#include #include #include #include #include #include #include #include #include #include "ggml-cuda.h" #include "ggml.h" static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size"); #define CUDA_CHECK(err) \ do { \ cudaError_t err_ = (err); \ if (err_ != cudaSuccess) { \ fprintf(stderr, "CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \ cudaGetErrorString(err_)); \ exit(1); \ } \ } while (0) #if CUDART_VERSION >= 12 #define CUBLAS_CHECK(err) \ do { \ cublasStatus_t err_ = (err); \ if (err_ != CUBLAS_STATUS_SUCCESS) { \ fprintf(stderr, "\ncuBLAS error %d at %s:%d: %s\n", \ err_, __FILE__, __LINE__, cublasGetStatusString(err_)); \ exit(1); \ } \ } while (0) #else #define CUBLAS_CHECK(err) \ do { \ cublasStatus_t err_ = (err); \ if (err_ != CUBLAS_STATUS_SUCCESS) { \ fprintf(stderr, "\ncuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \ exit(1); \ } \ } while (0) #endif // CUDART_VERSION >= 11 typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, float & v0, float & v1); typedef void (*to_fp32_cuda_t)(const void * x, float * y, int k, cudaStream_t stream); typedef void (*dot_kernel_k_t)(const void * vx, const int ib, const int iqs, const float * y, float & v); typedef void (*ggml_cuda_func_t)(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst); typedef void (*ggml_cuda_op_t)( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i, float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1, cudaStream_t & cudaStream_main); // QK = number of values after dequantization // QR = QK / number of values before dequantization #define QK4_0 32 #define QR4_0 2 typedef struct { half d; // delta uint8_t qs[QK4_0 / 2]; // nibbles / quants } block_q4_0; static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding"); #define QK4_1 32 #define QR4_1 2 typedef struct { half d; // delta half m; // min uint8_t qs[QK4_1 / 2]; // nibbles / quants } block_q4_1; static_assert(sizeof(block_q4_1) == sizeof(ggml_fp16_t) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding"); #define QK5_0 32 #define QR5_0 2 typedef struct { half d; // delta uint8_t qh[4]; // 5-th bit of quants uint8_t qs[QK5_0 / 2]; // nibbles / quants } block_q5_0; static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding"); #define QK5_1 32 #define QR5_1 2 typedef struct { half d; // delta half m; // min uint8_t qh[4]; // 5-th bit of quants uint8_t qs[QK5_1 / 2]; // nibbles / quants } block_q5_1; static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding"); #define QK8_0 32 #define QR8_0 1 typedef struct { half d; // delta int8_t qs[QK8_0]; // quants } block_q8_0; static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding"); //================================= k-quants #define QK_K 256 typedef struct { uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits uint8_t qs[QK_K/4]; // quants half d; // super-block scale for quantized scales half dmin; // super-block scale for quantized mins } block_q2_K; static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_fp16_t) + QK_K/16 + QK_K/4, "wrong q2_K block size/padding"); typedef struct { uint8_t hmask[QK_K/8]; uint8_t qs[QK_K/4]; // nibbles / quants uint8_t scales[3*QK_K/64]; half d; } block_q3_K; static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + 11 * QK_K / 64, "wrong q3_K block size/padding"); typedef struct { half d; // super-block scale for quantized scales half dmin; // super-block scale for quantized mins uint8_t scales[3*QK_K/64]; // scales, quantized with 6 bits uint8_t qs[QK_K/2]; // 4--bit quants } block_q4_K; static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2, "wrong q4_K block size/padding"); typedef struct { half d; // super-block scale for quantized scales half dmin; // super-block scale for quantized mins uint8_t scales[3*QK_K/64]; // scales, quantized with 6 bits uint8_t qh[QK_K/8]; // quants, high bit uint8_t qs[QK_K/2]; // quants, low 4 bits } block_q5_K; static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2 + QK_K/8, "wrong q5_K block size/padding"); typedef struct { uint8_t ql[QK_K/2]; // quants, lower 4 bits uint8_t qh[QK_K/4]; // quants, upper 2 bits int8_t scales[QK_K/16]; // scales half d; // delta } block_q6_K; static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_K block size/padding"); #define WARP_SIZE 32 #define CUDA_ADD_BLOCK_SIZE 256 #define CUDA_MUL_BLOCK_SIZE 256 #define CUDA_SILU_BLOCK_SIZE 256 #define CUDA_ROPE_BLOCK_SIZE 256 #define CUDA_DEQUANTIZE_BLOCK_SIZE 256 // dmmv = dequantize_mul_mat_vec #ifndef GGML_CUDA_DMMV_X #define GGML_CUDA_DMMV_X 32 #endif #ifndef GGML_CUDA_DMMV_Y #define GGML_CUDA_DMMV_Y 1 #endif static __global__ void add_f32(const float * x, const float * y, float * dst, const int k) { const int i = blockDim.x*blockIdx.x + threadIdx.x; if (i >= k) { return; } dst[i] = x[i] + y[i]; } static __global__ void mul_f32(const float * x, const float * y, float * dst, const int kx, const int ky) { const int i = blockDim.x*blockIdx.x + threadIdx.x; if (i >= kx) { return; } dst[i] = x[i] * y[i%ky]; } static __global__ void silu_f32(const float * x, float * dst, const int k) { const int i = blockDim.x*blockIdx.x + threadIdx.x; if (i >= k) { return; } dst[i] = x[i] / (1.0f + expf(-x[i])); } static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols) { const int row = blockIdx.x*blockDim.y + threadIdx.y; const int tid = threadIdx.x; const float eps = 1e-6; float tmp = 0.0f; // partial sum for thread in warp for (int i = 0; i < ncols; i += WARP_SIZE) { const int col = i + tid; const float xi = x[row*ncols + col]; tmp += xi * xi; } // sum up partial sums __syncthreads(); #pragma unroll for (int mask = 16; mask > 0; mask >>= 1) { tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); } const float mean = tmp / ncols; const float scale = 1.0f / sqrtf(mean + eps); for (int i = 0; i < ncols; i += WARP_SIZE) { const int col = i + tid; dst[row*ncols + col] = scale * x[row*ncols + col]; } } static __device__ void dequantize_q4_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){ const block_q4_0 * x = (const block_q4_0 *) vx; const float d = x[ib].d; const uint8_t vui = x[ib].qs[iqs]; const int8_t vi0 = vui & 0xF; const int8_t vi1 = vui >> 4; v0 = (vi0 - 8)*d; v1 = (vi1 - 8)*d; } static __device__ void dequantize_q4_1(const void * vx, const int ib, const int iqs, float & v0, float & v1){ const block_q4_1 * x = (const block_q4_1 *) vx; const float d = x[ib].d; const float m = x[ib].m; const uint8_t vui = x[ib].qs[iqs]; const int8_t vi0 = vui & 0xF; const int8_t vi1 = vui >> 4; v0 = vi0*d + m; v1 = vi1*d + m; } static __device__ void dequantize_q5_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){ const block_q5_0 * x = (const block_q5_0 *) vx; const float d = x[ib].d; uint32_t qh; memcpy(&qh, x[ib].qh, sizeof(qh)); const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10; const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10; const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0) - 16; const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1) - 16; v0 = x0*d; v1 = x1*d; } static __device__ void dequantize_q5_1(const void * vx, const int ib, const int iqs, float & v0, float & v1){ const block_q5_1 * x = (const block_q5_1 *) vx; const float d = x[ib].d; const float m = x[ib].m; uint32_t qh; memcpy(&qh, x[ib].qh, sizeof(qh)); const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10; const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10; const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0); const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1); v0 = x0*d + m; v1 = x1*d + m; } static __device__ void dequantize_q8_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){ const block_q8_0 * x = (const block_q8_0 *) vx; const float d = x[ib].d; const int8_t vi0 = x[ib].qs[iqs + 0]; const int8_t vi1 = x[ib].qs[iqs + 1]; v0 = vi0*d; v1 = vi1*d; } //================================== k-quants static __global__ void dequantize_block_q2_K(const void * vx, float * yy) { const int i = blockIdx.x; const int tid = threadIdx.x; const int n = tid/32; const int l = tid - 32*n; const int is = 8*n + l/16; const block_q2_K * x = (const block_q2_K *) vx; const uint8_t q = x[i].qs[32*n + l]; float * y = yy + i*QK_K + 128*n; float dall = x[i].d; float dmin = x[i].dmin; y[l+ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4); y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4); y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4); y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4); } static __device__ void vec_dot_q2_K(const void * vx, const int ib, const int iqs, const float * yy, float & result) { const block_q2_K * x = (const block_q2_K *) vx; // if n is 0, we want to do the lower 128, else the upper 128, // covering y[l+0], y[l+32], y[l+64], y[l+96] and // y[l+16], y[l+48], y[l+80], y[l+112] int n = iqs/128; // 0 or 1 int r = iqs - 128*n; // 0...120 in steps of 8 int l = r/8; // 0...15 in steps of 1 const float * y = yy + 128*n + l; const uint8_t * q = x[ib].qs + 32*n + l; const uint8_t * s = x[ib].scales + 8*n; const float dall = x[ib].d; const float dmin = x[ib].dmin; float sum = y[ 0] * (dall * ((s[0] & 0xF) * ((q[ 0] >> 0) & 3)) - dmin * (s[0] >> 4)) + y[ 32] * (dall * ((s[2] & 0xF) * ((q[ 0] >> 2) & 3)) - dmin * (s[2] >> 4)) + y[ 64] * (dall * ((s[4] & 0xF) * ((q[ 0] >> 4) & 3)) - dmin * (s[4] >> 4)) + y[ 96] * (dall * ((s[6] & 0xF) * ((q[ 0] >> 6) & 3)) - dmin * (s[6] >> 4)) + y[ 16] * (dall * ((s[1] & 0xF) * ((q[16] >> 0) & 3)) - dmin * (s[1] >> 4)) + y[ 48] * (dall * ((s[3] & 0xF) * ((q[16] >> 2) & 3)) - dmin * (s[3] >> 4)) + y[ 80] * (dall * ((s[5] & 0xF) * ((q[16] >> 4) & 3)) - dmin * (s[5] >> 4)) + y[112] * (dall * ((s[7] & 0xF) * ((q[16] >> 6) & 3)) - dmin * (s[7] >> 4)); result = sum; } static __global__ void dequantize_block_q3_K(const void * vx, float * yy) { int r = threadIdx.x/4; int i = blockIdx.x; int tid = r/2; int is0 = r%2; int l0 = 16*is0 + 4*(threadIdx.x%4); int n = tid / 4; int j = tid - 4*n; const block_q3_K * x = (const block_q3_K *) vx; uint8_t m = 1 << (4*n + j); int is = 8*n + 2*j + is0; int shift = 2*j; int8_t us = is < 4 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+8] >> 0) & 3) << 4) : is < 8 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+4] >> 2) & 3) << 4) : is < 12 ? (x[i].scales[is-8] >> 4) | (((x[i].scales[is+0] >> 4) & 3) << 4) : (x[i].scales[is-8] >> 4) | (((x[i].scales[is-4] >> 6) & 3) << 4); float d_all = x[i].d; float dl = d_all * (us - 32); float * y = yy + i*QK_K + 128*n + 32*j; const uint8_t * q = x[i].qs + 32*n; const uint8_t * hm = x[i].hmask; for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4)); } static __device__ void vec_dot_q3_K(const void * vx, const int ib, const int iqs, const float * yy, float & result) { const block_q3_K * x = (const block_q3_K *) vx; const uint32_t kmask1 = 0x03030303; const uint32_t kmask2 = 0x0f0f0f0f; uint32_t aux[3]; uint32_t utmp[4]; // if n is 0, we want to do the lower 128, else the upper 128, // covering y[l+0], y[l+32], y[l+64], y[l+96] and // y[l+16], y[l+48], y[l+80], y[l+112] int n = iqs/128; // 0 or 1 int r = iqs - 128*n; // 0...120 in steps of 8 int l = r/8; // 0...15 in steps of 1 const float * y = yy + 128*n + l; const uint8_t * q = x[ib].qs + 32*n + l; const uint8_t * hm = x[ib].hmask + l; const int8_t * s = (const int8_t *)utmp + 8*n; memcpy(aux, x[ib].scales, 12); utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4); utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4); utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4); utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4); const float dall = x[ib].d; const uint8_t m = 1 << (4*n); float sum = y[ 0] * (s[0] - 32) * (((q[ 0] >> 0) & 3) - (hm[ 0] & (m << 0) ? 0 : 4)) + y[ 32] * (s[2] - 32) * (((q[ 0] >> 2) & 3) - (hm[ 0] & (m << 1) ? 0 : 4)) + y[ 64] * (s[4] - 32) * (((q[ 0] >> 4) & 3) - (hm[ 0] & (m << 2) ? 0 : 4)) + y[ 96] * (s[6] - 32) * (((q[ 0] >> 6) & 3) - (hm[ 0] & (m << 3) ? 0 : 4)) + y[ 16] * (s[1] - 32) * (((q[16] >> 0) & 3) - (hm[16] & (m << 0) ? 0 : 4)) + y[ 48] * (s[3] - 32) * (((q[16] >> 2) & 3) - (hm[16] & (m << 1) ? 0 : 4)) + y[ 80] * (s[5] - 32) * (((q[16] >> 4) & 3) - (hm[16] & (m << 2) ? 0 : 4)) + y[112] * (s[7] - 32) * (((q[16] >> 6) & 3) - (hm[16] & (m << 3) ? 0 : 4)); result = sum * dall; } static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) { if (j < 4) { d = q[j] & 63; m = q[j + 4] & 63; } else { d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4); m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4); } } static __global__ void dequantize_block_q4_K(const void * vx, float * yy) { const block_q4_K * x = (const block_q4_K *) vx; const int i = blockIdx.x; //// assume 64 threads - this is very slightly better than the one below //const int tid = threadIdx.x; //const int il = tid/16; //const int ir = tid%16; //const int is = 2*il; //const int n = 2; // assume 32 threads const int tid = threadIdx.x; const int il = tid/8; const int ir = tid%8; const int is = 2*il; const int n = 4; float * y = yy + i*QK_K + 64*il + n*ir; const float dall = x[i].d; const float dmin = x[i].dmin; const uint8_t * q = x[i].qs + 32*il + n*ir; uint8_t sc, m; get_scale_min_k4(is + 0, x[i].scales, sc, m); const float d1 = dall * sc; const float m1 = dmin * m; get_scale_min_k4(is + 1, x[i].scales, sc, m); const float d2 = dall * sc; const float m2 = dmin * m; for (int l = 0; l < n; ++l) { y[l + 0] = d1 * (q[l] & 0xF) - m1; y[l +32] = d2 * (q[l] >> 4) - m2; } } static __device__ void vec_dot_q4_K(const void * vx, const int ib, const int iqs, const float * yy, float & result) { const block_q4_K * x = (const block_q4_K *) vx; // iqs is in 0...248 in steps of 8 => const int j = iqs / 64; // j is in 0...3 const int ir = (iqs - 64*j)/2; // ir is in 0...28 in steps of 4 const int is = 2*j; // is is in 0...6 in steps of 2 const float * y = yy + 64*j + ir; const uint8_t * q = x[ib].qs + 32*j + ir; const float dall = x[ib].d; const float dmin = x[ib].dmin; uint8_t sc, m; get_scale_min_k4(is + 0, x[ib].scales, sc, m); const float d1 = dall * sc; const float m1 = dmin * m; get_scale_min_k4(is + 1, x[ib].scales, sc, m); const float d2 = dall * sc; const float m2 = dmin * m; float sum = 0; for (int k = 0; k < 4; ++k) { sum += y[k + 0] * (d1 * (q[k] & 0xF) - m1); sum += y[k + 32] * (d2 * (q[k] >> 4) - m2); } result = sum; } static __global__ void dequantize_block_q5_K(const void * vx, float * yy) { const block_q5_K * x = (const block_q5_K *) vx; const int i = blockIdx.x; // assume 64 threads - this is very slightly better than the one below const int tid = threadIdx.x; const int il = tid/16; // il is in 0...3 const int ir = tid%16; // ir is in 0...15 const int is = 2*il; // is is in 0...6 float * y = yy + i*QK_K + 64*il + 2*ir; const float dall = x[i].d; const float dmin = x[i].dmin; const uint8_t * ql = x[i].qs + 32*il + 2*ir; const uint8_t * qh = x[i].qh + 2*ir; uint8_t sc, m; get_scale_min_k4(is + 0, x[i].scales, sc, m); const float d1 = dall * sc; const float m1 = dmin * m; get_scale_min_k4(is + 1, x[i].scales, sc, m); const float d2 = dall * sc; const float m2 = dmin * m; uint8_t hm = 1 << (2*il); y[ 0] = d1 * ((ql[ 0] & 0xF) + (qh[ 0] & hm ? 16 : 0)) - m1; y[ 1] = d1 * ((ql[ 1] & 0xF) + (qh[ 1] & hm ? 16 : 0)) - m1; hm <<= 1; y[32] = d2 * ((ql[ 0] >> 4) + (qh[ 0] & hm ? 16 : 0)) - m2; y[33] = d2 * ((ql[ 1] >> 4) + (qh[ 1] & hm ? 16 : 0)) - m2; } static __device__ void vec_dot_q5_K(const void * vx, const int ib, const int iqs, const float * yy, float & result) { const block_q5_K * x = (const block_q5_K *) vx; // iqs is in 0...248 in steps of 8 => const int j = iqs / 64; // j is in 0...3 const int ir = (iqs - 64*j)/2; // ir is in 0...28 in steps of 4 const int is = 2*j; // is is in 0...6 in steps of 2 const float * y = yy + 64*j + ir; const uint8_t * ql = x[ib].qs + 32*j + ir; const uint8_t * qh = x[ib].qh + ir; const float dall = x[ib].d; const float dmin = x[ib].dmin; uint8_t sc, m; get_scale_min_k4(is + 0, x[ib].scales, sc, m); const float d1 = dall * sc; const float m1 = dmin * m; get_scale_min_k4(is + 1, x[ib].scales, sc, m); const float d2 = dall * sc; const float m2 = dmin * m; uint8_t hm = 1 << is; float sum = 0; for (int k = 0; k < 4; ++k) { sum += y[k + 0] * (d1 * ((ql[k] & 0xF) + (qh[k] & hm ? 16 : 0)) - m1); } hm <<= 1; for (int k = 0; k < 4; ++k) { sum += y[k + 32] * (d2 * ((ql[k] >> 4) + (qh[k] & hm ? 16 : 0)) - m2); } result = sum; } static __global__ void dequantize_block_q6_K(const void * vx, float * yy) { const block_q6_K * x = (const block_q6_K *) vx; const int i = blockIdx.x; // assume 64 threads - this is very slightly better than the one below const int tid = threadIdx.x; const int ip = tid/32; // ip is 0 or 1 const int il = tid - 32*ip; // 0...32 const int is = 8*ip + il/16; float * y = yy + i*QK_K + 128*ip + il; const float d = x[i].d; const uint8_t * ql = x[i].ql + 64*ip + il; const uint8_t qh = x[i].qh[32*ip + il]; const int8_t * sc = x[i].scales + is; y[ 0] = d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32); y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32); y[64] = d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh >> 4) & 3) << 4)) - 32); y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32); } static __device__ void vec_dot_q6_K(const void * vx, const int ib, const int iqs, const float * yy, float & result) { const block_q6_K * x = (const block_q6_K *) vx; const int ip = iqs / 128; // 0 or 1 const int il = (iqs - 128*ip)/8; // 0...15 const int is = 8*ip; const float * y = yy + 128*ip + il; const float d = x[ib].d; const uint8_t * ql = x[ib].ql + 64*ip + il; const uint8_t * qh = x[ib].qh + 32*ip + il; const int8_t * sc = x[ib].scales + is; result = y[ 0] * d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh[ 0] >> 0) & 3) << 4)) - 32) + y[ 32] * d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh[ 0] >> 2) & 3) << 4)) - 32) + y[ 64] * d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh[ 0] >> 4) & 3) << 4)) - 32) + y[ 96] * d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh[ 0] >> 6) & 3) << 4)) - 32) + y[ 16] * d * sc[1] * ((int8_t)((ql[16] & 0xF) | (((qh[16] >> 0) & 3) << 4)) - 32) + y[ 48] * d * sc[3] * ((int8_t)((ql[48] & 0xF) | (((qh[16] >> 2) & 3) << 4)) - 32) + y[ 80] * d * sc[5] * ((int8_t)((ql[16] >> 4) | (((qh[16] >> 4) & 3) << 4)) - 32) + y[112] * d * sc[7] * ((int8_t)((ql[48] >> 4) | (((qh[16] >> 6) & 3) << 4)) - 32); } static __device__ void convert_f16(const void * vx, const int ib, const int iqs, float & v0, float & v1){ const half * x = (const half *) vx; v0 = __half2float(x[ib + iqs + 0]); v1 = __half2float(x[ib + iqs + 1]); } template static __global__ void dequantize_block(const void * vx, float * y, const int k) { const int i = blockDim.x*blockIdx.x + 2*threadIdx.x; if (i >= k) { return; } const int ib = i/qk; // block index const int iqs = (i%qk)/qr; // quant index const int iybs = i - i%qk; // y block start index const int y_offset = qr == 1 ? 1 : qk/2; // dequantize float & v0 = y[iybs + iqs + 0]; float & v1 = y[iybs + iqs + y_offset]; dequantize_kernel(vx, ib, iqs, v0, v1); } template static __global__ void dequantize_mul_mat_vec(const void * vx, const float * y, float * dst, const int ncols) { // qk = quantized weights per x block // qr = number of quantized weights per data value in x block const int row = blockIdx.x*blockDim.y + threadIdx.y; const int tid = threadIdx.x; const int iter_stride = 2*GGML_CUDA_DMMV_X; const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter const int y_offset = qr == 1 ? 1 : qk/2; float tmp = 0.0f; // partial sum for thread in warp for (int i = 0; i < ncols; i += iter_stride) { const int col = i + vals_per_iter*tid; const int ib = (row*ncols + col)/qk; // x block index const int iqs = (col%qk)/qr; // x quant index const int iybs = col - col%qk; // y block start index // processing >2 values per i iter is faster for fast GPUs #pragma unroll for (int j = 0; j < vals_per_iter; j += 2) { // process 2 vals per j iter // dequantize float v0, v1; dequantize_kernel(vx, ib, iqs + j/qr, v0, v1); // for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val // matrix multiplication tmp += v0 * y[iybs + iqs + j/qr + 0]; tmp += v1 * y[iybs + iqs + j/qr + y_offset]; // for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2 } } // sum up partial sums and write back result __syncthreads(); #pragma unroll for (int mask = 16; mask > 0; mask >>= 1) { tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); } if (tid == 0) { dst[row] = tmp; } } template static __global__ void dequantize_mul_mat_vec_k(const void * vx, const float * y, float * dst, const int ncols) { const int row = blockIdx.x*blockDim.y + threadIdx.y; const int tid = threadIdx.x; const int iter_stride = QK_K; const int vals_per_iter = iter_stride / n_thread; const int num_blocks_per_row = ncols / QK_K; const int ib0 = row*num_blocks_per_row; float tmp = 0; // partial sum for thread in warp for (int i = 0; i < ncols; i += iter_stride) { const int col = i + vals_per_iter*tid; const int ib = ib0 + col/QK_K; // x block index const int iqs = col%QK_K; // x quant index const int iybs = col - col%QK_K; // y block start index float v; dot_kernel(vx, ib, iqs, y + iybs, v); tmp += v; } // sum up partial sums and write back result __syncthreads(); #pragma unroll for (int mask = 16; mask > 0; mask >>= 1) { tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); } if (tid == 0) { dst[row] = tmp; } } static __global__ void rope_f32(const float * x, float * dst, const int ncols, const float p, const float theta_scale) { const int col = 2*(blockDim.x*blockIdx.x + threadIdx.x); if (col >= ncols) { return; } const int row = blockDim.y*blockIdx.y + threadIdx.y; const int i = row*ncols + col; const float theta = p*powf(theta_scale, col/2); const float sin_theta = sinf(theta); const float cos_theta = cosf(theta); const float x0 = x[i + 0]; const float x1 = x[i + 1]; dst[i + 0] = x0*cos_theta - x1*sin_theta; dst[i + 1] = x0*sin_theta + x1*cos_theta; } static void add_f32_cuda(const float * x, const float * y, float * dst, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_ADD_BLOCK_SIZE - 1) / CUDA_ADD_BLOCK_SIZE; add_f32<<>>(x, y, dst, k); } static void mul_f32_cuda(const float * x, const float * y, float * dst, const int kx, const int ky, cudaStream_t stream) { const int num_blocks = (kx + CUDA_MUL_BLOCK_SIZE - 1) / CUDA_MUL_BLOCK_SIZE; mul_f32<<>>(x, y, dst, kx, ky); } static void silu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_SILU_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE; silu_f32<<>>(x, dst, k); } static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % WARP_SIZE == 0); const dim3 block_dims(WARP_SIZE, 1, 1); rms_norm_f32<<>>(x, dst, ncols); } static void dequantize_row_q4_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE; dequantize_block<<>>(vx, y, k); } static void dequantize_row_q4_1_cuda(const void * vx, float * y, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE; dequantize_block<<>>(vx, y, k); } static void dequantize_row_q5_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE; dequantize_block<<>>(vx, y, k); } static void dequantize_row_q5_1_cuda(const void * vx, float * y, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE; dequantize_block<<>>(vx, y, k); } static void dequantize_row_q8_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE; dequantize_block<<>>(vx, y, k); } static void dequantize_row_q2_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) { const int nb = k / QK_K; dequantize_block_q2_K<<>>(vx, y); } static void dequantize_row_q3_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) { const int nb = k / QK_K; dequantize_block_q3_K<<>>(vx, y); } static void dequantize_row_q4_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) { const int nb = k / QK_K; dequantize_block_q4_K<<>>(vx, y); } static void dequantize_row_q5_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) { const int nb = k / QK_K; dequantize_block_q5_K<<>>(vx, y); } static void dequantize_row_q6_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) { const int nb = k / QK_K; dequantize_block_q6_K<<>>(vx, y); } static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); GGML_ASSERT(nrows % GGML_CUDA_DMMV_Y == 0); const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1); dequantize_mul_mat_vec <<>>(vx, y, dst, ncols); } static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); GGML_ASSERT(nrows % GGML_CUDA_DMMV_Y == 0); const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1); dequantize_mul_mat_vec <<>>(vx, y, dst, ncols); } static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); GGML_ASSERT(nrows % GGML_CUDA_DMMV_Y == 0); const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1); dequantize_mul_mat_vec <<>>(vx, y, dst, ncols); } static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); GGML_ASSERT(nrows % GGML_CUDA_DMMV_Y == 0); const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1); dequantize_mul_mat_vec <<>>(vx, y, dst, ncols); } static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); GGML_ASSERT(nrows % GGML_CUDA_DMMV_Y == 0); const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1); dequantize_mul_mat_vec <<>>(vx, y, dst, ncols); } static void dequantize_mul_mat_vec_q2_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % QK_K == 0); const int ny = 2; const dim3 block_dims(32, ny, 1); dequantize_mul_mat_vec_k<32, vec_dot_q2_K><<<(nrows + ny - 1)/ny, block_dims, 0, stream>>>(vx, y, dst, ncols); } static void dequantize_mul_mat_vec_q3_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % QK_K == 0); const dim3 block_dims(32, 2, 1); dequantize_mul_mat_vec_k<32, vec_dot_q3_K><<>>(vx, y, dst, ncols); } static void dequantize_mul_mat_vec_q4_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % QK_K == 0); const dim3 block_dims(32, 2, 1); dequantize_mul_mat_vec_k<32, vec_dot_q4_K><<>>(vx, y, dst, ncols); } static void dequantize_mul_mat_vec_q5_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % QK_K == 0); const dim3 block_dims(32, 2, 1); dequantize_mul_mat_vec_k<32, vec_dot_q5_K><<>>(vx, y, dst, ncols); } static void dequantize_mul_mat_vec_q6_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % QK_K == 0); const dim3 block_dims(32, 2, 1); dequantize_mul_mat_vec_k<32, vec_dot_q6_K><<>>(vx, y, dst, ncols); } static void convert_fp16_to_fp32_cuda(const void * vx, float * y, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE; dequantize_block<1, 1, convert_f16><<>>(vx, y, k); } static void convert_mul_mat_vec_f16_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); GGML_ASSERT(nrows % GGML_CUDA_DMMV_Y == 0); const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1); dequantize_mul_mat_vec<1, 1, convert_f16> <<>>(vx, y, dst, ncols); } static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) { switch (type) { case GGML_TYPE_Q4_0: return dequantize_row_q4_0_cuda; case GGML_TYPE_Q4_1: return dequantize_row_q4_1_cuda; case GGML_TYPE_Q5_0: return dequantize_row_q5_0_cuda; case GGML_TYPE_Q5_1: return dequantize_row_q5_1_cuda; case GGML_TYPE_Q8_0: return dequantize_row_q8_0_cuda; case GGML_TYPE_Q2_K: return dequantize_row_q2_K_cuda; case GGML_TYPE_Q3_K: return dequantize_row_q3_K_cuda; case GGML_TYPE_Q4_K: return dequantize_row_q4_K_cuda; case GGML_TYPE_Q5_K: return dequantize_row_q5_K_cuda; case GGML_TYPE_Q6_K: return dequantize_row_q6_K_cuda; case GGML_TYPE_F16: return convert_fp16_to_fp32_cuda; default: return nullptr; } } static void rope_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p, const float theta_scale, cudaStream_t stream) { GGML_ASSERT(nrows % 2 == 0); const dim3 block_dims(2*CUDA_ROPE_BLOCK_SIZE, 1, 1); const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE); const dim3 block_nums(num_blocks_x, nrows, 1); rope_f32<<>>(x, dst, ncols, p, theta_scale); } // buffer pool for cuda #define MAX_CUDA_BUFFERS 256 struct scoped_spin_lock { std::atomic_flag& lock; scoped_spin_lock(std::atomic_flag& lock) : lock(lock) { while (lock.test_and_set(std::memory_order_acquire)) { ; // spin } } ~scoped_spin_lock() { lock.clear(std::memory_order_release); } scoped_spin_lock(const scoped_spin_lock&) = delete; scoped_spin_lock& operator=(const scoped_spin_lock&) = delete; }; struct cuda_buffer { void * ptr = nullptr; size_t size = 0; }; static cuda_buffer g_cuda_buffer_pool[GGML_CUDA_MAX_DEVICES][MAX_CUDA_BUFFERS]; static std::atomic_flag g_cuda_pool_lock = ATOMIC_FLAG_INIT; static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) { scoped_spin_lock lock(g_cuda_pool_lock); int id; CUDA_CHECK(cudaGetDevice(&id)); for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) { cuda_buffer& b = g_cuda_buffer_pool[id][i]; if (b.size >= size && b.ptr != nullptr) { void * ptr = b.ptr; *actual_size = b.size; b.ptr = nullptr; b.size = 0; return ptr; } } void * ptr; CUDA_CHECK(cudaMalloc((void **) &ptr, size)); *actual_size = size; return ptr; } static void ggml_cuda_pool_free(void * ptr, size_t size) { scoped_spin_lock lock(g_cuda_pool_lock); int id; CUDA_CHECK(cudaGetDevice(&id)); for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) { cuda_buffer& b = g_cuda_buffer_pool[id][i]; if (b.ptr == nullptr) { b.ptr = ptr; b.size = size; return; } } fprintf(stderr, "WARNING: cuda buffer pool full, increase MAX_CUDA_BUFFERS\n"); CUDA_CHECK(cudaFree(ptr)); } static void * g_scratch_buffer = nullptr; static size_t g_scratch_size = 1024*1024*1024; // 1 GB by default static size_t g_scratch_offset = 0; #define GGML_CUDA_MAX_STREAMS 8 // Set this to 1 for reproducible matrix multiplication. #define GGML_CUDA_MAX_EVENTS 64 static int g_device_count = -1; static int g_main_device = 0; static float g_tensor_split[GGML_CUDA_MAX_DEVICES] = {0}; static cublasHandle_t g_cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr}; static cudaStream_t g_cudaStreams_main[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS] = { nullptr }; static cudaStream_t g_cudaStreams_memcpy_src1[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS] = { nullptr }; static cudaEvent_t g_cudaEvents_memcpy_src1[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_EVENTS] = { nullptr }; void ggml_init_cublas() { static bool initialized = false; if (!initialized) { CUDA_CHECK(cudaGetDeviceCount(&g_device_count)); GGML_ASSERT(g_device_count <= GGML_CUDA_MAX_DEVICES); int64_t total_vram = 0; fprintf(stderr, "%s: found %d CUDA devices:\n", __func__, g_device_count); for (int id = 0; id < g_device_count; ++id) { cudaDeviceProp prop; CUDA_CHECK(cudaGetDeviceProperties(&prop, id)); fprintf(stderr, " Device %d: %s\n", id, prop.name); g_tensor_split[id] = total_vram; total_vram += prop.totalGlobalMem; } for (int id = 0; id < g_device_count; ++id) { g_tensor_split[id] /= total_vram; } for (int id = 0; id < g_device_count; ++id) { CUDA_CHECK(cudaSetDevice(id)); // create streams for (int i = 0; i < GGML_CUDA_MAX_STREAMS; ++i) { CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams_main[id][i], cudaStreamNonBlocking)); CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams_memcpy_src1[id][i], cudaStreamNonBlocking)); } // create events for (int i = 0; i < GGML_CUDA_MAX_EVENTS; ++i) { CUDA_CHECK(cudaEventCreateWithFlags(&g_cudaEvents_memcpy_src1[id][i], cudaEventDisableTiming)); } // create cublas handle CUBLAS_CHECK(cublasCreate(&g_cublas_handles[id])); CUBLAS_CHECK(cublasSetMathMode(g_cublas_handles[id], CUBLAS_TF32_TENSOR_OP_MATH)); } // configure logging to stdout // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr)); initialized = true; } } void ggml_cuda_set_tensor_split(const float * tensor_split) { bool all_zero = true; for (int i = 0; i < g_device_count; ++i) { if (tensor_split[i] != 0.0f) { all_zero = false; break; } } if (all_zero) { return; } float split_sum = 0.0f; for (int i = 0; i < g_device_count; ++i) { g_tensor_split[i] = split_sum; split_sum += tensor_split[i]; } for (int i = 0; i < g_device_count; ++i) { g_tensor_split[i] /= split_sum; } } void * ggml_cuda_host_malloc(size_t size) { if (getenv("GGML_CUDA_NO_PINNED") != nullptr) { return nullptr; } void * ptr = nullptr; cudaError_t err = cudaMallocHost((void **) &ptr, size); if (err != cudaSuccess) { fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n", size/1024.0/1024.0, cudaGetErrorString(err)); return nullptr; } return ptr; } void ggml_cuda_host_free(void * ptr) { CUDA_CHECK(cudaFreeHost(ptr)); } static cudaError_t ggml_cuda_h2d_tensor_2d( void * dst, const struct ggml_tensor * src, int64_t i3, int64_t i2, int64_t i1_low, int64_t i1_high, cudaStream_t stream) { char * dst_char = (char *) dst; const int64_t ne0 = src->ne[0]; const int64_t nb0 = src->nb[0]; const int64_t nb1 = src->nb[1]; const int64_t nb2 = src->nb[2]; const int64_t nb3 = src->nb[3]; const enum ggml_type type = src->type; const int64_t ts = ggml_type_size(type); const int64_t bs = ggml_blck_size(type); int64_t i1_diff = i1_high - i1_low; const void * x = (const void *) ((const char *) src->data + i1_low*nb1 + i2*nb2 + i3*nb3); if (nb0 == ts && nb1 == ts*ne0/bs) { return cudaMemcpyAsync(dst_char, x, i1_diff*nb1, cudaMemcpyHostToDevice, stream); } else if (nb0 == ts) { return cudaMemcpy2DAsync(dst_char, ts*ne0/bs, x, nb1, ts*ne0/bs, i1_diff, cudaMemcpyHostToDevice, stream); } else { for (int64_t i1 = 0; i1 < i1_diff; i1++) { const void * rx = (const void *) ((const char *) x + i1*nb1); void * rd = (void *) (dst_char + i1*ts*ne0/bs); // pretend the row is a matrix with cols=1 cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, cudaMemcpyHostToDevice, stream); if (r != cudaSuccess) return r; } return cudaSuccess; } } inline void ggml_cuda_op_add( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i, float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1, cudaStream_t & cudaStream_main){ GGML_ASSERT(src0_ddf_i != nullptr); GGML_ASSERT(src1_ddf_i != nullptr); GGML_ASSERT(dst_ddf_i != nullptr); const int64_t ne0 = src0->ne[0]; const int64_t i01_diff = i01_high - i01_low; // compute add_f32_cuda(src0_ddf_i, src1_ddf_i, dst_ddf_i, ne0*i01_diff, cudaStream_main); CUDA_CHECK(cudaGetLastError()); (void) src1; (void) dst; (void) src0_ddq_i; (void) i02; (void) i1; } inline void ggml_cuda_op_mul( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i, float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1, cudaStream_t & cudaStream_main){ GGML_ASSERT(src0_ddf_i != nullptr); GGML_ASSERT(src1_ddf_i != nullptr); GGML_ASSERT(dst_ddf_i != nullptr); const int64_t ne00 = src0->ne[0]; const int64_t ne10 = src1->ne[0]; const int64_t ne11 = src1->ne[1]; for (int64_t i01 = i01_low; i01 < i01_high; i01++) { const int64_t i11 = i1*ne11 + i01%ne11; // broadcast src1 across src0 float * src0_ddf_i01 = src0_ddf_i + i01*ne00; float * src1_ddf_i01 = src1_ddf_i + i11*ne10; float * dst_ddf_i01 = dst_ddf_i + i01*ne00; // compute mul_f32_cuda(src0_ddf_i01, src1_ddf_i01, dst_ddf_i01, ne00, ne10, cudaStream_main); CUDA_CHECK(cudaGetLastError()); } (void) dst; (void) src0_ddq_i; (void) i02; } inline void ggml_cuda_op_silu( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i, float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1, cudaStream_t & cudaStream_main){ GGML_ASSERT(src0_ddf_i != nullptr); GGML_ASSERT(dst_ddf_i != nullptr); const int64_t ne00 = src0->ne[0]; const int64_t i01_diff = i01_high - i01_low; // compute silu_f32_cuda(src0_ddf_i, dst_ddf_i, ne00*i01_diff, cudaStream_main); CUDA_CHECK(cudaGetLastError()); (void) src1; (void) dst; (void) src0_ddq_i; (void) src1_ddf_i; (void) i02; (void) i1; } inline void ggml_cuda_op_rms_norm( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i, float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1, cudaStream_t & cudaStream_main){ GGML_ASSERT(src0_ddf_i != nullptr); GGML_ASSERT(dst_ddf_i != nullptr); const int64_t ne00 = src0->ne[0]; const int64_t i01_diff = i01_high - i01_low; // compute rms_norm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, cudaStream_main); CUDA_CHECK(cudaGetLastError()); (void) src1; (void) dst; (void) src0_ddq_i; (void) src1_ddf_i; (void) i02; (void) i1; } inline void ggml_cuda_op_dequantize_mul_mat_vec( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i, float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1, cudaStream_t & cudaStream_main){ GGML_ASSERT(src0_ddq_i != nullptr); GGML_ASSERT(src1_ddf_i != nullptr); GGML_ASSERT(dst_ddf_i != nullptr); const int64_t ne00 = src0->ne[0]; const int64_t nrows = i01_high - i01_low; switch (src0->type) { case GGML_TYPE_Q4_0: dequantize_mul_mat_vec_q4_0_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main); break; case GGML_TYPE_Q4_1: dequantize_mul_mat_vec_q4_1_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main); break; case GGML_TYPE_Q5_0: dequantize_mul_mat_vec_q5_0_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main); break; case GGML_TYPE_Q5_1: dequantize_mul_mat_vec_q5_1_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main); break; case GGML_TYPE_Q8_0: dequantize_mul_mat_vec_q8_0_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main); break; case GGML_TYPE_Q2_K: dequantize_mul_mat_vec_q2_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main); break; case GGML_TYPE_Q3_K: dequantize_mul_mat_vec_q3_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main); break; case GGML_TYPE_Q4_K: dequantize_mul_mat_vec_q4_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main); break; case GGML_TYPE_Q5_K: dequantize_mul_mat_vec_q5_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main); break; case GGML_TYPE_Q6_K: dequantize_mul_mat_vec_q6_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main); break; case GGML_TYPE_F16: convert_mul_mat_vec_f16_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main); break; default: GGML_ASSERT(false); break; } CUDA_CHECK(cudaGetLastError()); (void) src1; (void) dst; (void) src0_ddf_i; (void) i02; (void) i1; } inline void ggml_cuda_op_mul_mat_cublas( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i, float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1, cudaStream_t & cudaStream_main){ GGML_ASSERT(src0_ddf_i != nullptr); GGML_ASSERT(src1_ddf_i != nullptr); GGML_ASSERT(dst_ddf_i != nullptr); const float alpha = 1.0f; const float beta = 0.0f; const int64_t ne00 = src0->ne[0]; const int64_t ne10 = src1->ne[0]; const int64_t ne11 = src1->ne[1]; const int64_t ne0 = dst->ne[0]; const int64_t i01_diff = i01_high - i01_low; int id; CUDA_CHECK(cudaGetDevice(&id)); // the main device has a larger memory buffer to hold the results from all GPUs // ldc == nrows of the matrix that cuBLAS writes into int ldc = dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : i01_diff; CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], cudaStream_main)); CUBLAS_CHECK( cublasSgemm(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N, i01_diff, ne11, ne10, &alpha, src0_ddf_i, ne00, src1_ddf_i, ne10, &beta, dst_ddf_i, ldc)); (void) dst; (void) src0_ddq_i; (void) i02; (void) i1; } inline void ggml_cuda_op_rope( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i, float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1, cudaStream_t & cudaStream_main){ GGML_ASSERT(src0_ddf_i != nullptr); GGML_ASSERT(dst_ddf_i != nullptr); const int64_t ne00 = src0->ne[0]; const int64_t i01_diff = i01_high - i01_low; const int n_past = ((int32_t *) src1->data)[0]; const int n_dims = ((int32_t *) src1->data)[1]; const int mode = ((int32_t *) src1->data)[2]; GGML_ASSERT(mode == 0); const float theta_scale = powf(10000.0, -2.0f/n_dims); const float p = ((mode & 1) == 0 ? n_past + i02 : i02); // compute rope_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p, theta_scale, cudaStream_main); CUDA_CHECK(cudaGetLastError()); (void) dst; (void) src0_ddq_i; (void) src1_ddf_i; (void) i1; } static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_cuda_op_t op, bool src0_needs_f32) { const int64_t ne00 = src0->ne[0]; const int64_t ne01 = src0->ne[1]; const int64_t ne02 = src0->ne[2]; const int64_t ne03 = src0->ne[3]; const int64_t nrows0 = ggml_nrows(src0); const bool use_src1 = src1 != nullptr; const int64_t ne10 = use_src1 ? src1->ne[0] : 1; const int64_t ne11 = use_src1 ? src1->ne[1] : 1; const int64_t ne12 = use_src1 ? src1->ne[2] : 1; const int64_t ne13 = use_src1 ? src1->ne[3] : 1; const int64_t ne0 = dst->ne[0]; const int64_t ne1 = dst->ne[1]; const int nb2 = dst->nb[2]; const int nb3 = dst->nb[3]; GGML_ASSERT(dst->backend != GGML_BACKEND_GPU_SPLIT); GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_GPU_SPLIT); // strides for iteration over dims 3 and 2 const int64_t src0_stride = ne00 * ne01; const int64_t src1_stride = ne10 * ne11; const int64_t dst_stride = ne0 * ne1; const int64_t num_iters = ne02 * ne03; const size_t src0_ts = ggml_type_size(src0->type); const size_t src0_bs = ggml_blck_size(src0->type); struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; struct ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr; struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; const bool src0_on_device = src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT; const bool src0_is_f32 = src0->type == GGML_TYPE_F32; const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT; const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type); // dd = data device char * src0_ddq[GGML_CUDA_MAX_DEVICES] = {nullptr}; // quantized float * src0_ddf[GGML_CUDA_MAX_DEVICES] = {nullptr}; // float float * src1_ddf[GGML_CUDA_MAX_DEVICES] = {nullptr}; float * dst_ddf[GGML_CUDA_MAX_DEVICES] = {nullptr}; // asq = actual size quantized, asf = actual size float size_t src0_asq[GGML_CUDA_MAX_DEVICES] = {0}; size_t src0_asf[GGML_CUDA_MAX_DEVICES] = {0}; size_t src1_asf[GGML_CUDA_MAX_DEVICES] = {0}; size_t dst_asf[GGML_CUDA_MAX_DEVICES] = {0}; for (int id = 0; id < g_device_count; ++id) { if (!split && id != g_main_device) { continue; } const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_GPU && id == g_main_device; const bool dst_on_device = dst->backend == GGML_BACKEND_GPU && id == g_main_device; int64_t row_low, row_high; if (split) { row_low = id == 0 ? 0 : nrows0*g_tensor_split[id]; row_low -= row_low % GGML_CUDA_DMMV_Y; row_high = id == g_device_count - 1 ? nrows0 : nrows0*g_tensor_split[id + 1]; row_high -= row_high % GGML_CUDA_DMMV_Y; } else { row_low = 0; row_high = nrows0; } if (row_low == row_high) { continue; } int64_t row_diff = row_high - row_low; cudaSetDevice(id); if (src0_on_device) { if (src0_is_f32) { src0_ddf[id] = (float *) src0_extra->data_device[id]; } else { src0_ddq[id] = (char *) src0_extra->data_device[id]; } } else { if (src0_is_f32) { src0_ddf[id] = (float *) ggml_cuda_pool_malloc(row_diff*ne00 * sizeof(float), &src0_asf[id]); } else { src0_ddq[id] = (char *) ggml_cuda_pool_malloc(row_diff*ne00 * src0_ts/src0_bs, &src0_asq[id]); } } if (src0_needs_f32 && !src0_is_f32) { src0_ddf[id] = (float *) ggml_cuda_pool_malloc(row_diff*ne00 * sizeof(float), &src0_asf[id]); } if (use_src1) { if (src1_on_device) { src1_ddf[id] = (float *) src1_extra->data_device[id]; } else { src1_ddf[id] = (float *) ggml_cuda_pool_malloc(num_iters*src1_stride * sizeof(float), &src1_asf[id]); } } if (dst_on_device) { dst_ddf[id] = (float *) dst_extra->data_device[id]; } else { size_t size_dst_ddf = split ? row_diff*ne1 * sizeof(float) : num_iters*dst_stride * sizeof(float); dst_ddf[id] = (float *) ggml_cuda_pool_malloc(size_dst_ddf, &dst_asf[id]); } for (int64_t i03 = 0; i03 < ne03; i03++) { const int64_t i13 = i03 % ne13; for (int64_t i02 = 0; i02 < ne02; i02++) { const int64_t i12 = i02 % ne12; const int64_t i0 = i03*ne02 + i02; const int64_t i0_offset_low = row_low/ne01; const int64_t i0_offset_high = row_high/ne01; int64_t i01_low = 0; int64_t i01_high = ne01; if (split) { if (i0 < i0_offset_low || i0 > i0_offset_high) { continue; } if (i0 == i0_offset_low) { i01_low = row_low % ne01; } if (i0 == i0_offset_high) { i01_high = row_high % ne01; } } const int64_t i01_diff = i01_high - i01_low; if (i01_diff == 0) { continue; } const int64_t i11 = i13*ne12 + i12; cudaStream_t cudaStream_main = g_cudaStreams_main[id][i0 % GGML_CUDA_MAX_STREAMS]; cudaStream_t cudaStream_memcpy_src1 = g_cudaStreams_memcpy_src1[id][i0 % GGML_CUDA_MAX_STREAMS]; cudaEvent_t cudaEvent_memcpy_src1 = g_cudaEvents_memcpy_src1[id][i0 % GGML_CUDA_MAX_EVENTS]; // for split tensors the data begins at i0 == i0_offset_low char * src0_ddq_i = src0_ddq[id] + (i0 - i0_offset_low)*src0_stride*src0_ts/src0_bs; float * src0_ddf_i = src0_ddf[id] + (i0 - i0_offset_low)*src0_stride; float * src1_ddf_i = src1_ddf[id] + i11*src1_stride; float * dst_ddf_i = dst_ddf[id] + (i0 - i0_offset_low)*dst_stride; // for split tensors the data pointer needs to be rounded down // to the bin edge for i03, i02 bins beyond the first if (i0 - i0_offset_low > 0) { src0_ddq_i -= (row_low % ne01)*ne00 * src0_ts/src0_bs; src0_ddf_i -= (row_low % ne01)*ne00; } if (i0 - i0_offset_low > 0) { dst_ddf_i -= (row_low % ne0)*ne1; } // the main device memory buffer can be on VRAM scratch, with space for all partial results // in that case an offset on dst_ddf_i is needed if (dst->backend == GGML_BACKEND_GPU && id == g_main_device) { dst_ddf_i += i01_low; // offset is 0 if no tensor split } // copy src0, src1 to device if necessary if (use_src1) { if (src1->backend == GGML_BACKEND_CPU) { CUDA_CHECK(ggml_cuda_h2d_tensor_2d(src1_ddf_i, src1, i03, i02, 0, ne11, cudaStream_memcpy_src1)); } else if (src1->backend == GGML_BACKEND_GPU) { if (id != g_main_device) { float * src1_ddf_i_source = (float *) src1_extra->data_device[g_main_device]; src1_ddf_i_source += i11*src1_stride; CUDA_CHECK(cudaMemcpyAsync(src1_ddf_i, src1_ddf_i_source, src1_stride*sizeof(float), cudaMemcpyDeviceToDevice, cudaStream_memcpy_src1)); } } else { GGML_ASSERT(false); } } CUDA_CHECK(cudaEventRecord(cudaEvent_memcpy_src1, cudaStream_memcpy_src1)); if (!src0_on_device) { if (src0_is_f32) { CUDA_CHECK(ggml_cuda_h2d_tensor_2d(src0_ddf_i, src0, i03, i02, i01_low, i01_high, cudaStream_main)); } else { CUDA_CHECK(ggml_cuda_h2d_tensor_2d(src0_ddq_i, src0, i03, i02, i01_low, i01_high, cudaStream_main)); } } // convert src0 to f32 if it's necessary for the ggml_cuda_op if (src0_needs_f32 && !src0_is_f32) { to_fp32_cuda(src0_ddq_i, src0_ddf_i, i01_diff*ne00, cudaStream_main); CUDA_CHECK(cudaGetLastError()); } // wait with main stream until src1 memcpy is done CUDA_CHECK(cudaStreamWaitEvent(cudaStream_main, cudaEvent_memcpy_src1, 0)); // do the computation op(src0, src1, dst, src0_ddq_i, src0_ddf_i, src1_ddf_i, dst_ddf_i, i02, i01_low, i01_high, i11, cudaStream_main); // copy dst to host or other device if necessary if (!dst_on_device) { void * dst_off_device; cudaMemcpyKind kind; if (dst->backend == GGML_BACKEND_CPU) { dst_off_device = dst->data; kind = cudaMemcpyDeviceToHost; } else if (dst->backend == GGML_BACKEND_GPU) { dst_off_device = dst_extra->data_device[g_main_device]; kind = cudaMemcpyDeviceToDevice; } else { GGML_ASSERT(false); } if (split) { // src0 = weight matrix is saved as a transposed matrix for better memory layout. // dst is NOT transposed. // The outputs of cuBLAS matrix matrix multiplications can therefore NOT simply be concatenated for >1 GPU. // Instead they need to be copied to the correct slice in ne0 = dst row index. // If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results. for (int64_t j = 0; j < ne1; ++j) { float * dhf_dst_i = (float *) ((char *) dst_off_device + (j*ne0 + i01_low)*sizeof(float) + i02*nb2 + i03*nb3); CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_ddf_i + j*i01_diff, i01_diff*sizeof(float), kind, cudaStream_main)); } } else { float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3); CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_ddf_i, dst_stride*sizeof(float), kind, cudaStream_main)); } } } } } // wait until each device is finished, then free their buffers for (int id = 0; id < g_device_count; ++id) { CUDA_CHECK(cudaSetDevice(id)); CUDA_CHECK(cudaDeviceSynchronize()); if (src0_asq[id] > 0) { ggml_cuda_pool_free(src0_ddq[id], src0_asq[id]); } if (src0_asf[id] > 0) { ggml_cuda_pool_free(src0_ddf[id], src0_asf[id]); } if (src1_asf[id] > 0) { ggml_cuda_pool_free(src1_ddf[id], src1_asf[id]); } if (dst_asf[id] > 0) { ggml_cuda_pool_free(dst_ddf[id], dst_asf[id]); } } } void ggml_cuda_add(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); ggml_cuda_op(src0, src1, dst, ggml_cuda_op_add, true); } void ggml_cuda_mul(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul, true); } void ggml_cuda_silu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); ggml_cuda_op(src0, src1, dst, ggml_cuda_op_silu, true); } void ggml_cuda_rms_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rms_norm, true); } bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { GGML_ASSERT(src0->backend != GGML_BACKEND_GPU); const int64_t ne10 = src1->ne[0]; const int64_t ne0 = dst->ne[0]; const int64_t ne1 = dst->ne[1]; // if (strcmp(dst->name, "KQ") == 0 || strcmp(dst->name, "KQV") == 0) { // fprintf(stderr, "(%ld, %ld, %ld, %ld) + (%ld, %ld, %ld, %ld) -> (%ld, %ld, %ld, %ld)\n", // src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3], // src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3], // dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3]); // return false; // } // TODO: find the optimal values for these if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32 && (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) { return true; } return false; } void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { if (src0->type == GGML_TYPE_F32) { ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, true); } else if (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16) { if (src1->ne[1] == 1) { ggml_cuda_op(src0, src1, dst, ggml_cuda_op_dequantize_mul_mat_vec, false); } else { ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, true); } } else { GGML_ASSERT(false); } } void ggml_cuda_rope(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rope, true); } void ggml_cuda_nop(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { (void) src0; (void) src1; (void) dst; } void ggml_cuda_load_data(const char * fname, struct ggml_tensor * tensor, const size_t offset) { FILE * fp = fopen(fname, "rb"); int nrows = ggml_nrows(tensor); const size_t nb1 = tensor->nb[1]; ggml_backend backend = tensor->backend; struct ggml_tensor_extra_gpu * extra = new struct ggml_tensor_extra_gpu; for (int id = 0; id < g_device_count; ++id) { extra->data_device[id] = nullptr; if (backend == GGML_BACKEND_GPU && id != g_main_device) { continue; } cudaSetDevice(id); int row_low, row_high; if (backend == GGML_BACKEND_GPU) { row_low = 0; row_high = nrows; } else if (backend == GGML_BACKEND_GPU_SPLIT) { row_low = id == 0 ? 0 : nrows*g_tensor_split[id]; row_low -= row_low % GGML_CUDA_DMMV_Y; row_high = id == g_device_count - 1 ? nrows : nrows*g_tensor_split[id + 1]; row_high -= row_high % GGML_CUDA_DMMV_Y; } else { GGML_ASSERT(false); } if (row_low == row_high) { continue; } int64_t nrows_split = row_high - row_low; const size_t offset_split = offset + row_low*nb1; const size_t size = ggml_nbytes_split(tensor, nrows_split); void * buf; CUDA_CHECK(cudaMalloc(&buf, size)); void * buf_host = malloc(size); #ifdef _WIN32 int ret = _fseeki64(fp, (__int64) offset_split, SEEK_SET); #else int ret = fseek(fp, (long) offset_split, SEEK_SET); #endif GGML_ASSERT(ret == 0); // same size_t ret2 = fread(buf_host, size, 1, fp); if (ret2 != 1) { fprintf(stderr, "unexpectedly reached end of file"); exit(1); } cudaMemcpy(buf, buf_host, size, cudaMemcpyHostToDevice); cudaDeviceSynchronize(); free(buf_host); extra->data_device[id] = buf; } tensor->extra = extra; fclose(fp); } void ggml_cuda_free_data(struct ggml_tensor * tensor) { if (tensor->backend != GGML_BACKEND_GPU && tensor->backend != GGML_BACKEND_GPU_SPLIT) { return; } ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra; for (int id = 0; id < g_device_count; ++id) { if (extra->data_device[id] == nullptr) { continue; } CUDA_CHECK(cudaSetDevice(id)); CUDA_CHECK(cudaFree(extra->data_device[id])); } delete extra; } void ggml_cuda_assign_buffers(struct ggml_tensor * tensor) { if (tensor->src0 != nullptr && tensor->src0->op == GGML_OP_RESHAPE) { ggml_cuda_assign_buffers(tensor); } const size_t size = ggml_nbytes(tensor); GGML_ASSERT(size <= g_scratch_size); if (g_scratch_offset + size > g_scratch_size) { g_scratch_offset = 0; } tensor->backend = GGML_BACKEND_GPU; struct ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu; bool inplace = tensor->src0 != nullptr && tensor->src0->data == tensor->data; CUDA_CHECK(cudaSetDevice(g_main_device)); if (inplace && tensor->src0->backend == GGML_BACKEND_GPU) { struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->src0->extra; extra->data_device[g_main_device] = src0_extra->data_device; GGML_ASSERT(false); } else { char * data = (char *) g_scratch_buffer; if (data == nullptr) { CUDA_CHECK(cudaMalloc(&data, g_scratch_size)); g_scratch_buffer = data; } extra->data_device[g_main_device] = data + g_scratch_offset; } // fprintf(stderr, "data=%p offset=%ld data_device=%p\n", data, g_scratch_offset, extra->data_device[0]); g_scratch_offset += size; // fprintf(stderr, "%s: scratch %d, %p - %p\n", // tensor->name, g_scratch_index, data + g_scratch_offset, data + g_scratch_offset + size); GGML_ASSERT(g_scratch_offset <= g_scratch_size); tensor->extra = extra; } void ggml_cuda_set_main_device(int main_device) { if (main_device > g_device_count) { fprintf(stderr, "warning: cannot set main_device=%d because there are only %d devices. Using device %d instead.\n", main_device, g_device_count, g_main_device); return; } g_main_device = main_device; if (g_device_count > 1) { cudaDeviceProp prop; CUDA_CHECK(cudaGetDeviceProperties(&prop, g_main_device)); fprintf(stderr, "%s: using device %d (%s) as main device\n", __func__, g_main_device, prop.name); } } void ggml_cuda_set_scratch_size(size_t scratch_size) { g_scratch_size = scratch_size; } bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor){ ggml_cuda_func_t func; const bool any_on_device = tensor->backend == GGML_BACKEND_GPU || tensor->src0->backend == GGML_BACKEND_GPU || tensor->src0->backend == GGML_BACKEND_GPU_SPLIT || (tensor->src1 != nullptr && tensor->src1->backend == GGML_BACKEND_GPU); switch (tensor->op) { case GGML_OP_ADD: if (!any_on_device) { return false; } func = ggml_cuda_add; break; case GGML_OP_MUL: if (!any_on_device) { return false; } func = ggml_cuda_mul; break; case GGML_OP_SILU: if (!any_on_device) { return false; } func = ggml_cuda_silu; break; case GGML_OP_RMS_NORM: if (!any_on_device) { return false; } func = ggml_cuda_rms_norm; break; case GGML_OP_MUL_MAT: if (!any_on_device && !ggml_cuda_can_mul_mat(tensor->src0, tensor->src1, tensor)) { return false; } func = ggml_cuda_mul_mat; break; case GGML_OP_RESHAPE: if (!any_on_device) { return false; } func = ggml_cuda_nop; break; case GGML_OP_ROPE: if (!any_on_device) { return false; } func = ggml_cuda_rope; break; default: return false; } if (params->ith != 0) { return true; } if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { return true; } func(tensor->src0, tensor->src1, tensor); return true; }