# GBNF Guide GBNF (GGML BNF) is a format for defining [formal grammars](https://en.wikipedia.org/wiki/Formal_grammar) to constrain model outputs in `llama.cpp`. For example, you can use it to force the model to generate valid JSON, or speak only in emojis. GBNF grammars are supported in various ways in `examples/main` and `examples/server`. ## Background [Bakus-Naur Form (BNF)](https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form) is a notation for describing the syntax of formal languages like programming languages, file formats, and protocols. GBNF is an extension of BNF that primarily adds a few modern regex-like features. ## Basics In GBNF, we define *production rules* that specify how a *non-terminal* (rule name) can be replaced with sequences of *terminals* (characters, specifically Unicode [code points](https://en.wikipedia.org/wiki/Code_point)) and other non-terminals. The basic format of a production rule is `nonterminal ::= sequence...`. ## Example Before going deeper, let's look at some of the features demonstrated in `grammars/chess.gbnf`, a small chess notation grammar: ``` # `root` specifies the pattern for the overall output root ::= ( # it must start with the characters "1. " followed by a sequence # of characters that match the `move` rule, followed by a space, followed # by another move, and then a newline "1. " move " " move "\n" # it's followed by one or more subsequent moves, numbered with one or two digits ([1-9] [0-9]? ". " move " " move "\n")+ ) # `move` is an abstract representation, which can be a pawn, nonpawn, or castle. # The `[+#]?` denotes the possibility of checking or mate signs after moves move ::= (pawn | nonpawn | castle) [+#]? pawn ::= ... nonpawn ::= ... castle ::= ... ``` ## Non-Terminals and Terminals Non-terminal symbols (rule names) stand for a pattern of terminals and other non-terminals. They are required to be a dashed lowercase word, like `move`, `castle`, or `check-mate`. Terminals are actual characters ([code points](https://en.wikipedia.org/wiki/Code_point)). They can be specified as a sequence like `"1"` or `"O-O"` or as ranges like `[1-9]` or `[NBKQR]`. ## Characters and character ranges Terminals support the full range of Unicode. Unicode characters can be specified directly in the grammar, for example `hiragana ::= [ぁ-ゟ]`, or with escapes: 8-bit (`\xXX`), 16-bit (`\uXXXX`) or 32-bit (`\UXXXXXXXX`). Character ranges can be negated with `^`: ``` single-line ::= [^\n]+ "\n"` ``` ## Sequences and Alternatives The order of symbols in a sequence matter. For example, in `"1. " move " " move "\n"`, the `"1. "` must come before the first `move`, etc. Alternatives, denoted by `|`, give different sequences that are acceptable. For example, in `move ::= pawn | nonpawn | castle`, `move` can be a `pawn` move, a `nonpawn` move, or a `castle`. Parentheses `()` can be used to group sequences, which allows for embedding alternatives in a larger rule or applying repetition and optional symbols (below) to a sequence. ## Repetition and Optional Symbols - `*` after a symbol or sequence means that it can be repeated zero or more times. - `+` denotes that the symbol or sequence should appear one or more times. - `?` makes the preceding symbol or sequence optional. ## Comments and newlines Comments can be specified with `#`: ``` # defines optional whitespace ws ::= [ \t\n]+ ``` Newlines are allowed between rules and between symbols or sequences nested inside parentheses. Additionally, a newline after an alternate marker `|` will continue the current rule, even outside of parentheses. ## The root rule In a full grammar, the `root` rule always defines the starting point of the grammar. In other words, it specifies what the entire output must match. ``` # a grammar for lists root ::= ("- " item)+ item ::= [^\n]+ "\n" ``` ## Next steps This guide provides a brief overview. Check out the GBNF files in this directory (`grammars/`) for examples of full grammars. You can try them out with: ``` ./main -m --grammar-file grammars/some-grammar.gbnf -p 'Some prompt' ```