#include using namespace metal; #define MAX(x, y) ((x) > (y) ? (x) : (y)) #define QK4_0 32 #define QR4_0 2 typedef struct { half d; // delta uint8_t qs[QK4_0 / 2]; // nibbles / quants } block_q4_0; static void dequantize_row_q4_0(device const block_q4_0 * x, device float * y, int k) { const int qk = QK4_0; assert(k % qk == 0); const int nb = k / qk; for (int i = 0; i < nb; i++) { const half d = x[i].d; for (int j = 0; j < qk/2; ++j) { const int x0 = (x[i].qs[j] & 0x0F) - 8; const int x1 = (x[i].qs[j] >> 4) - 8; y[i*qk + j + 0 ] = x0*d; y[i*qk + j + qk/2] = x1*d; } } } kernel void kernel_add( device const float * src0, device const float * src1, device float * dst, uint tpig[[thread_position_in_grid]]) { dst[tpig] = src0[tpig] + src1[tpig]; } kernel void kernel_mul( device const float * src0, device const float * src1, device float * dst, uint tpig[[thread_position_in_grid]]) { dst[tpig] = src0[tpig] * src1[tpig]; } // assumption: src1 is a row // broadcast src1 into src0 kernel void kernel_mul_row( device const float * src0, device const float * src1, device float * dst, constant int64_t & ne00, uint tpig[[thread_position_in_grid]]) { dst[tpig] = src0[tpig] * src1[tpig % ne00]; } kernel void kernel_scale( device const float * src0, device float * dst, constant float & scale, uint tpig[[thread_position_in_grid]]) { dst[tpig] = src0[tpig] * scale; } kernel void kernel_silu( device const float * src0, device float * dst, uint tpig[[thread_position_in_grid]]) { float x = src0[tpig]; dst[tpig] = x / (1.0f + exp(-x)); } kernel void kernel_relu( device const float * src0, device float * dst, uint tpig[[thread_position_in_grid]]) { dst[tpig] = max(0.0f, src0[tpig]); } kernel void kernel_soft_max( device const float * src0, device float * dst, constant int64_t & ne00, constant int64_t & ne01, constant int64_t & ne02, threadgroup float * buf [[threadgroup(0)]], uint3 tgpig[[threadgroup_position_in_grid]], uint3 tpitg[[thread_position_in_threadgroup]], uint3 ntg[[threads_per_threadgroup]]) { const int64_t i03 = tgpig[2]; const int64_t i02 = tgpig[1]; const int64_t i01 = tgpig[0]; device const float * psrc0 = src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; device float * pdst = dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; // parallel max buf[tpitg[0]] = -INFINITY; for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) { buf[tpitg[0]] = MAX(buf[tpitg[0]], psrc0[i00]); } // reduce threadgroup_barrier(mem_flags::mem_threadgroup); for (uint i = ntg[0]/2; i > 0; i /= 2) { if (tpitg[0] < i) { buf[tpitg[0]] = MAX(buf[tpitg[0]], buf[tpitg[0] + i]); } threadgroup_barrier(mem_flags::mem_threadgroup); } // broadcast if (tpitg[0] == 0) { buf[0] = buf[0]; } threadgroup_barrier(mem_flags::mem_threadgroup); const float max = buf[0]; // parallel sum buf[tpitg[0]] = 0.0f; for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) { buf[tpitg[0]] += exp(psrc0[i00] - max); } // reduce threadgroup_barrier(mem_flags::mem_threadgroup); for (uint i = ntg[0]/2; i > 0; i /= 2) { if (tpitg[0] < i) { buf[tpitg[0]] += buf[tpitg[0] + i]; } threadgroup_barrier(mem_flags::mem_threadgroup); } // broadcast if (tpitg[0] == 0) { buf[0] = buf[0]; } threadgroup_barrier(mem_flags::mem_threadgroup); const float sum = buf[0]; for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) { pdst[i00] = exp(psrc0[i00] - max) / sum; } } kernel void kernel_diag_mask_inf( device const float * src0, device float * dst, constant int64_t & ne00, constant int64_t & ne01, constant int & n_past, uint3 tpig[[thread_position_in_grid]]) { const int64_t i02 = tpig[2]; const int64_t i01 = tpig[1]; const int64_t i00 = tpig[0]; if (i00 > n_past + i01) { dst[i02*ne01*ne00 + i01*ne00 + i00] = -INFINITY; } else { dst[i02*ne01*ne00 + i01*ne00 + i00] = src0[i02*ne01*ne00 + i01*ne00 + i00]; } } kernel void kernel_get_rows_f16( device const void * src0, device const int * src1, device float * dst, constant int64_t & ne00, constant uint64_t & nb01, constant uint64_t & nb1, uint tpig[[thread_position_in_grid]]) { const int i = tpig; const int r = ((device int32_t *) src1)[i]; for (int j = 0; j < ne00; j++) { dst[i*nb1 + j] = ((device half *) ((device char *) src0 + r*nb01))[j]; } } kernel void kernel_get_rows_q4_0( device const void * src0, device const int * src1, device float * dst, constant int64_t & ne00, constant uint64_t & nb01, constant uint64_t & nb1, uint tpig[[thread_position_in_grid]]) { const int i = tpig; const int r = ((device int32_t *) src1)[i]; dequantize_row_q4_0( (device const block_q4_0 *) ((device char *) src0 + r*nb01), (device float *) ((device char *) dst + i*nb1), ne00); } kernel void kernel_rms_norm( device const void * src0, device float * dst, constant int64_t & ne00, constant uint64_t & nb01, constant float & eps, threadgroup float * sum [[threadgroup(0)]], uint tgpig[[threadgroup_position_in_grid]], uint tpitg[[thread_position_in_threadgroup]], uint ntg[[threads_per_threadgroup]]) { device const float * x = (device const float *) ((device const char *) src0 + tgpig*nb01); // parallel sum sum[tpitg] = 0.0f; for (int i00 = tpitg; i00 < ne00; i00 += ntg) { sum[tpitg] += x[i00] * x[i00]; } // reduce threadgroup_barrier(mem_flags::mem_threadgroup); for (uint i = ntg/2; i > 0; i /= 2) { if (tpitg < i) { sum[tpitg] += sum[tpitg + i]; } threadgroup_barrier(mem_flags::mem_threadgroup); } // broadcast if (tpitg == 0) { sum[0] /= ne00; } threadgroup_barrier(mem_flags::mem_threadgroup); const float mean = sum[0]; const float scale = 1.0f/sqrt(mean + eps); device float * y = dst + tgpig*ne00; for (int i00 = tpitg; i00 < ne00; i00 += ntg) { y[i00] = x[i00] * scale; } } kernel void kernel_mul_mat_q4_0_f32( device const void * src0, device const float * src1, device float * dst, constant int64_t & ne00, constant int64_t & ne01, constant uint64_t & nb00, constant uint64_t & nb01, constant uint64_t & nb02, constant int64_t & ne10, constant int64_t & ne11, constant uint64_t & nb10, constant uint64_t & nb11, constant uint64_t & nb12, constant int64_t & ne0, constant int64_t & ne1, threadgroup float * sum [[threadgroup(0)]], uint2 tgpig[[threadgroup_position_in_grid]], uint2 tpig[[thread_position_in_grid]], uint2 tpitg[[thread_position_in_threadgroup]], uint2 tptg[[threads_per_threadgroup]]) { const int nb = ne00/QK4_0; const int64_t r0 = tgpig.x; const int64_t r1 = tgpig.y; device const block_q4_0 * x = (device const block_q4_0 *) src0 + r0*nb; device const float * y = (device const float *) src1 + r1*ne10; const uint nth = tptg.x*tptg.y; const uint ith = tptg.y*tpitg.x + tpitg.y; sum[ith] = 0.0f; for (int i = tpitg.x; i < nb; i += tptg.x) { device const uchar4 * x0p = (device const uchar4 *) (x + i)->qs; device const float4 * y0p = (device const float4 *) (y + i*QK4_0); const float d = (float)((x + i)->d); const uchar4 x0v = *(x0p + tpitg.y); const float4 y0v = *(y0p + tpitg.y + 0); const float4 y1v = *(y0p + tpitg.y + 4); float acc = 0.0f; for (int j = 0; j < 4; ++j) { const int x0 = x0v[j] & 0x0F; const int x1 = x0v[j] >> 4; const float y0 = y0v[j]; const float y1 = y1v[j]; acc += (x0 - 8)*y0 + (x1 - 8)*y1; } sum[ith] += acc*d; } // // Accumulate the sum from all threads in the threadgroup // This version is slightly faster than the commented out one below, // which I copy-pasted from ggerganov's q4_0 dot product for metal. // threadgroup_barrier(mem_flags::mem_threadgroup); if (ith%4 == 0) { for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i]; } threadgroup_barrier(mem_flags::mem_threadgroup); if (ith%16 == 0) { for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i]; } threadgroup_barrier(mem_flags::mem_threadgroup); if (ith == 0) { for (int i = 16; i < nth; i += 16) sum[0] += sum[i]; dst[r1*ne0 + r0] = sum[0]; } //// accumulate the sum from all threads in the threadgroup //threadgroup_barrier(mem_flags::mem_threadgroup); //for (uint i = nth/2; i > 0; i /= 2) { // if (ith < i) { // sum[ith] += sum[ith + i]; // } // threadgroup_barrier(mem_flags::mem_threadgroup); //} //if (ith == 0) { // dst[r1*ne0 + r0] = sum[0]; //} } kernel void kernel_mul_mat_f16_f32( device const char * src0, device const char * src1, device float * dst, constant int64_t & ne00, constant int64_t & ne01, constant uint64_t & nb00, constant uint64_t & nb01, constant uint64_t & nb02, constant int64_t & ne10, constant int64_t & ne11, constant uint64_t & nb10, constant uint64_t & nb11, constant uint64_t & nb12, constant int64_t & ne0, constant int64_t & ne1, threadgroup float * sum [[threadgroup(0)]], uint3 tgpig[[threadgroup_position_in_grid]], uint3 tpig[[thread_position_in_grid]], uint3 tpitg[[thread_position_in_threadgroup]], uint3 tptg[[threads_per_threadgroup]]) { const int64_t r0 = tgpig.x; const int64_t r1 = tgpig.y; const int64_t im = tgpig.z; device const half * x = (device const half *) (src0 + r0*nb01 + im*nb02); device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12); sum[tpitg.x] = 0.0f; for (int i = tpitg.x; i < ne00; i += tptg.x) { sum[tpitg.x] += (float) x[i] * (float) y[i]; } // accumulate the sum from all threads in the threadgroup threadgroup_barrier(mem_flags::mem_threadgroup); for (uint i = tptg.x/2; i > 0; i /= 2) { if (tpitg.x < i) { sum[tpitg.x] += sum[tpitg.x + i]; } threadgroup_barrier(mem_flags::mem_threadgroup); } if (tpitg.x == 0) { dst[im*ne1*ne0 + r1*ne0 + r0] = sum[0]; } } kernel void kernel_rope( device const void * src0, device float * dst, constant int64_t & ne00, constant int64_t & ne01, constant int64_t & ne02, constant int64_t & ne03, constant uint64_t & nb00, constant uint64_t & nb01, constant uint64_t & nb02, constant uint64_t & nb03, constant int64_t & ne0, constant int64_t & ne1, constant int64_t & ne2, constant int64_t & ne3, constant uint64_t & nb0, constant uint64_t & nb1, constant uint64_t & nb2, constant uint64_t & nb3, constant int & n_past, constant int & n_dims, constant int & mode, uint3 tpig[[thread_position_in_grid]]) { const int64_t i3 = tpig[2]; const int64_t i2 = tpig[1]; const int64_t i1 = tpig[0]; const bool is_neox = mode & 2; const float theta_scale = pow(10000.0, -2.0f/n_dims); const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2); float theta = (float)p; if (!is_neox) { for (int64_t i0 = 0; i0 < ne0; i0 += 2) { const float cos_theta = cos(theta); const float sin_theta = sin(theta); theta *= theta_scale; device const float * const src = (device float *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); device float * dst_data = (device float *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); const float x0 = src[0]; const float x1 = src[1]; dst_data[0] = x0*cos_theta - x1*sin_theta; dst_data[1] = x0*sin_theta + x1*cos_theta; } } else { // TODO: implement } } kernel void kernel_cpy_f32_f16( device const float * src0, device half * dst, constant int64_t & ne00, constant int64_t & ne01, constant int64_t & ne02, constant int64_t & ne03, constant uint64_t & nb00, constant uint64_t & nb01, constant uint64_t & nb02, constant uint64_t & nb03, constant int64_t & ne0, constant int64_t & ne1, constant int64_t & ne2, constant int64_t & ne3, constant uint64_t & nb0, constant uint64_t & nb1, constant uint64_t & nb2, constant uint64_t & nb3, uint3 tgpig[[threadgroup_position_in_grid]], uint3 tpitg[[thread_position_in_threadgroup]], uint3 ntg[[threads_per_threadgroup]]) { const int64_t i03 = tgpig[2]; const int64_t i02 = tgpig[1]; const int64_t i01 = tgpig[0]; const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; const int64_t i3 = n / (ne2*ne1*ne0); const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0); const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0; const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0); device half * dst_data = (device half *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) { device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00); dst_data[i00] = src[0]; } } kernel void kernel_cpy_f32_f32( device const float * src0, device float * dst, constant int64_t & ne00, constant int64_t & ne01, constant int64_t & ne02, constant int64_t & ne03, constant uint64_t & nb00, constant uint64_t & nb01, constant uint64_t & nb02, constant uint64_t & nb03, constant int64_t & ne0, constant int64_t & ne1, constant int64_t & ne2, constant int64_t & ne3, constant uint64_t & nb0, constant uint64_t & nb1, constant uint64_t & nb2, constant uint64_t & nb3, uint3 tgpig[[threadgroup_position_in_grid]], uint3 tpitg[[thread_position_in_threadgroup]], uint3 ntg[[threads_per_threadgroup]]) { const int64_t i03 = tgpig[2]; const int64_t i02 = tgpig[1]; const int64_t i01 = tgpig[0]; const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; const int64_t i3 = n / (ne2*ne1*ne0); const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0); const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0; const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0); device float * dst_data = (device float *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) { device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00); dst_data[i00] = src[0]; } } //============================================ k-quants ====================================================== #define QK_K 256 typedef struct { half d; // super-block scale for quantized scales half dmin; // super-block scale for quantized mins uint8_t scales[3*QK_K/64]; // scales and mins, quantized with 6 bits uint8_t qs[QK_K/2]; // 4--bit quants } block_q4_k; typedef struct { uint8_t ql[QK_K/2]; // quants, lower 4 bits uint8_t qh[QK_K/4]; // quants, upper 2 bits int8_t scales[QK_K/16]; // scales, quantized with 8 bits half d; // super-block scale } block_q6_k; static inline uchar4 get_scale_min_k4(int j, device const uint8_t * q) { uchar4 r; if (j < 4) { r[0] = q[j+0] & 63; r[1] = q[j+4] & 63; r[2] = q[j+1] & 63; r[3] = q[j+5] & 63; } else { r[0] = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4); r[1] = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4); r[2] = (q[j+5] & 0xF) | ((q[j-3] >> 6) << 4); r[3] = (q[j+5] >> 4) | ((q[j+1] >> 6) << 4); } return r; } static void dequantize_row_q4_k(device const block_q4_k * x, device float * y, int k) { assert(k % QK_K == 0); const int nb = k / QK_K; for (int i = 0; i < nb; i++) { const float d = x[i].d; const float min = x[i].dmin; device const uint8_t * q = x[i].qs; device const uint8_t * scales = x[i].scales; int is = 0; for (int j = 0; j < QK_K; j += 64) { const uchar4 sc = get_scale_min_k4(is, scales); const float d1 = d * sc[0]; const float m1 = min * sc[1]; const float d2 = d * sc[2]; const float m2 = min * sc[3]; for (int l = 0; l < 32; ++l) *y++ = d1 * (q[l] & 0xF) - m1; for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l] >> 4) - m2; q += 32; is += 2; } } } static void dequantize_row_q6_k(device const block_q6_k * x, device float * y, int k) { assert(k % QK_K == 0); const int nb = k / QK_K; for (int i = 0; i < nb; i++) { const float d = x[i].d; device const uint8_t * ql = x[i].ql; device const uint8_t * qh = x[i].qh; device const int8_t * sc = x[i].scales; for (int n = 0; n < QK_K; n += 128) { for (int l = 0; l < 32; ++l) { int is = l/16; const int8_t q1 = (int8_t)((ql[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32; const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32; const int8_t q3 = (int8_t)((ql[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32; const int8_t q4 = (int8_t)((ql[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32; y[l + 0] = d * sc[is + 0] * q1; y[l + 32] = d * sc[is + 2] * q2; y[l + 64] = d * sc[is + 4] * q3; y[l + 96] = d * sc[is + 6] * q4; } y += 128; ql += 64; qh += 32; sc += 8; } } } kernel void kernel_get_rows_q4_k( device const void * src0, device const int * src1, device float * dst, constant int64_t & ne00, constant uint64_t & nb01, constant uint64_t & nb1, uint tpig[[thread_position_in_grid]]) { const int i = tpig; const int r = ((device int32_t *) src1)[i]; dequantize_row_q4_k( (device const block_q4_k *) ((device char *) src0 + r*nb01), (device float *) ((device char *) dst + i*nb1), ne00); } kernel void kernel_mul_mat_q4_k_f32( device const void * src0, device const float * src1, device float * dst, constant int64_t & ne00, constant int64_t & ne01, constant uint64_t & nb00, constant uint64_t & nb01, constant uint64_t & nb02, constant int64_t & ne10, constant int64_t & ne11, constant uint64_t & nb10, constant uint64_t & nb11, constant uint64_t & nb12, constant int64_t & ne0, constant int64_t & ne1, threadgroup float * sum [[threadgroup(0)]], uint2 tgpig[[threadgroup_position_in_grid]], uint2 tpig[[thread_position_in_grid]], // we don't use this for now uint2 tpitg[[thread_position_in_threadgroup]], uint2 tptg[[threads_per_threadgroup]]) { const int nb = ne00/QK_K; const int64_t r0 = tgpig.x; const int64_t r1 = tgpig.y; device const block_q4_k * x = (device const block_q4_k *) src0 + r0*nb; device const float * yy = (device const float *) src1 + r1*ne10; const uint nth = tptg.x*tptg.y; const uint ith = tptg.y*tpitg.x + tpitg.y; const int tid = tpitg.y; // 0...16 const int il = tid/4; // 0...3 const int ir = tid%4; // 0...3 const int n = 8; const int is = 2*il; sum[ith] = 0.0f; float sumf = 0; for (int i = tpitg.x; i < nb; i += tptg.x) { device const uint8_t * q = (x + i)->qs + 32*il + n*ir; device const float * y = yy + i*QK_K + 64*il + n*ir; device const uint8_t * scales = (x + i)->scales; const float dall = (float)((x + i)->d); const float dmin = (float)((x + i)->dmin); const uchar4 sc = get_scale_min_k4(is, scales); float4 s = {0.f, 0.f, 0.f, 0.f}; for (int l = 0; l < n; ++l) { s[0] += y[l+ 0] * (q[l] & 0xF); s[1] += y[l+ 0]; s[2] += y[l+32] * (q[l] >> 4); s[3] += y[l+32]; } sumf += dall * (s[0] * sc[0] + s[2] * sc[2]) - dmin * (s[1] * sc[1] + s[3] * sc[3]); } sum[ith] = sumf; // // Accumulate the sum from all threads in the threadgroup // This version is slightly faster than the commented out one below, // which I copy-pasted from ggerganov's q4_0 dot product for metal. // threadgroup_barrier(mem_flags::mem_threadgroup); if (ith%4 == 0) { for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i]; } threadgroup_barrier(mem_flags::mem_threadgroup); if (ith%16 == 0) { for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i]; } threadgroup_barrier(mem_flags::mem_threadgroup); if (ith == 0) { for (int i = 16; i < nth; i += 16) sum[0] += sum[i]; dst[r1*ne0 + r0] = sum[0]; } //// accumulate the sum from all threads in the threadgroup //threadgroup_barrier(mem_flags::mem_threadgroup); //for (uint i = nth/2; i > 0; i /= 2) { // if (ith < i) { // sum[ith] += sum[ith + i]; // } // threadgroup_barrier(mem_flags::mem_threadgroup); //} //if (ith == 0) { // dst[r1*ne0 + r0] = sum[0]; //} } kernel void kernel_get_rows_q6_k( device const void * src0, device const int * src1, device float * dst, constant int64_t & ne00, constant uint64_t & nb01, constant uint64_t & nb1, uint tpig[[thread_position_in_grid]]) { const int i = tpig; const int r = ((device int32_t *) src1)[i]; dequantize_row_q6_k( (device const block_q6_k *) ((device char *) src0 + r*nb01), (device float *) ((device char *) dst + i*nb1), ne00); } kernel void kernel_mul_mat_q6_k_f32( device const void * src0, device const float * src1, device float * dst, constant int64_t & ne00, constant int64_t & ne01, constant uint64_t & nb00, constant uint64_t & nb01, constant uint64_t & nb02, constant int64_t & ne10, constant int64_t & ne11, constant uint64_t & nb10, constant uint64_t & nb11, constant uint64_t & nb12, constant int64_t & ne0, constant int64_t & ne1, threadgroup float * sum [[threadgroup(0)]], uint2 tgpig[[threadgroup_position_in_grid]], uint2 tpig[[thread_position_in_grid]], // we don't use this for now uint2 tpitg[[thread_position_in_threadgroup]], uint2 tptg[[threads_per_threadgroup]]) { const uint8_t kmask1 = 0x03; const uint8_t kmask2 = 0x0C; const uint8_t kmask3 = 0x30; const uint8_t kmask4 = 0xC0; const int nb = ne00/QK_K; const int64_t r0 = tgpig.x; const int64_t r1 = tgpig.y; device const block_q6_k * x = (device const block_q6_k *) src0 + r0*nb; device const float * yy = (device const float *) src1 + r1*ne10; const uint nth = tptg.x*tptg.y; const uint ith = tptg.y*tpitg.x + tpitg.y; const int step = QK_K / tptg.y; // we expect this to be 16 const int iqs = step * tpitg.y; // 0...240 in steps of 16 const int ip = iqs / 128; // 0 or 1 const int il = (iqs - 128*ip)/16; // 0...7 const int n = 4; const int is = 8*ip + (n*il)/16; float sumf = 0; for (int i = tpitg.x; i < nb; i += tptg.x) { device const uint8_t * ql = x[i].ql + 64*ip + n*il; device const uint8_t * qh = x[i].qh + 32*ip + n*il; device const int8_t * sc = x[i].scales + is; device const float * y = yy + i * QK_K + 128*ip + n*il; const float dall = x[i].d; float4 sums = {0.f, 0.f, 0.f, 0.f}; for (int l = 0; l < n; ++l) { sums[0] += y[l+ 0] * ((int8_t)((ql[l+ 0] & 0xF) | ((qh[l] & kmask1) << 4)) - 32); sums[1] += y[l+32] * ((int8_t)((ql[l+32] & 0xF) | ((qh[l] & kmask2) << 2)) - 32); sums[2] += y[l+64] * ((int8_t)((ql[l+ 0] >> 4) | ((qh[l] & kmask3) << 0)) - 32); sums[3] += y[l+96] * ((int8_t)((ql[l+32] >> 4) | ((qh[l] & kmask4) >> 2)) - 32); } sumf += dall * (sums[0] * sc[0] + sums[1] * sc[2] + sums[2] * sc[4] + sums[3] * sc[6]); } sum[ith] = sumf; // // Accumulate the sum from all threads in the threadgroup // threadgroup_barrier(mem_flags::mem_threadgroup); if (ith%4 == 0) { for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i]; } threadgroup_barrier(mem_flags::mem_threadgroup); if (ith%16 == 0) { for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i]; } threadgroup_barrier(mem_flags::mem_threadgroup); if (ith == 0) { for (int i = 16; i < nth; i += 16) sum[0] += sum[i]; dst[r1*ne0 + r0] = sum[0]; } }