#include "ggml-opencl.h" #define CL_TARGET_OPENCL_VERSION 110 #include #include #include #include #include "ggml.h" #define MULTILINE_QUOTE(...) #__VA_ARGS__ static const char * program_source = MULTILINE_QUOTE( typedef char int8_t; typedef uchar uint8_t; typedef int int32_t; typedef uint uint32_t; struct __attribute__ ((packed)) block_q4_0 { half d; uint8_t qs[16]; /* QK4_0 / 2 */ }; struct __attribute__ ((packed)) block_q4_1 { half d; half m; uint8_t qs[16]; /* QK4_1 / 2 */ }; struct __attribute__ ((packed)) block_q5_0 { half d; uint32_t qh; uint8_t qs[16]; /* QK5_0 / 2 */ }; struct __attribute__ ((packed)) block_q5_1 { half d; half m; uint32_t qh; uint8_t qs[16]; /* QK5_1 / 2 */ }; struct __attribute__ ((packed)) block_q8_0 { half d; int8_t qs[32]; /* QK8_0 */ }; __kernel void dequantize_row_q4_0(__global struct block_q4_0* x, __global float* y) { const uint i = get_global_id(0) / 32; /* QK4_0 */ const uint j = get_local_id(0); const float d = vload_half(0, (__global half*) &x[i].d); const int x0 = (x[i].qs[j] & 0xf) - 8; const int x1 = (x[i].qs[j] >> 4) - 8; y[i*32 + j + 0 ] = x0*d; y[i*32 + j + 16] = x1*d; } __kernel void dequantize_row_q4_1(__global struct block_q4_1* x, __global float* y) { const uint i = get_global_id(0) / 32; /* QK4_1 */ const uint j = get_local_id(0); const float d = vload_half(0, (__global half*) &x[i].d); const float m = vload_half(0, (__global half*) &x[i].m); const int x0 = (x[i].qs[j] & 0xf); const int x1 = (x[i].qs[j] >> 4); y[i*32 + j + 0 ] = x0*d + m; y[i*32 + j + 16] = x1*d + m; } __kernel void dequantize_row_q5_0(__global struct block_q5_0* x, __global float* y) { const uint i = get_global_id(0) / 32; /* QK5_0 */ const uint j = get_local_id(0); const float d = vload_half(0, (__global half*) &x[i].d); uint32_t qh = x[i].qh; const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10; const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10; const int32_t x0 = ((x[i].qs[j] & 0xf) | xh_0) - 16; const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16; y[i*32 + j + 0 ] = x0*d; y[i*32 + j + 16] = x1*d; } __kernel void dequantize_row_q5_1(__global struct block_q5_1* x, __global float* y) { const uint i = get_global_id(0) / 32; /* QK5_1 */ const uint j = get_local_id(0); const float d = vload_half(0, (__global half*) &x[i].d); const float m = vload_half(0, (__global half*) &x[i].m); uint32_t qh = x[i].qh; const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10; const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10; const int x0 = (x[i].qs[j] & 0xf) | xh_0; const int x1 = (x[i].qs[j] >> 4) | xh_1; y[i*32 + j + 0 ] = x0*d + m; y[i*32 + j + 16] = x1*d + m; } __kernel void dequantize_row_q8_0(__global struct block_q8_0* x, __global float* y) { const uint i = get_global_id(0) / 32; /* QK8_0 */ const uint j = get_local_id(0); const float d = vload_half(0, (__global half*) &x[i].d); y[i*32 + j] = x[i].qs[j]*d; } ); #define CL_CHECK(err) \ do { \ cl_int err_ = (err); \ if (err_ != CL_SUCCESS) { \ fprintf(stderr, "ggml_opencl: %s error %d at %s:%d\n", \ #err, err_, __FILE__, __LINE__); \ exit(1); \ } \ } while (0) #define CLBLAST_CHECK(err) \ do { \ CLBlastStatusCode err_ = (err); \ if (err_ != CLBlastSuccess) { \ fprintf(stderr, "ggml_opencl: %s error %d at %s:%d\n", \ #err, err_, __FILE__, __LINE__); \ exit(1); \ } \ } while (0) static cl_platform_id platform; static cl_device_id device; static cl_context context; static cl_command_queue queue; static cl_program program; static cl_kernel kernel_q4_0, kernel_q4_1, kernel_q5_0, kernel_q5_1, kernel_q8_0; static cl_mem cl_buffer_a, cl_buffer_qb, cl_buffer_b, cl_buffer_c; static size_t cl_size_a = 0, cl_size_qb = 0, cl_size_b = 0, cl_size_c = 0; static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer) { cl_program p; char *program_log; size_t program_size, log_size; int err; program_size = strlen(program_buffer); p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err); if(err < 0) { fprintf(stderr, "OpenCL error creating program"); exit(1); } err = clBuildProgram(p, 0, NULL, NULL, NULL, NULL); if(err < 0) { clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size); program_log = (char*) malloc(log_size + 1); program_log[log_size] = '\0'; clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL); printf("%s\n", program_log); free(program_log); exit(1); } return p; } void ggml_cl_init(void) { cl_int err = 0; struct cl_device; struct cl_platform { cl_platform_id id; unsigned number; char name[128]; char vendor[128]; struct cl_device * devices; unsigned n_devices; struct cl_device * default_device; }; struct cl_device { struct cl_platform * platform; cl_device_id id; unsigned number; cl_device_type type; char name[128]; }; enum { NPLAT = 16, NDEV = 16 }; struct cl_platform platforms[NPLAT]; unsigned n_platforms = 0; struct cl_device devices[NDEV]; unsigned n_devices = 0; struct cl_device * default_device = NULL; platform = NULL; device = NULL; cl_platform_id platform_ids[NPLAT]; CL_CHECK(clGetPlatformIDs(NPLAT, platform_ids, &n_platforms)); for (unsigned i = 0; i < n_platforms; i++) { struct cl_platform * p = &platforms[i]; p->number = i; p->id = platform_ids[i]; CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_NAME, sizeof(p->name), &p->name, NULL)); CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_VENDOR, sizeof(p->vendor), &p->vendor, NULL)); cl_device_id device_ids[NDEV]; cl_int clGetDeviceIDsError = clGetDeviceIDs(p->id, CL_DEVICE_TYPE_ALL, NDEV, device_ids, &p->n_devices); if (clGetDeviceIDsError == CL_DEVICE_NOT_FOUND) { p->n_devices = 0; } else { CL_CHECK(clGetDeviceIDsError); } p->devices = p->n_devices > 0 ? &devices[n_devices] : NULL; p->default_device = NULL; for (unsigned j = 0; j < p->n_devices; j++) { struct cl_device * d = &devices[n_devices]; d->number = n_devices++; d->id = device_ids[j]; d->platform = p; CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_NAME, sizeof(d->name), &d->name, NULL)); CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_TYPE, sizeof(d->type), &d->type, NULL)); if (p->default_device == NULL && d->type == CL_DEVICE_TYPE_GPU) { p->default_device = d; } } if (default_device == NULL && p->default_device != NULL) { default_device = p->default_device; } } if (n_devices == 0) { fprintf(stderr, "ggml_opencl: could find any OpenCL devices.\n"); exit(1); } char * user_platform_string = getenv("GGML_OPENCL_PLATFORM"); char * user_device_string = getenv("GGML_OPENCL_DEVICE"); int user_platform_number = -1; int user_device_number = -1; unsigned n; if (user_platform_string != NULL && sscanf(user_platform_string, " %u", &n) == 1 && n < n_platforms) { user_platform_number = (int)n; } if (user_device_string != NULL && sscanf(user_device_string, " %u", &n) == 1 && n < n_devices) { user_device_number = (int)n; } struct cl_device * selected_devices = devices; unsigned n_selected_devices = n_devices; if (user_platform_number == -1 && user_platform_string != NULL && user_platform_string[0] != 0) { for (unsigned i = 0; i < n_platforms; i++) { struct cl_platform * p = &platforms[i]; if (strstr(p->name, user_platform_string) != NULL || strstr(p->vendor, user_platform_string) != NULL) { user_platform_number = (int)i; break; } } if (user_platform_number == -1) { fprintf(stderr, "ggml_opencl: no platform matching '%s' was found.\n", user_platform_string); exit(1); } } if (user_platform_number != -1) { struct cl_platform * p = &platforms[user_platform_number]; selected_devices = p->devices; n_selected_devices = p->n_devices; default_device = p->default_device; if (n_selected_devices == 0) { fprintf(stderr, "ggml_opencl: selected platform '%s' does not have any devices.\n", p->name); exit(1); } } if (user_device_number == -1 && user_device_string != NULL && user_device_string[0] != 0) { for (unsigned i = 0; i < n_selected_devices; i++) { struct cl_device * d = &selected_devices[i]; if (strstr(d->name, user_device_string) != NULL) { user_device_number = d->number; break; } } if (user_device_number == -1) { fprintf(stderr, "ggml_opencl: no device matching '%s' was found.\n", user_device_string); exit(1); } } if (user_device_number != -1) { selected_devices = &devices[user_device_number]; n_selected_devices = 1; default_device = &selected_devices[0]; } GGML_ASSERT(n_selected_devices > 0); if (default_device == NULL) { default_device = &selected_devices[0]; } fprintf(stderr, "ggml_opencl: selecting platform: '%s'\n", default_device->platform->name); fprintf(stderr, "ggml_opencl: selecting device: '%s'\n", default_device->name); if (default_device->type != CL_DEVICE_TYPE_GPU) { fprintf(stderr, "ggml_opencl: warning, not a GPU: '%s'.\n", default_device->name); } platform = default_device->platform->id; device = default_device->id; cl_context_properties properties[] = { (intptr_t)CL_CONTEXT_PLATFORM, (intptr_t)platform, 0 }; CL_CHECK((context = clCreateContext(properties, 1, &device, NULL, NULL, &err), err)); CL_CHECK((queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err), (err != CL_INVALID_PROPERTY && err != CL_INVALID_VALUE ? err : (queue = clCreateCommandQueue(context, device, 0, &err), err) ))); program = build_program_from_source(context, device, program_source); // Prepare dequantize kernels CL_CHECK((kernel_q4_0 = clCreateKernel(program, "dequantize_row_q4_0", &err), err)); CL_CHECK((kernel_q4_1 = clCreateKernel(program, "dequantize_row_q4_1", &err), err)); CL_CHECK((kernel_q5_0 = clCreateKernel(program, "dequantize_row_q5_0", &err), err)); CL_CHECK((kernel_q5_1 = clCreateKernel(program, "dequantize_row_q5_1", &err), err)); CL_CHECK((kernel_q8_0 = clCreateKernel(program, "dequantize_row_q8_0", &err), err)); } static void ggml_cl_malloc(size_t req_size, size_t* cur_size, cl_mem_flags flags, cl_mem* buf) { if (req_size <= *cur_size) { return; } // Reallocate buffer with enough space if (*cur_size > 0) { clReleaseMemObject(*buf); } cl_int err; CL_CHECK((*buf = clCreateBuffer(context, flags, req_size, NULL, &err), err)); *cur_size = req_size; } void ggml_cl_sgemm_wrapper( const enum ggml_blas_order order, const enum ggml_blas_op trans_a, const enum ggml_blas_op trans_b, const int m, const int n, const int k, const float alpha, const void *host_a, const int lda, const float *host_b, const int ldb, const float beta, float *host_c, const int ldc, const int btype) { cl_kernel kernel; size_t global = n * k, local, size_qb; bool dequant; switch (btype) { case GGML_TYPE_F32: dequant = false; break; case GGML_TYPE_Q4_0: dequant = true; kernel = kernel_q4_0; local = 16; size_qb = global * (sizeof(ggml_fp16_t) + local) / 32; break; case GGML_TYPE_Q4_1: dequant = true; kernel = kernel_q4_1; local = 16; size_qb = global * (sizeof(ggml_fp16_t) * 2 + local) / 32; break; case GGML_TYPE_Q5_0: dequant = true; kernel = kernel_q5_0; local = 16; size_qb = global * (sizeof(ggml_fp16_t) + sizeof(uint32_t) + local) / 32; break; case GGML_TYPE_Q5_1: dequant = true; kernel = kernel_q5_1; local = 16; size_qb = global * (sizeof(ggml_fp16_t) * 2 + sizeof(uint32_t) + local) / 32; break; case GGML_TYPE_Q8_0: dequant = true; kernel = kernel_q8_0; local = 32; size_qb = global * (sizeof(ggml_fp16_t) + local) / 32; break; default: fprintf(stderr, "Error: Unsupported OpenCL btype %d\n", btype); abort(); } const size_t size_a = m * k * sizeof(float); const size_t size_b = n * k * sizeof(float); const size_t size_c = m * n * sizeof(float); // Prepare buffers ggml_cl_malloc(size_a, &cl_size_a, CL_MEM_READ_ONLY, &cl_buffer_a); if (dequant) { ggml_cl_malloc(size_qb, &cl_size_qb, CL_MEM_READ_ONLY, &cl_buffer_qb); } ggml_cl_malloc(size_b, &cl_size_b, CL_MEM_READ_WRITE, &cl_buffer_b); ggml_cl_malloc(size_c, &cl_size_c, CL_MEM_WRITE_ONLY, &cl_buffer_c); cl_event ev_a, ev_qb, ev_b; if (dequant) { CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &cl_buffer_qb)); CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &cl_buffer_b)); CL_CHECK(clEnqueueWriteBuffer(queue, cl_buffer_qb, CL_FALSE, 0, size_qb, host_b, 0, NULL, &ev_qb)); } else { CL_CHECK(clEnqueueWriteBuffer(queue, cl_buffer_b, CL_FALSE, 0, size_b, host_b, 0, NULL, &ev_b)); } CL_CHECK(clEnqueueWriteBuffer(queue, cl_buffer_a, CL_FALSE, 0, size_a, host_a, 0, NULL, &ev_a)); if (dequant) { CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 1, &ev_qb, &ev_b)); CL_CHECK(clReleaseEvent(ev_qb)); } CL_CHECK(clWaitForEvents(1, &ev_a)); CL_CHECK(clWaitForEvents(1, &ev_b)); CL_CHECK(clReleaseEvent(ev_a)); CL_CHECK(clReleaseEvent(ev_b)); cl_event ev_sgemm; CLBLAST_CHECK(CLBlastSgemm( (CLBlastLayout)order, (CLBlastTranspose)trans_a, (CLBlastTranspose)trans_b, m, n, k, alpha, cl_buffer_a, 0, lda, cl_buffer_b, 0, ldb, beta, cl_buffer_c, 0, ldc, &queue, &ev_sgemm)); cl_event ev_c; CL_CHECK(clEnqueueReadBuffer(queue, cl_buffer_c, CL_TRUE, 0, size_c, host_c, 1, &ev_sgemm, &ev_c)); // Wait for completion CL_CHECK(clWaitForEvents(1, &ev_c)); CL_CHECK(clReleaseEvent(ev_sgemm)); CL_CHECK(clReleaseEvent(ev_c)); }