Allow varying input length with scrypt, scryptn and scryptjane

master
Lucas Jones 2014-04-19 19:27:09 +01:00
parent 814d47a012
commit a3bfc4415e
17 changed files with 106 additions and 507 deletions

View File

@ -7,7 +7,7 @@
#include "sha3/sph_blake.h"
void blake_hash(const char* input, char* output, unsigned int len)
void blake_hash(const char* input, char* output, uint32_t len)
{
sph_blake256_context ctx_blake;
sph_blake256_init(&ctx_blake);

View File

@ -5,7 +5,9 @@
extern "C" {
#endif
void blake_hash(const char* input, char* output, unsigned int len);
#include <stdint.h>
void blake_hash(const char* input, char* output, uint32_t len);
#ifdef __cplusplus
}

View File

@ -7,7 +7,7 @@
#include "sha3/sph_groestl.h"
#include "sha256.h"
void groestl_hash(const char* input, char* output, unsigned int len)
void groestl_hash(const char* input, char* output, uint32_t len)
{
char* hash1 = (char*) malloc(64);
char* hash2 = (char*) malloc(64);
@ -27,7 +27,7 @@ void groestl_hash(const char* input, char* output, unsigned int len)
free(hash2);
}
void groestl_myriad_hash(const char* input, char* output, unsigned int len)
void groestl_myriad_hash(const char* input, char* output, uint32_t len)
{
char* temp = (char*) malloc(64);

View File

@ -5,8 +5,10 @@
extern "C" {
#endif
void groestl_hash(const char* input, char* output, unsigned int len);
void groestl_myriad_hash(const char* input, char* output, unsigned int len);
#include <stdint.h>
void groestl_hash(const char* input, char* output, uint32_t len);
void groestl_myriad_hash(const char* input, char* output, uint32_t len);
#ifdef __cplusplus
}

View File

@ -1,6 +1,7 @@
#include <node.h>
#include <node_buffer.h>
#include <v8.h>
#include <stdint.h>
extern "C" {
#include "bcrypt.h"
@ -13,48 +14,6 @@ extern "C" {
#include "x11.h"
#include "groestl.h"
#include "blake.h"
#define max(a,b) (((a) > (b)) ? (a) : (b))
#define min(a,b) (((a) < (b)) ? (a) : (b))
unsigned char GetNfactorJane(int nTimestamp, int nChainStartTime, int nMin, int nMax) {
const unsigned char minNfactor = nMin;//4;
const unsigned char maxNfactor = nMax;//30;
int l = 0, s, n;
unsigned char N;
if (nTimestamp <= nChainStartTime)
return 4;
s = nTimestamp - nChainStartTime;
while ((s >> 1) > 3) {
l += 1;
s >>= 1;
}
s &= 3;
n = (l * 170 + s * 25 - 2320) / 100;
if (n < 0) n = 0;
if (n > 255)
printf("GetNfactor(%d) - something wrong(n == %d)\n", nTimestamp, n);
N = (unsigned char)n;
//printf("GetNfactor: %d -> %d %d : %d / %d\n", nTimestamp - nChainStartTime, l, s, n, min(max(N, minNfactor), maxNfactor));
return min(max(N, minNfactor), maxNfactor);
}
void scryptjane_hash(const void* input, size_t inputlen, uint32_t *res, unsigned char Nfactor)
{
return scrypt((const unsigned char*)input, inputlen,
(const unsigned char*)input, inputlen,
Nfactor, 0, 0, (unsigned char*)res, 32);
}
}
using namespace node;
@ -78,7 +37,7 @@ Handle<Value> quark(const Arguments& args) {
char * input = Buffer::Data(target);
char * output = new char[32];
unsigned int input_len = Buffer::Length(target);
uint32_t input_len = Buffer::Length(target);
quark_hash(input, output, input_len);
@ -100,7 +59,7 @@ Handle<Value> x11(const Arguments& args) {
char * input = Buffer::Data(target);
char * output = new char[32];
unsigned int input_len = Buffer::Length(target);
uint32_t input_len = Buffer::Length(target);
x11_hash(input, output, input_len);
@ -122,7 +81,9 @@ Handle<Value> scrypt(const Arguments& args) {
char * input = Buffer::Data(target);
char * output = new char[32];
scrypt_1024_1_1_256(input, output);
uint32_t input_len = Buffer::Length(target);
scrypt_1024_1_1_256(input, output, input_len);
Buffer* buff = Buffer::New(output, 32);
return scope.Close(buff->handle_);
@ -147,10 +108,12 @@ Handle<Value> scryptn(const Arguments& args) {
char * input = Buffer::Data(target);
char * output = new char[32];
uint32_t input_len = Buffer::Length(target);
//unsigned int N = 1 << (getNfactor(input) + 1);
unsigned int N = 1 << nFactor;
scrypt_N_1_1_256(input, output, N);
scrypt_N_1_1_256(input, output, N, input_len);
Buffer* buff = Buffer::New(output, 32);
@ -183,7 +146,9 @@ Handle<Value> scryptjane(const Arguments& args) {
char * input = Buffer::Data(target);
char * output = new char[32];
scryptjane_hash(input, 80, (uint32_t *)output, GetNfactorJane(timestamp, nChainStartTime, nMin, nMax));
uint32_t input_len = Buffer::Length(target);
scryptjane_hash(input, input_len, (uint32_t *)output, GetNfactorJane(timestamp, nChainStartTime, nMin, nMax));
Buffer* buff = Buffer::New(output, 32);
return scope.Close(buff->handle_);
@ -246,7 +211,7 @@ Handle<Value> skein(const Arguments& args) {
char * input = Buffer::Data(target);
char * output = new char[32];
unsigned int input_len = Buffer::Length(target);
uint32_t input_len = Buffer::Length(target);
skein_hash(input, output, input_len);
@ -269,7 +234,7 @@ Handle<Value> groestl(const Arguments& args) {
char * input = Buffer::Data(target);
char * output = new char[32];
unsigned int input_len = Buffer::Length(target);
uint32_t input_len = Buffer::Length(target);
groestl_hash(input, output, input_len);
@ -292,7 +257,7 @@ Handle<Value> groestl_myriad(const Arguments& args) {
char * input = Buffer::Data(target);
char * output = new char[32];
unsigned int input_len = Buffer::Length(target);
uint32_t input_len = Buffer::Length(target);
groestl_myriad_hash(input, output, input_len);
@ -315,7 +280,7 @@ Handle<Value> blake(const Arguments& args) {
char * input = Buffer::Data(target);
char * output = new char[32];
unsigned int input_len = Buffer::Length(target);
uint32_t input_len = Buffer::Length(target);
blake_hash(input, output, input_len);

View File

@ -85,7 +85,7 @@ le32enc(void *pp, uint32_t x)
* (unsigned char) in big-endian form. Assumes len is a multiple of 4.
*/
static void
be32enc_vect(unsigned char *dst, const uint32_t *src, size_t len)
be32enc_vect(unsigned char *dst, const uint32_t *src, uint32_t len)
{
size_t i;
@ -98,7 +98,7 @@ be32enc_vect(unsigned char *dst, const uint32_t *src, size_t len)
* len/4 vector of (uint32_t). Assumes len is a multiple of 4.
*/
static void
be32dec_vect(uint32_t *dst, const unsigned char *src, size_t len)
be32dec_vect(uint32_t *dst, const unsigned char *src, uint32_t len)
{
size_t i;
@ -106,7 +106,7 @@ be32dec_vect(uint32_t *dst, const unsigned char *src, size_t len)
dst[i] = be32dec(src + i * 4);
}
void quark_hash(const char* input, char* output, unsigned int len)
void quark_hash(const char* input, char* output, uint32_t len)
{
sph_blake512_context ctx_blake;
sph_bmw512_context ctx_bmw;

12
quark.h
View File

@ -1,6 +1,16 @@
#ifndef QUARK_H
#define QUARK_H
void quark_hash(const char* input, char* output, unsigned int len);
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
void quark_hash(const char* input, char* output, uint32_t len);
#ifdef __cplusplus
}
#endif
#endif

View File

@ -223,7 +223,7 @@ smix(uint8_t * B, size_t r, uint64_t N, uint32_t * V, uint32_t * XY)
/* cpu and memory intensive function to transform a 80 byte buffer into a 32 byte output
scratchpad size needs to be at least 63 + (128 * r * p) + (256 * r + 64) + (128 * r * N) bytes
*/
void scrypt_1024_1_1_256_sp(const char* input, char* output, char* scratchpad)
void scrypt_1024_1_1_256_sp(const char* input, char* output, char* scratchpad, size_t len)
{
uint8_t * B;
uint32_t * V;
@ -239,7 +239,7 @@ void scrypt_1024_1_1_256_sp(const char* input, char* output, char* scratchpad)
V = (uint32_t *)(B + (128 * r * p) + (256 * r + 64));
/* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
PBKDF2_SHA256((const uint8_t*)input, 80, (const uint8_t*)input, 80, 1, B, p * 128 * r);
PBKDF2_SHA256((const uint8_t*)input, len, (const uint8_t*)input, len, 1, B, p * 128 * r);
/* 2: for i = 0 to p - 1 do */
for (i = 0; i < p; i++) {
@ -251,8 +251,8 @@ void scrypt_1024_1_1_256_sp(const char* input, char* output, char* scratchpad)
PBKDF2_SHA256((const uint8_t*)input, 80, B, p * 128 * r, 1, (uint8_t*)output, 32);
}
void scrypt_1024_1_1_256(const char* input, char* output)
void scrypt_1024_1_1_256(const char* input, char* output, size_t len)
{
char scratchpad[131583];
scrypt_1024_1_1_256_sp(input, output, scratchpad);
scrypt_1024_1_1_256_sp(input, output, scratchpad, len);
}

View File

@ -1,8 +1,10 @@
#ifndef SCRYPT_H
#define SCRYPT_H
void scrypt_1024_1_1_256(const char* input, char* output);
void scrypt_1024_1_1_256_sp(const char* input, char* output, char* scratchpad);
#include <stddef.h>
void scrypt_1024_1_1_256(const char* input, char* output, size_t len);
void scrypt_1024_1_1_256_sp(const char* input, char* output, char* scratchpad, size_t len);
#define scrypt_scratchpad_size 131583;
#endif

View File

@ -180,3 +180,44 @@ scrypt(const uint8_t *password, size_t password_len, const uint8_t *salt, size_t
scrypt_free(&V);
scrypt_free(&YX);
}
#define max(a,b) (((a) > (b)) ? (a) : (b))
#define min(a,b) (((a) < (b)) ? (a) : (b))
unsigned char GetNfactorJane(int nTimestamp, int nChainStartTime, int nMin, int nMax) {
const unsigned char minNfactor = nMin;//4;
const unsigned char maxNfactor = nMax;//30;
int l = 0, s, n;
unsigned char N;
if (nTimestamp <= nChainStartTime)
return 4;
s = nTimestamp - nChainStartTime;
while ((s >> 1) > 3) {
l += 1;
s >>= 1;
}
s &= 3;
n = (l * 170 + s * 25 - 2320) / 100;
if (n < 0) n = 0;
if (n > 255)
printf("GetNfactor(%d) - something wrong(n == %d)\n", nTimestamp, n);
N = (unsigned char)n;
//printf("GetNfactor: %d -> %d %d : %d / %d\n", nTimestamp - nChainStartTime, l, s, n, min(max(N, minNfactor), maxNfactor));
return min(max(N, minNfactor), maxNfactor);
}
void scryptjane_hash(const void* input, size_t inputlen, uint32_t *res, unsigned char Nfactor)
{
return scrypt((const unsigned char*)input, inputlen,
(const unsigned char*)input, inputlen,
Nfactor, 0, 0, (unsigned char*)res, 32);
}

View File

@ -1,6 +1,7 @@
#ifndef SCRYPT_JANE_H
#define SCRYPT_JANE_H
#include <stdint.h>
#define SCRYPT_KECCAK512
#define SCRYPT_CHACHA
@ -29,4 +30,7 @@ void scrypt_set_fatal_error(scrypt_fatal_errorfn fn);
void scrypt(const unsigned char *password, size_t password_len, const unsigned char *salt, size_t salt_len, unsigned char Nfactor, unsigned char rfactor, unsigned char pfactor, unsigned char *out, size_t bytes);
unsigned char GetNfactorJane(int nTimestamp, int nChainStartTime, int nMin, int nMax);
void scryptjane_hash(const void* input, size_t inputlen, uint32_t *res, unsigned char Nfactor);
#endif /* SCRYPT_JANE_H */

439
scryptn.c
View File

@ -32,436 +32,7 @@
#include <string.h>
#include "scryptn.h"
static __inline uint32_t
be32dec(const void *pp)
{
const uint8_t *p = (uint8_t const *)pp;
return ((uint32_t)(p[3]) + ((uint32_t)(p[2]) << 8) +
((uint32_t)(p[1]) << 16) + ((uint32_t)(p[0]) << 24));
}
static __inline void
be32enc(void *pp, uint32_t x)
{
uint8_t * p = (uint8_t *)pp;
p[3] = x & 0xff;
p[2] = (x >> 8) & 0xff;
p[1] = (x >> 16) & 0xff;
p[0] = (x >> 24) & 0xff;
}
static __inline uint32_t
le32dec(const void *pp)
{
const uint8_t *p = (uint8_t const *)pp;
return ((uint32_t)(p[0]) + ((uint32_t)(p[1]) << 8) +
((uint32_t)(p[2]) << 16) + ((uint32_t)(p[3]) << 24));
}
static __inline void
le32enc(void *pp, uint32_t x)
{
uint8_t * p = (uint8_t *)pp;
p[0] = x & 0xff;
p[1] = (x >> 8) & 0xff;
p[2] = (x >> 16) & 0xff;
p[3] = (x >> 24) & 0xff;
}
typedef struct SHA256Context {
uint32_t state[8];
uint32_t count[2];
unsigned char buf[64];
} SHA256_CTX;
typedef struct HMAC_SHA256Context {
SHA256_CTX ictx;
SHA256_CTX octx;
} HMAC_SHA256_CTX;
/*
* Encode a length len/4 vector of (uint32_t) into a length len vector of
* (unsigned char) in big-endian form. Assumes len is a multiple of 4.
*/
static void
be32enc_vect(unsigned char *dst, const uint32_t *src, size_t len)
{
size_t i;
for (i = 0; i < len / 4; i++)
be32enc(dst + i * 4, src[i]);
}
/*
* Decode a big-endian length len vector of (unsigned char) into a length
* len/4 vector of (uint32_t). Assumes len is a multiple of 4.
*/
static void
be32dec_vect(uint32_t *dst, const unsigned char *src, size_t len)
{
size_t i;
for (i = 0; i < len / 4; i++)
dst[i] = be32dec(src + i * 4);
}
/* Elementary functions used by SHA256 */
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
#define SHR(x, n) (x >> n)
#define ROTR(x, n) ((x >> n) | (x << (32 - n)))
#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
/* SHA256 round function */
#define RND(a, b, c, d, e, f, g, h, k) \
t0 = h + S1(e) + Ch(e, f, g) + k; \
t1 = S0(a) + Maj(a, b, c); \
d += t0; \
h = t0 + t1;
/* Adjusted round function for rotating state */
#define RNDr(S, W, i, k) \
RND(S[(64 - i) % 8], S[(65 - i) % 8], \
S[(66 - i) % 8], S[(67 - i) % 8], \
S[(68 - i) % 8], S[(69 - i) % 8], \
S[(70 - i) % 8], S[(71 - i) % 8], \
W[i] + k)
/*
* SHA256 block compression function. The 256-bit state is transformed via
* the 512-bit input block to produce a new state.
*/
static void
SHA256_Transform(uint32_t * state, const unsigned char block[64])
{
uint32_t W[64];
uint32_t S[8];
uint32_t t0, t1;
int i;
/* 1. Prepare message schedule W. */
be32dec_vect(W, block, 64);
for (i = 16; i < 64; i++)
W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16];
/* 2. Initialize working variables. */
memcpy(S, state, 32);
/* 3. Mix. */
RNDr(S, W, 0, 0x428a2f98);
RNDr(S, W, 1, 0x71374491);
RNDr(S, W, 2, 0xb5c0fbcf);
RNDr(S, W, 3, 0xe9b5dba5);
RNDr(S, W, 4, 0x3956c25b);
RNDr(S, W, 5, 0x59f111f1);
RNDr(S, W, 6, 0x923f82a4);
RNDr(S, W, 7, 0xab1c5ed5);
RNDr(S, W, 8, 0xd807aa98);
RNDr(S, W, 9, 0x12835b01);
RNDr(S, W, 10, 0x243185be);
RNDr(S, W, 11, 0x550c7dc3);
RNDr(S, W, 12, 0x72be5d74);
RNDr(S, W, 13, 0x80deb1fe);
RNDr(S, W, 14, 0x9bdc06a7);
RNDr(S, W, 15, 0xc19bf174);
RNDr(S, W, 16, 0xe49b69c1);
RNDr(S, W, 17, 0xefbe4786);
RNDr(S, W, 18, 0x0fc19dc6);
RNDr(S, W, 19, 0x240ca1cc);
RNDr(S, W, 20, 0x2de92c6f);
RNDr(S, W, 21, 0x4a7484aa);
RNDr(S, W, 22, 0x5cb0a9dc);
RNDr(S, W, 23, 0x76f988da);
RNDr(S, W, 24, 0x983e5152);
RNDr(S, W, 25, 0xa831c66d);
RNDr(S, W, 26, 0xb00327c8);
RNDr(S, W, 27, 0xbf597fc7);
RNDr(S, W, 28, 0xc6e00bf3);
RNDr(S, W, 29, 0xd5a79147);
RNDr(S, W, 30, 0x06ca6351);
RNDr(S, W, 31, 0x14292967);
RNDr(S, W, 32, 0x27b70a85);
RNDr(S, W, 33, 0x2e1b2138);
RNDr(S, W, 34, 0x4d2c6dfc);
RNDr(S, W, 35, 0x53380d13);
RNDr(S, W, 36, 0x650a7354);
RNDr(S, W, 37, 0x766a0abb);
RNDr(S, W, 38, 0x81c2c92e);
RNDr(S, W, 39, 0x92722c85);
RNDr(S, W, 40, 0xa2bfe8a1);
RNDr(S, W, 41, 0xa81a664b);
RNDr(S, W, 42, 0xc24b8b70);
RNDr(S, W, 43, 0xc76c51a3);
RNDr(S, W, 44, 0xd192e819);
RNDr(S, W, 45, 0xd6990624);
RNDr(S, W, 46, 0xf40e3585);
RNDr(S, W, 47, 0x106aa070);
RNDr(S, W, 48, 0x19a4c116);
RNDr(S, W, 49, 0x1e376c08);
RNDr(S, W, 50, 0x2748774c);
RNDr(S, W, 51, 0x34b0bcb5);
RNDr(S, W, 52, 0x391c0cb3);
RNDr(S, W, 53, 0x4ed8aa4a);
RNDr(S, W, 54, 0x5b9cca4f);
RNDr(S, W, 55, 0x682e6ff3);
RNDr(S, W, 56, 0x748f82ee);
RNDr(S, W, 57, 0x78a5636f);
RNDr(S, W, 58, 0x84c87814);
RNDr(S, W, 59, 0x8cc70208);
RNDr(S, W, 60, 0x90befffa);
RNDr(S, W, 61, 0xa4506ceb);
RNDr(S, W, 62, 0xbef9a3f7);
RNDr(S, W, 63, 0xc67178f2);
/* 4. Mix local working variables into global state */
for (i = 0; i < 8; i++)
state[i] += S[i];
/* Clean the stack. */
memset(W, 0, 256);
memset(S, 0, 32);
t0 = t1 = 0;
}
static unsigned char PAD[64] = {
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
/* SHA-256 initialization. Begins a SHA-256 operation. */
static void
SHA256_Init(SHA256_CTX * ctx)
{
/* Zero bits processed so far */
ctx->count[0] = ctx->count[1] = 0;
/* Magic initialization constants */
ctx->state[0] = 0x6A09E667;
ctx->state[1] = 0xBB67AE85;
ctx->state[2] = 0x3C6EF372;
ctx->state[3] = 0xA54FF53A;
ctx->state[4] = 0x510E527F;
ctx->state[5] = 0x9B05688C;
ctx->state[6] = 0x1F83D9AB;
ctx->state[7] = 0x5BE0CD19;
}
/* Add bytes into the hash */
static void
SHA256_Update(SHA256_CTX * ctx, const void *in, size_t len)
{
uint32_t bitlen[2];
uint32_t r;
const unsigned char *src = in;
/* Number of bytes left in the buffer from previous updates */
r = (ctx->count[1] >> 3) & 0x3f;
/* Convert the length into a number of bits */
bitlen[1] = ((uint32_t)len) << 3;
bitlen[0] = (uint32_t)(len >> 29);
/* Update number of bits */
if ((ctx->count[1] += bitlen[1]) < bitlen[1])
ctx->count[0]++;
ctx->count[0] += bitlen[0];
/* Handle the case where we don't need to perform any transforms */
if (len < 64 - r) {
memcpy(&ctx->buf[r], src, len);
return;
}
/* Finish the current block */
memcpy(&ctx->buf[r], src, 64 - r);
SHA256_Transform(ctx->state, ctx->buf);
src += 64 - r;
len -= 64 - r;
/* Perform complete blocks */
while (len >= 64) {
SHA256_Transform(ctx->state, src);
src += 64;
len -= 64;
}
/* Copy left over data into buffer */
memcpy(ctx->buf, src, len);
}
/* Add padding and terminating bit-count. */
static void
SHA256_Pad(SHA256_CTX * ctx)
{
unsigned char len[8];
uint32_t r, plen;
/*
* Convert length to a vector of bytes -- we do this now rather
* than later because the length will change after we pad.
*/
be32enc_vect(len, ctx->count, 8);
/* Add 1--64 bytes so that the resulting length is 56 mod 64 */
r = (ctx->count[1] >> 3) & 0x3f;
plen = (r < 56) ? (56 - r) : (120 - r);
SHA256_Update(ctx, PAD, (size_t)plen);
/* Add the terminating bit-count */
SHA256_Update(ctx, len, 8);
}
/*
* SHA-256 finalization. Pads the input data, exports the hash value,
* and clears the context state.
*/
static void
SHA256_Final(unsigned char digest[32], SHA256_CTX * ctx)
{
/* Add padding */
SHA256_Pad(ctx);
/* Write the hash */
be32enc_vect(digest, ctx->state, 32);
/* Clear the context state */
memset((void *)ctx, 0, sizeof(*ctx));
}
/* Initialize an HMAC-SHA256 operation with the given key. */
static void
HMAC_SHA256_Init(HMAC_SHA256_CTX * ctx, const void * _K, size_t Klen)
{
unsigned char pad[64];
unsigned char khash[32];
const unsigned char * K = _K;
size_t i;
/* If Klen > 64, the key is really SHA256(K). */
if (Klen > 64) {
SHA256_Init(&ctx->ictx);
SHA256_Update(&ctx->ictx, K, Klen);
SHA256_Final(khash, &ctx->ictx);
K = khash;
Klen = 32;
}
/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
SHA256_Init(&ctx->ictx);
memset(pad, 0x36, 64);
for (i = 0; i < Klen; i++)
pad[i] ^= K[i];
SHA256_Update(&ctx->ictx, pad, 64);
/* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
SHA256_Init(&ctx->octx);
memset(pad, 0x5c, 64);
for (i = 0; i < Klen; i++)
pad[i] ^= K[i];
SHA256_Update(&ctx->octx, pad, 64);
/* Clean the stack. */
memset(khash, 0, 32);
}
/* Add bytes to the HMAC-SHA256 operation. */
static void
HMAC_SHA256_Update(HMAC_SHA256_CTX * ctx, const void *in, size_t len)
{
/* Feed data to the inner SHA256 operation. */
SHA256_Update(&ctx->ictx, in, len);
}
/* Finish an HMAC-SHA256 operation. */
static void
HMAC_SHA256_Final(unsigned char digest[32], HMAC_SHA256_CTX * ctx)
{
unsigned char ihash[32];
/* Finish the inner SHA256 operation. */
SHA256_Final(ihash, &ctx->ictx);
/* Feed the inner hash to the outer SHA256 operation. */
SHA256_Update(&ctx->octx, ihash, 32);
/* Finish the outer SHA256 operation. */
SHA256_Final(digest, &ctx->octx);
/* Clean the stack. */
memset(ihash, 0, 32);
}
/**
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
*/
static void
PBKDF2_SHA256(const uint8_t * passwd, size_t passwdlen, const uint8_t * salt,
size_t saltlen, uint64_t c, uint8_t * buf, size_t dkLen)
{
HMAC_SHA256_CTX PShctx, hctx;
size_t i;
uint8_t ivec[4];
uint8_t U[32];
uint8_t T[32];
uint64_t j;
int k;
size_t clen;
/* Compute HMAC state after processing P and S. */
HMAC_SHA256_Init(&PShctx, passwd, passwdlen);
HMAC_SHA256_Update(&PShctx, salt, saltlen);
/* Iterate through the blocks. */
for (i = 0; i * 32 < dkLen; i++) {
/* Generate INT(i + 1). */
be32enc(ivec, (uint32_t)(i + 1));
/* Compute U_1 = PRF(P, S || INT(i)). */
memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX));
HMAC_SHA256_Update(&hctx, ivec, 4);
HMAC_SHA256_Final(U, &hctx);
/* T_i = U_1 ... */
memcpy(T, U, 32);
for (j = 2; j <= c; j++) {
/* Compute U_j. */
HMAC_SHA256_Init(&hctx, passwd, passwdlen);
HMAC_SHA256_Update(&hctx, U, 32);
HMAC_SHA256_Final(U, &hctx);
/* ... xor U_j ... */
for (k = 0; k < 32; k++)
T[k] ^= U[k];
}
/* Copy as many bytes as necessary into buf. */
clen = dkLen - i * 32;
if (clen > 32)
clen = 32;
memcpy(&buf[i * 32], T, clen);
}
/* Clean PShctx, since we never called _Final on it. */
memset(&PShctx, 0, sizeof(HMAC_SHA256_CTX));
}
#include "sha256.h"
static void blkcpy(void *, void *, size_t);
static void blkxor(void *, void *, size_t);
@ -646,7 +217,7 @@ smix(uint8_t * B, size_t r, uint64_t N, uint32_t * V, uint32_t * XY)
/* cpu and memory intensive function to transform a 80 byte buffer into a 32 byte output
scratchpad size needs to be at least 63 + (128 * r * p) + (256 * r + 64) + (128 * r * N) bytes
*/
void scrypt_N_1_1_256_sp(const char* input, char* output, char* scratchpad, uint32_t N)
void scrypt_N_1_1_256_sp(const char* input, char* output, char* scratchpad, uint32_t N, size_t len)
{
uint8_t * B;
uint32_t * V;
@ -662,7 +233,7 @@ void scrypt_N_1_1_256_sp(const char* input, char* output, char* scratchpad, uint
V = (uint32_t *)(B + (128 * r * p) + (256 * r + 64));
/* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
PBKDF2_SHA256((const uint8_t*)input, 80, (const uint8_t*)input, 80, 1, B, p * 128 * r);
PBKDF2_SHA256((const uint8_t*)input, len, (const uint8_t*)input, len, 1, B, p * 128 * r);
/* 2: for i = 0 to p - 1 do */
for (i = 0; i < p; i++) {
@ -674,14 +245,14 @@ void scrypt_N_1_1_256_sp(const char* input, char* output, char* scratchpad, uint
PBKDF2_SHA256((const uint8_t*)input, 80, B, p * 128 * r, 1, (uint8_t*)output, 32);
}
void scrypt_N_1_1_256(const char* input, char* output, uint32_t N)
void scrypt_N_1_1_256(const char* input, char* output, uint32_t N, size_t len)
{
//char scratchpad[131583];
char *scratchpad;
// align on 4 byte boundary
scratchpad = (char*)malloc(128*N + 512);
scrypt_N_1_1_256_sp(input, output, scratchpad, N);
scrypt_N_1_1_256_sp(input, output, scratchpad, N, len);
free(scratchpad);
}

View File

@ -5,8 +5,8 @@
extern "C" {
#endif
void scrypt_N_1_1_256(const char* input, char* output, uint32_t N);
void scrypt_N_1_1_256_sp(const char* input, char* output, char* scratchpad, uint32_t N);
void scrypt_N_1_1_256(const char* input, char* output, uint32_t N, size_t len);
void scrypt_N_1_1_256_sp(const char* input, char* output, char* scratchpad, uint32_t N, size_t len);
//const int scrypt_scratchpad_size = 131583;
#ifdef __cplusplus

View File

@ -9,7 +9,7 @@
#include <stdlib.h>
void skein_hash(const char* input, char* output, unsigned int len)
void skein_hash(const char* input, char* output, uint32_t len)
{
char* temp = (char*) malloc(64);

View File

@ -5,7 +5,9 @@
extern "C" {
#endif
void skein_hash(const char* input, char* output, unsigned int len);
#include <stdint.h>
void skein_hash(const char* input, char* output, uint32_t len);
#ifdef __cplusplus
}

2
x11.c
View File

@ -17,7 +17,7 @@
#include "sha3/sph_echo.h"
void x11_hash(const char* input, char* output, unsigned int len)
void x11_hash(const char* input, char* output, uint32_t len)
{
sph_blake512_context ctx_blake;
sph_bmw512_context ctx_bmw;

2
x11.h
View File

@ -5,7 +5,7 @@
extern "C" {
#endif
void x11_hash(const char* input, char* output, unsigned int len);
void x11_hash(const char* input, char* output, uint32_t len);
#ifdef __cplusplus
}