// Copyright (c) 2012-2013 The Cryptonote developers // Distributed under the MIT/X11 software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "crypto/oaes_lib.h" #include "crypto/c_keccak.h" #include "crypto/c_groestl.h" #include "crypto/c_blake256.h" #include "crypto/c_jh.h" #include "crypto/c_skein.h" #include "crypto/int-util.h" #include "crypto/hash-ops.h" #define MEMORY (1 << 21) /* 2 MiB */ #define ITER (1 << 20) #define AES_BLOCK_SIZE 16 #define AES_KEY_SIZE 32 /*16*/ #define INIT_SIZE_BLK 8 #define INIT_SIZE_BYTE (INIT_SIZE_BLK * AES_BLOCK_SIZE) #pragma pack(push, 1) union cn_slow_hash_state { union hash_state hs; struct { uint8_t k[64]; uint8_t init[INIT_SIZE_BYTE]; }; }; #pragma pack(pop) static void do_blake_hash(const void* input, size_t len, char* output) { blake256_hash((uint8_t*)output, input, len); } void do_groestl_hash(const void* input, size_t len, char* output) { groestl(input, len * 8, (uint8_t*)output); } static void do_jh_hash(const void* input, size_t len, char* output) { int r = jh_hash(HASH_SIZE * 8, input, 8 * len, (uint8_t*)output); assert(SUCCESS == r); } static void do_skein_hash(const void* input, size_t len, char* output) { int r = c_skein_hash(8 * HASH_SIZE, input, 8 * len, (uint8_t*)output); assert(SKEIN_SUCCESS == r); } static void (* const extra_hashes[4])(const void *, size_t, char *) = { do_blake_hash, do_groestl_hash, do_jh_hash, do_skein_hash }; extern int aesb_single_round(const uint8_t *in, uint8_t*out, const uint8_t *expandedKey); extern int aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *expandedKey); static inline size_t e2i(const uint8_t* a) { return (*((uint64_t*) a) / AES_BLOCK_SIZE) & (MEMORY / AES_BLOCK_SIZE - 1); } static void mul(const uint8_t* a, const uint8_t* b, uint8_t* res) { ((uint64_t*) res)[1] = mul128(((uint64_t*) a)[0], ((uint64_t*) b)[0], (uint64_t*) res); } static void mul_sum_xor_dst(const uint8_t* a, uint8_t* c, uint8_t* dst) { uint64_t hi, lo = mul128(((uint64_t*) a)[0], ((uint64_t*) dst)[0], &hi) + ((uint64_t*) c)[1]; hi += ((uint64_t*) c)[0]; ((uint64_t*) c)[0] = ((uint64_t*) dst)[0] ^ hi; ((uint64_t*) c)[1] = ((uint64_t*) dst)[1] ^ lo; ((uint64_t*) dst)[0] = hi; ((uint64_t*) dst)[1] = lo; } static void sum_half_blocks(uint8_t* a, const uint8_t* b) { uint64_t a0, a1, b0, b1; a0 = SWAP64LE(((uint64_t*) a)[0]); a1 = SWAP64LE(((uint64_t*) a)[1]); b0 = SWAP64LE(((uint64_t*) b)[0]); b1 = SWAP64LE(((uint64_t*) b)[1]); a0 += b0; a1 += b1; ((uint64_t*) a)[0] = SWAP64LE(a0); ((uint64_t*) a)[1] = SWAP64LE(a1); } static inline void copy_block(uint8_t* dst, const uint8_t* src) { ((uint64_t*) dst)[0] = ((uint64_t*) src)[0]; ((uint64_t*) dst)[1] = ((uint64_t*) src)[1]; } static void swap_blocks(uint8_t* a, uint8_t* b) { size_t i; uint8_t t; for (i = 0; i < AES_BLOCK_SIZE; i++) { t = a[i]; a[i] = b[i]; b[i] = t; } } static inline void xor_blocks(uint8_t* a, const uint8_t* b) { ((uint64_t*) a)[0] ^= ((uint64_t*) b)[0]; ((uint64_t*) a)[1] ^= ((uint64_t*) b)[1]; } static inline void xor_blocks_dst(const uint8_t* a, const uint8_t* b, uint8_t* dst) { ((uint64_t*) dst)[0] = ((uint64_t*) a)[0] ^ ((uint64_t*) b)[0]; ((uint64_t*) dst)[1] = ((uint64_t*) a)[1] ^ ((uint64_t*) b)[1]; } struct cryptonight_ctx { uint8_t long_state[MEMORY]; union cn_slow_hash_state state; uint8_t text[INIT_SIZE_BYTE]; uint8_t a[AES_BLOCK_SIZE]; uint8_t b[AES_BLOCK_SIZE]; uint8_t c[AES_BLOCK_SIZE]; uint8_t aes_key[AES_KEY_SIZE]; oaes_ctx* aes_ctx; }; void cryptonight_hash(const char* input, char* output, uint32_t len) { struct cryptonight_ctx *ctx = alloca(sizeof(struct cryptonight_ctx)); hash_process(&ctx->state.hs, (const uint8_t*) input, len); memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE); memcpy(ctx->aes_key, ctx->state.hs.b, AES_KEY_SIZE); ctx->aes_ctx = (oaes_ctx*) oaes_alloc(); size_t i, j; oaes_key_import_data(ctx->aes_ctx, ctx->aes_key, AES_KEY_SIZE); for (i = 0; i < MEMORY / INIT_SIZE_BYTE; i++) { for (j = 0; j < INIT_SIZE_BLK; j++) { aesb_pseudo_round(&ctx->text[AES_BLOCK_SIZE * j], &ctx->text[AES_BLOCK_SIZE * j], ctx->aes_ctx->key->exp_data); } memcpy(&ctx->long_state[i * INIT_SIZE_BYTE], ctx->text, INIT_SIZE_BYTE); } for (i = 0; i < 16; i++) { ctx->a[i] = ctx->state.k[i] ^ ctx->state.k[32 + i]; ctx->b[i] = ctx->state.k[16 + i] ^ ctx->state.k[48 + i]; } for (i = 0; i < ITER / 2; i++) { /* Dependency chain: address -> read value ------+ * written value <-+ hard function (AES or MUL) <+ * next address <-+ */ /* Iteration 1 */ j = e2i(ctx->a); aesb_single_round(&ctx->long_state[j * AES_BLOCK_SIZE], ctx->c, ctx->a); xor_blocks_dst(ctx->c, ctx->b, &ctx->long_state[j * AES_BLOCK_SIZE]); /* Iteration 2 */ mul_sum_xor_dst(ctx->c, ctx->a, &ctx->long_state[e2i(ctx->c) * AES_BLOCK_SIZE]); copy_block(ctx->b, ctx->c); } memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE); oaes_key_import_data(ctx->aes_ctx, &ctx->state.hs.b[32], AES_KEY_SIZE); for (i = 0; i < MEMORY / INIT_SIZE_BYTE; i++) { for (j = 0; j < INIT_SIZE_BLK; j++) { xor_blocks(&ctx->text[j * AES_BLOCK_SIZE], &ctx->long_state[i * INIT_SIZE_BYTE + j * AES_BLOCK_SIZE]); aesb_pseudo_round(&ctx->text[j * AES_BLOCK_SIZE], &ctx->text[j * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data); } } memcpy(ctx->state.init, ctx->text, INIT_SIZE_BYTE); hash_permutation(&ctx->state.hs); /*memcpy(hash, &state, 32);*/ extra_hashes[ctx->state.hs.b[0] & 3](&ctx->state, 200, output); oaes_free((OAES_CTX **) &ctx->aes_ctx); } void cryptonight_fast_hash(const char* input, char* output, uint32_t len) { union hash_state state; hash_process(&state, (const uint8_t*) input, len); memcpy(output, &state, HASH_SIZE); }