llama.cpp/convert-gptq-to-ggml.py
Justine Tunney 78ca9838ee Make loading weights 10-100x faster
This is a breaking change that's going to give you three benefits:

1. Your inference commands should load 100x faster
2. You may be able to safely load models 2x larger
3. You can run many concurrent inference processes

This was accomplished by changing the file format so we can mmap()
weights directly into memory without having to read() or copy them
thereby ensuring the kernel can make its file cache pages directly
accessible to our inference processes; and secondly, that the file
cache pages are much less likely to get evicted (which would force
loads to hit disk) because they're no longer competing with memory
pages that were needlessly created by gigabytes of standard i/o.

The new file format supports single-file models like LLaMA 7b, and
it also supports multi-file models like LLaMA 13B. Our Python tool
now merges the foo.1, foo.2, etc. files back into a single file so
that the C++ code which maps it doesn't need to reshape data every
time. That's made llama.cpp so much simpler. Much of its load code
has now been deleted.

Furthermore, this change ensures that tensors are aligned properly
on a 32-byte boundary. That opens the door to seeing if we can get
additional performance gains on some microprocessors, by using ops
that require memory alignment.

Lastly note that both POSIX and the Windows platform are supported

Fixes #91
2023-03-30 12:28:25 -07:00

173 lines
6.1 KiB
Python

# Convert a GPTQ quantized LLaMA model to a ggml compatible file
# Based on: https://github.com/qwopqwop200/GPTQ-for-LLaMa
#
import os
import re
import sys
import json
import struct
import numpy as np
import torch
from sentencepiece import SentencePieceProcessor
if len(sys.argv) != 4:
print("Usage: convert-gptq-to-ggml.py llamaXXb-4bit.pt tokenizer.model out.bin\n")
sys.exit(1)
fname_model = sys.argv[1]
fname_tokenizer = sys.argv[2]
dir_out = sys.argv[3]
model = torch.load(fname_model, map_location="cpu")
n_vocab, n_embd = model['model.embed_tokens.weight'].shape
n_layer = 1 + max(int(m.group(1)) for name in model
if (m := re.match(r'model\.layers\.([0-9]+)', name)))
# hardcoded:
n_mult = 256
n_head = {32: 32, 40: 40, 60: 52, 80: 64}[n_layer]
tokenizer = SentencePieceProcessor(fname_tokenizer)
assert tokenizer.vocab_size() == n_vocab
fname_out = sys.argv[3]
fout = open(fname_out, "wb")
fout.write(struct.pack("i", 0x67676d66)) # magic: ggmf in hex
fout.write(struct.pack("i", 1)) # file version
fout.write(struct.pack("i", n_vocab))
fout.write(struct.pack("i", n_embd))
fout.write(struct.pack("i", n_mult))
fout.write(struct.pack("i", n_head))
fout.write(struct.pack("i", n_layer))
fout.write(struct.pack("i", n_embd // n_head)) # rot (obsolete)
fout.write(struct.pack("i", 4))
# This loop unchanged from convert-pth-to-ggml.py:
for i in range(tokenizer.vocab_size()):
if tokenizer.is_unknown(i):
text = " \u2047 ".encode("utf-8")
elif tokenizer.is_control(i):
text = b""
elif tokenizer.is_byte(i):
piece = tokenizer.id_to_piece(i)
if len(piece) != 6:
print(f"Invalid token: {piece}")
sys.exit(1)
byte_value = int(piece[3:-1], 16)
text = struct.pack("B", byte_value)
else:
text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
fout.write(struct.pack("i", len(text)))
fout.write(text)
fout.write(struct.pack("f", tokenizer.get_score(i)))
def write_header(shape, dst_name, ftype_cur):
sname = dst_name.encode('utf-8')
fout.write(struct.pack("iii", len(shape), len(sname), ftype_cur))
fout.write(struct.pack("i" * len(shape), *shape[::-1]))
fout.write(sname)
# ensure tensor data is aligned
tensor_data_offset = fout.tell()
tensor_data_offset = (tensor_data_offset + 31) & -32
fout.seek(tensor_data_offset)
def convert_non_q4(src_name, dst_name):
v = model[src_name]
shape = v.shape
print("Processing non-Q4 variable: " + src_name + " with shape: ", shape, " and type: ", v.dtype)
if len(shape) == 1:
print(" Converting to float32")
v = v.to(torch.float32)
ftype_cur = {torch.float16: 1, torch.float32: 0}[v.dtype]
# header
write_header(shape, dst_name, ftype_cur)
# data
v.numpy().tofile(fout)
def convert_q4(src_name, dst_name, permute=False):
zeros = model[f"{src_name}.zeros"].numpy()
scales = model[f"{src_name}.scales"].numpy()
bias = model[f"{src_name}.bias"].numpy()
qweight = model[f"{src_name}.qweight"].numpy().T # transpose
# Q4_1 does not support bias; good thing the bias is always all zeros.
assert not np.any(bias)
# Each int32 item is actually 8 int4 items packed together, and it's transposed.
shape = (qweight.shape[0], qweight.shape[1] * 8)
print("Processing Q4 variable: " + src_name + " with shape: ", shape)
# The output format has the int4 weights in groups of 32 rather than 8.
# It looks like this:
# For each row:
# For each group of 32 columns:
# - addend (float32, 4 bytes)
# - scale (float32, 4 bytes)
# - weights (int4 * 32, 16 bytes)
# Note that in the input, the scales and addends are shared between all
# the columns in a row, so we end up wasting quite a bit of memory with
# repeated scales and addends.
addends = -zeros # flip sign
# Since the output format is mixed between integers and floats, we have
# to hackily view the floats as int32s just so numpy will let us
# concatenate them.
addends_view = addends.view(dtype=np.int32)
scales_view = scales.view(dtype=np.int32)
# Split into groups of 4 columns (i.e. 32 columns of quantized data):
grouped = qweight.reshape([qweight.shape[0], qweight.shape[1] // 4, 4])
# Repeat addends and scales:
addends_rep = np.atleast_3d(addends_view).repeat(grouped.shape[1], axis=1)
scales_rep = np.atleast_3d(scales_view).repeat(grouped.shape[1], axis=1)
blob = np.concatenate([scales_rep, addends_rep, grouped], axis=2, casting='no')
if permute:
# Permute some rows to undo the permutation done by convert_llama_weights_to_hf.py.
# This can be done after the above conversion because it doesn't affect column order/layout.
blob = (blob.reshape(n_head, 2, shape[0] // n_head // 2, *blob.shape[1:])
.swapaxes(1, 2)
.reshape(blob.shape))
# header
write_header(shape, dst_name, 3) # ftype = Q4_1
# data
blob.tofile(fout)
convert_non_q4("model.embed_tokens.weight", "tok_embeddings.weight")
convert_non_q4("model.norm.weight", "norm.weight")
convert_non_q4("lm_head.weight", "output.weight")
for i in range(n_layer):
convert_q4(f"model.layers.{i}.self_attn.q_proj", f"layers.{i}.attention.wq.weight", permute=True)
convert_q4(f"model.layers.{i}.self_attn.k_proj", f"layers.{i}.attention.wk.weight", permute=True)
convert_q4(f"model.layers.{i}.self_attn.v_proj", f"layers.{i}.attention.wv.weight")
convert_q4(f"model.layers.{i}.self_attn.o_proj", f"layers.{i}.attention.wo.weight")
convert_q4(f"model.layers.{i}.mlp.gate_proj", f"layers.{i}.feed_forward.w1.weight")
convert_q4(f"model.layers.{i}.mlp.down_proj", f"layers.{i}.feed_forward.w2.weight")
convert_q4(f"model.layers.{i}.mlp.up_proj", f"layers.{i}.feed_forward.w3.weight")
convert_non_q4(f"model.layers.{i}.input_layernorm.weight", f"layers.{i}.attention_norm.weight")
convert_non_q4(f"model.layers.{i}.post_attention_layernorm.weight", f"layers.{i}.ffn_norm.weight")
fout.close()
print("Done. Output file: " + fname_out)
print("")