 +39,7 @@ Last revision compatible with the old format: [dadbed9](https://github.com/ggerg
  • Memory/Disk Requirements
  • Quantization
  • Interactive mode
  • +
  • Constrained output with grammars
  • Instruction mode with Alpaca
  • Using OpenLLaMA
  • Using GPT4All
  • @@ -604,6 +605,16 @@ PROMPT_TEMPLATE=./prompts/chat-with-bob.txt PROMPT_CACHE_FILE=bob.prompt.bin \ CHAT_SAVE_DIR=./chat/bob ./examples/chat-persistent.sh ``` +### Constrained output with grammars + +`llama.cpp` supports grammars to constrain model output. For example, you can force the model to output JSON only: + +```bash +./main -m ./models/13B/ggml-model-q4_0.gguf -n 256 --grammar-file grammars/json.gbnf -p 'Request: schedule a call at 8pm; Command:' +``` + +The `grammars/` folder contains a handful of sample grammars. To write your own, check out the [GBNF Guide](./grammars/README.md). + ### Instruction mode with Alpaca 1. First, download the `ggml` Alpaca model into the `./models` folder @@ -885,3 +896,4 @@ docker run --gpus all -v /path/to/models:/models local/llama.cpp:light-cuda -m / - [BLIS](./docs/BLIS.md) - [Performance troubleshooting](./docs/token_generation_performance_tips.md) - [GGML tips & tricks](https://github.com/ggerganov/llama.cpp/wiki/GGML-Tips-&-Tricks) +- [GBNF grammars](./grammars/README.md) diff --git a/examples/main/README.md b/examples/main/README.md index 60e3907d5..d555afdcc 100644 --- a/examples/main/README.md +++ b/examples/main/README.md @@ -288,6 +288,10 @@ These options help improve the performance and memory usage of the LLaMA models. - `--prompt-cache FNAME`: Specify a file to cache the model state after the initial prompt. This can significantly speed up the startup time when you're using longer prompts. The file is created during the first run and is reused and updated in subsequent runs. **Note**: Restoring a cached prompt does not imply restoring the exact state of the session at the point it was saved. So even when specifying a specific seed, you are not guaranteed to get the same sequence of tokens as the original generation. +### Grammars + +- `--grammar GRAMMAR`, `--grammar-file FILE`: Specify a grammar (defined inline or in a file) to constrain model output to a specific format. For example, you could force the model to output JSON or to speak only in emojis. See the [GBNF guide](../../grammars/README.md) for details on the syntax. + ### Quantization For information about 4-bit quantization, which can significantly improve performance and reduce memory usage, please refer to llama.cpp's primary [README](../../README.md#prepare-data--run). diff --git a/grammars/README.md b/grammars/README.md new file mode 100644 index 000000000..7f3b11ca5 --- /dev/null +++ b/grammars/README.md @@ -0,0 +1,91 @@ +# GBNF Guide + +GBNF (GGML BNF) is a format for defining [formal grammars](https://en.wikipedia.org/wiki/Formal_grammar) to constrain model outputs in `llama.cpp`. For example, you can use it to force the model to generate valid JSON, or speak only in emojis. GBNF grammars are supported in various ways in `examples/main` and `examples/server`. + +## Background + +[Bakus-Naur Form (BNF)](https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form) is a notation for describing the syntax of formal languages like programming languages, file formats, and protocols. GBNF is an extension of BNF that primarily adds a few modern regex-like features. + +## Basics + +In GBNF, we define *production rules* that specify how a *non-terminal* (rule name) can be replaced with sequences of *terminals* (characters, specifically Unicode [code points](https://en.wikipedia.org/wiki/Code_point)) and other non-terminals. The basic format of a production rule is `nonterminal ::= sequence...`. + +## Example + +Before going deeper, let's look at some of the features demonstrated in `grammars/chess.gbnf`, a small chess notation grammar: +``` +# `root` specifies the pattern for the overall output +root ::= ( + # it must start with the characters "1. " followed by a sequence + # of characters that match the `move` rule, followed by a space, followed + # by another move, and then a newline + "1. " move " " move "\n" + + # it's followed by one or more subsequent moves, numbered with one or two digits + ([1-9] [0-9]? ". " move " " move "\n")+ +) + +# `move` is an abstract representation, which can be a pawn, nonpawn, or castle. +# The `[+#]?` denotes the possibility of checking or mate signs after moves +move ::= (pawn | nonpawn | castle) [+#]? + +pawn ::= ... +nonpawn ::= ... +castle ::= ... +``` + +## Non-Terminals and Terminals + +Non-terminal symbols (rule names) stand for a pattern of terminals and other non-terminals. They are required to be a dashed lowercase word, like `move`, `castle`, or `check-mate`. + +Terminals are actual characters ([code points](https://en.wikipedia.org/wiki/Code_point)). They can be specified as a sequence like `"1"` or `"O-O"` or as ranges like `[1-9]` or `[NBKQR]`. + +## Characters and character ranges + +Terminals support the full range of Unicode. Unicode characters can be specified directly in the grammar, for example `hiragana ::= [ぁ-ゟ]`, or with escapes: 8-bit (`\xXX`), 16-bit (`\uXXXX`) or 32-bit (`\UXXXXXXXX`). + +Character ranges can be negated with `^`: +``` +single-line ::= [^\n]+ "\n"` +``` + +## Sequences and Alternatives + +The order of symbols in a sequence matter. For example, in `"1. " move " " move "\n"`, the `"1. "` must come before the first `move`, etc. + +Alternatives, denoted by `|`, give different sequences that are acceptable. For example, in `move ::= pawn | nonpawn | castle`, `move` can be a `pawn` move, a `nonpawn` move, or a `castle`. + +Parentheses `()` can be used to group sequences, which allows for embedding alternatives in a larger rule or applying repetition and optptional symbols (below) to a sequence. + +## Repetition and Optional Symbols + +- `*` after a symbol or sequence means that it can be repeated zero or more times. +- `+` denotes that the symbol or sequence should appear one or more times. +- `?` makes the preceding symbol or sequence optional. + +## Comments and newlines + +Comments can be specified with `#`: +``` +# defines optional whitspace +ws ::= [ \t\n]+ +``` + +Newlines are allowed between rules and between symbols or sequences nested inside parentheses. Additionally, a newline after an alternate marker `|` will continue the current rule, even outside of parentheses. + +## The root rule + +In a full grammar, the `root` rule always defines the starting point of the grammar. In other words, it specifies what the entire output must match. + +``` +# a grammar for lists +root ::= ("- " item)+ +item ::= [^\n]+ "\n" +``` + +## Next steps + +This guide provides a brief overview. Check out the GBNF files in this directory (`grammars/`) for examples of full grammars. You can try them out with: +``` +./main -m --grammar-file grammars/some-grammar.gbnf -p 'Some prompt' +```