/*- * Copyright 2009 Colin Percival, 2011 ArtForz * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * This file was originally written by Colin Percival as part of the Tarsnap * online backup system. */ #include #include #include "scryptn.h" #include "sha256.h" static void blkcpy(void *, void *, size_t); static void blkxor(void *, void *, size_t); static void salsa20_8(uint32_t[16]); static void blockmix_salsa8(uint32_t *, uint32_t *, uint32_t *, size_t); static uint64_t integerify(void *, size_t); static void smix(uint8_t *, size_t, uint64_t, uint32_t *, uint32_t *); static void blkcpy(void * dest, void * src, size_t len) { size_t * D = dest; size_t * S = src; size_t L = len / sizeof(size_t); size_t i; for (i = 0; i < L; i++) D[i] = S[i]; } static void blkxor(void * dest, void * src, size_t len) { size_t * D = dest; size_t * S = src; size_t L = len / sizeof(size_t); size_t i; for (i = 0; i < L; i++) D[i] ^= S[i]; } /** * salsa20_8(B): * Apply the salsa20/8 core to the provided block. */ static void salsa20_8(uint32_t B[16]) { uint32_t x[16]; size_t i; blkcpy(x, B, 64); for (i = 0; i < 8; i += 2) { #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b)))) /* Operate on columns. */ x[ 4] ^= R(x[ 0]+x[12], 7); x[ 8] ^= R(x[ 4]+x[ 0], 9); x[12] ^= R(x[ 8]+x[ 4],13); x[ 0] ^= R(x[12]+x[ 8],18); x[ 9] ^= R(x[ 5]+x[ 1], 7); x[13] ^= R(x[ 9]+x[ 5], 9); x[ 1] ^= R(x[13]+x[ 9],13); x[ 5] ^= R(x[ 1]+x[13],18); x[14] ^= R(x[10]+x[ 6], 7); x[ 2] ^= R(x[14]+x[10], 9); x[ 6] ^= R(x[ 2]+x[14],13); x[10] ^= R(x[ 6]+x[ 2],18); x[ 3] ^= R(x[15]+x[11], 7); x[ 7] ^= R(x[ 3]+x[15], 9); x[11] ^= R(x[ 7]+x[ 3],13); x[15] ^= R(x[11]+x[ 7],18); /* Operate on rows. */ x[ 1] ^= R(x[ 0]+x[ 3], 7); x[ 2] ^= R(x[ 1]+x[ 0], 9); x[ 3] ^= R(x[ 2]+x[ 1],13); x[ 0] ^= R(x[ 3]+x[ 2],18); x[ 6] ^= R(x[ 5]+x[ 4], 7); x[ 7] ^= R(x[ 6]+x[ 5], 9); x[ 4] ^= R(x[ 7]+x[ 6],13); x[ 5] ^= R(x[ 4]+x[ 7],18); x[11] ^= R(x[10]+x[ 9], 7); x[ 8] ^= R(x[11]+x[10], 9); x[ 9] ^= R(x[ 8]+x[11],13); x[10] ^= R(x[ 9]+x[ 8],18); x[12] ^= R(x[15]+x[14], 7); x[13] ^= R(x[12]+x[15], 9); x[14] ^= R(x[13]+x[12],13); x[15] ^= R(x[14]+x[13],18); #undef R } for (i = 0; i < 16; i++) B[i] += x[i]; } /** * blockmix_salsa8(Bin, Bout, X, r): * Compute Bout = BlockMix_{salsa20/8, r}(Bin). The input Bin must be 128r * bytes in length; the output Bout must also be the same size. The * temporary space X must be 64 bytes. */ static void blockmix_salsa8(uint32_t * Bin, uint32_t * Bout, uint32_t * X, size_t r) { size_t i; /* 1: X <-- B_{2r - 1} */ blkcpy(X, &Bin[(2 * r - 1) * 16], 64); /* 2: for i = 0 to 2r - 1 do */ for (i = 0; i < 2 * r; i += 2) { /* 3: X <-- H(X \xor B_i) */ blkxor(X, &Bin[i * 16], 64); salsa20_8(X); /* 4: Y_i <-- X */ /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ blkcpy(&Bout[i * 8], X, 64); /* 3: X <-- H(X \xor B_i) */ blkxor(X, &Bin[i * 16 + 16], 64); salsa20_8(X); /* 4: Y_i <-- X */ /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ blkcpy(&Bout[i * 8 + r * 16], X, 64); } } /** * integerify(B, r): * Return the result of parsing B_{2r-1} as a little-endian integer. */ static uint64_t integerify(void * B, size_t r) { uint32_t * X = (void *)((uintptr_t)(B) + (2 * r - 1) * 64); return (((uint64_t)(X[1]) << 32) + X[0]); } /** * smix(B, r, N, V, XY): * Compute B = SMix_r(B, N). The input B must be 128r bytes in length; * the temporary storage V must be 128rN bytes in length; the temporary * storage XY must be 256r + 64 bytes in length. The value N must be a * power of 2 greater than 1. The arrays B, V, and XY must be aligned to a * multiple of 64 bytes. */ static void smix(uint8_t * B, size_t r, uint64_t N, uint32_t * V, uint32_t * XY) { uint32_t * X = XY; uint32_t * Y = &XY[32 * r]; uint32_t * Z = &XY[64 * r]; uint64_t i; uint64_t j; size_t k; /* 1: X <-- B */ for (k = 0; k < 32 * r; k++) X[k] = le32dec(&B[4 * k]); /* 2: for i = 0 to N - 1 do */ for (i = 0; i < N; i += 2) { /* 3: V_i <-- X */ blkcpy(&V[i * (32 * r)], X, 128 * r); /* 4: X <-- H(X) */ blockmix_salsa8(X, Y, Z, r); /* 3: V_i <-- X */ blkcpy(&V[(i + 1) * (32 * r)], Y, 128 * r); /* 4: X <-- H(X) */ blockmix_salsa8(Y, X, Z, r); } /* 6: for i = 0 to N - 1 do */ for (i = 0; i < N; i += 2) { /* 7: j <-- Integerify(X) mod N */ j = integerify(X, r) & (N - 1); /* 8: X <-- H(X \xor V_j) */ blkxor(X, &V[j * (32 * r)], 128 * r); blockmix_salsa8(X, Y, Z, r); /* 7: j <-- Integerify(X) mod N */ j = integerify(Y, r) & (N - 1); /* 8: X <-- H(X \xor V_j) */ blkxor(Y, &V[j * (32 * r)], 128 * r); blockmix_salsa8(Y, X, Z, r); } /* 10: B' <-- X */ for (k = 0; k < 32 * r; k++) le32enc(&B[4 * k], X[k]); } /* cpu and memory intensive function to transform a 80 byte buffer into a 32 byte output scratchpad size needs to be at least 63 + (128 * r * p) + (256 * r + 64) + (128 * r * N) bytes */ void scrypt_N_R_1_256_sp(const char* input, char* output, char* scratchpad, uint32_t N, uint32_t R, uint32_t len) { uint8_t * B; uint32_t * V; uint32_t * XY; uint32_t i; //const uint32_t N = 1024; uint32_t r=R; const uint32_t p = 1; B = (uint8_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63)); XY = (uint32_t *)(B + (128 * r * p)); V = (uint32_t *)(B + (128 * r * p) + (256 * r + 64)); /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */ PBKDF2_SHA256((const uint8_t*)input, len, (const uint8_t*)input, len, 1, B, p * 128 * r); /* 2: for i = 0 to p - 1 do */ for (i = 0; i < p; i++) { /* 3: B_i <-- MF(B_i, N) */ smix(&B[i * 128 * r], r, N, V, XY); } /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */ PBKDF2_SHA256((const uint8_t*)input, len, B, p * 128 * r, 1, (uint8_t*)output, 32); } void scrypt_N_R_1_256(const char* input, char* output, uint32_t N, uint32_t R, uint32_t len) { //char scratchpad[131583]; char *scratchpad; // align on 4 byte boundary scratchpad = (char*)malloc(128*N*R + (128*R)+(256*R)+64+64); scrypt_N_R_1_256_sp(input, output, scratchpad, N, R, len); free(scratchpad); }