qemu-patch-raspberry4/target/riscv/vector_helper.c

837 lines
34 KiB
C
Raw Normal View History

/*
* RISC-V Vector Extension Helpers for QEMU.
*
* Copyright (c) 2020 T-Head Semiconductor Co., Ltd. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/memop.h"
#include "exec/exec-all.h"
#include "exec/helper-proto.h"
#include "tcg/tcg-gvec-desc.h"
#include "internals.h"
#include <math.h>
target_ulong HELPER(vsetvl)(CPURISCVState *env, target_ulong s1,
target_ulong s2)
{
int vlmax, vl;
RISCVCPU *cpu = env_archcpu(env);
uint16_t sew = 8 << FIELD_EX64(s2, VTYPE, VSEW);
uint8_t ediv = FIELD_EX64(s2, VTYPE, VEDIV);
bool vill = FIELD_EX64(s2, VTYPE, VILL);
target_ulong reserved = FIELD_EX64(s2, VTYPE, RESERVED);
if ((sew > cpu->cfg.elen) || vill || (ediv != 0) || (reserved != 0)) {
/* only set vill bit. */
env->vtype = FIELD_DP64(0, VTYPE, VILL, 1);
env->vl = 0;
env->vstart = 0;
return 0;
}
vlmax = vext_get_vlmax(cpu, s2);
if (s1 <= vlmax) {
vl = s1;
} else {
vl = vlmax;
}
env->vl = vl;
env->vtype = s2;
env->vstart = 0;
return vl;
}
/*
* Note that vector data is stored in host-endian 64-bit chunks,
* so addressing units smaller than that needs a host-endian fixup.
*/
#ifdef HOST_WORDS_BIGENDIAN
#define H1(x) ((x) ^ 7)
#define H1_2(x) ((x) ^ 6)
#define H1_4(x) ((x) ^ 4)
#define H2(x) ((x) ^ 3)
#define H4(x) ((x) ^ 1)
#define H8(x) ((x))
#else
#define H1(x) (x)
#define H1_2(x) (x)
#define H1_4(x) (x)
#define H2(x) (x)
#define H4(x) (x)
#define H8(x) (x)
#endif
static inline uint32_t vext_nf(uint32_t desc)
{
return FIELD_EX32(simd_data(desc), VDATA, NF);
}
static inline uint32_t vext_mlen(uint32_t desc)
{
return FIELD_EX32(simd_data(desc), VDATA, MLEN);
}
static inline uint32_t vext_vm(uint32_t desc)
{
return FIELD_EX32(simd_data(desc), VDATA, VM);
}
static inline uint32_t vext_lmul(uint32_t desc)
{
return FIELD_EX32(simd_data(desc), VDATA, LMUL);
}
static uint32_t vext_wd(uint32_t desc)
{
return (simd_data(desc) >> 11) & 0x1;
}
/*
* Get vector group length in bytes. Its range is [64, 2048].
*
* As simd_desc support at most 256, the max vlen is 512 bits.
* So vlen in bytes is encoded as maxsz.
*/
static inline uint32_t vext_maxsz(uint32_t desc)
{
return simd_maxsz(desc) << vext_lmul(desc);
}
/*
* This function checks watchpoint before real load operation.
*
* In softmmu mode, the TLB API probe_access is enough for watchpoint check.
* In user mode, there is no watchpoint support now.
*
* It will trigger an exception if there is no mapping in TLB
* and page table walk can't fill the TLB entry. Then the guest
* software can return here after process the exception or never return.
*/
static void probe_pages(CPURISCVState *env, target_ulong addr,
target_ulong len, uintptr_t ra,
MMUAccessType access_type)
{
target_ulong pagelen = -(addr | TARGET_PAGE_MASK);
target_ulong curlen = MIN(pagelen, len);
probe_access(env, addr, curlen, access_type,
cpu_mmu_index(env, false), ra);
if (len > curlen) {
addr += curlen;
curlen = len - curlen;
probe_access(env, addr, curlen, access_type,
cpu_mmu_index(env, false), ra);
}
}
#ifdef HOST_WORDS_BIGENDIAN
static void vext_clear(void *tail, uint32_t cnt, uint32_t tot)
{
/*
* Split the remaining range to two parts.
* The first part is in the last uint64_t unit.
* The second part start from the next uint64_t unit.
*/
int part1 = 0, part2 = tot - cnt;
if (cnt % 8) {
part1 = 8 - (cnt % 8);
part2 = tot - cnt - part1;
memset((void *)((uintptr_t)tail & ~(7ULL)), 0, part1);
memset((void *)(((uintptr_t)tail + 8) & ~(7ULL)), 0, part2);
} else {
memset(tail, 0, part2);
}
}
#else
static void vext_clear(void *tail, uint32_t cnt, uint32_t tot)
{
memset(tail, 0, tot - cnt);
}
#endif
static void clearb(void *vd, uint32_t idx, uint32_t cnt, uint32_t tot)
{
int8_t *cur = ((int8_t *)vd + H1(idx));
vext_clear(cur, cnt, tot);
}
static void clearh(void *vd, uint32_t idx, uint32_t cnt, uint32_t tot)
{
int16_t *cur = ((int16_t *)vd + H2(idx));
vext_clear(cur, cnt, tot);
}
static void clearl(void *vd, uint32_t idx, uint32_t cnt, uint32_t tot)
{
int32_t *cur = ((int32_t *)vd + H4(idx));
vext_clear(cur, cnt, tot);
}
static void clearq(void *vd, uint32_t idx, uint32_t cnt, uint32_t tot)
{
int64_t *cur = (int64_t *)vd + idx;
vext_clear(cur, cnt, tot);
}
static inline int vext_elem_mask(void *v0, int mlen, int index)
{
int idx = (index * mlen) / 64;
int pos = (index * mlen) % 64;
return (((uint64_t *)v0)[idx] >> pos) & 1;
}
/* elements operations for load and store */
typedef void vext_ldst_elem_fn(CPURISCVState *env, target_ulong addr,
uint32_t idx, void *vd, uintptr_t retaddr);
typedef void clear_fn(void *vd, uint32_t idx, uint32_t cnt, uint32_t tot);
#define GEN_VEXT_LD_ELEM(NAME, MTYPE, ETYPE, H, LDSUF) \
static void NAME(CPURISCVState *env, abi_ptr addr, \
uint32_t idx, void *vd, uintptr_t retaddr)\
{ \
MTYPE data; \
ETYPE *cur = ((ETYPE *)vd + H(idx)); \
data = cpu_##LDSUF##_data_ra(env, addr, retaddr); \
*cur = data; \
} \
GEN_VEXT_LD_ELEM(ldb_b, int8_t, int8_t, H1, ldsb)
GEN_VEXT_LD_ELEM(ldb_h, int8_t, int16_t, H2, ldsb)
GEN_VEXT_LD_ELEM(ldb_w, int8_t, int32_t, H4, ldsb)
GEN_VEXT_LD_ELEM(ldb_d, int8_t, int64_t, H8, ldsb)
GEN_VEXT_LD_ELEM(ldh_h, int16_t, int16_t, H2, ldsw)
GEN_VEXT_LD_ELEM(ldh_w, int16_t, int32_t, H4, ldsw)
GEN_VEXT_LD_ELEM(ldh_d, int16_t, int64_t, H8, ldsw)
GEN_VEXT_LD_ELEM(ldw_w, int32_t, int32_t, H4, ldl)
GEN_VEXT_LD_ELEM(ldw_d, int32_t, int64_t, H8, ldl)
GEN_VEXT_LD_ELEM(lde_b, int8_t, int8_t, H1, ldsb)
GEN_VEXT_LD_ELEM(lde_h, int16_t, int16_t, H2, ldsw)
GEN_VEXT_LD_ELEM(lde_w, int32_t, int32_t, H4, ldl)
GEN_VEXT_LD_ELEM(lde_d, int64_t, int64_t, H8, ldq)
GEN_VEXT_LD_ELEM(ldbu_b, uint8_t, uint8_t, H1, ldub)
GEN_VEXT_LD_ELEM(ldbu_h, uint8_t, uint16_t, H2, ldub)
GEN_VEXT_LD_ELEM(ldbu_w, uint8_t, uint32_t, H4, ldub)
GEN_VEXT_LD_ELEM(ldbu_d, uint8_t, uint64_t, H8, ldub)
GEN_VEXT_LD_ELEM(ldhu_h, uint16_t, uint16_t, H2, lduw)
GEN_VEXT_LD_ELEM(ldhu_w, uint16_t, uint32_t, H4, lduw)
GEN_VEXT_LD_ELEM(ldhu_d, uint16_t, uint64_t, H8, lduw)
GEN_VEXT_LD_ELEM(ldwu_w, uint32_t, uint32_t, H4, ldl)
GEN_VEXT_LD_ELEM(ldwu_d, uint32_t, uint64_t, H8, ldl)
#define GEN_VEXT_ST_ELEM(NAME, ETYPE, H, STSUF) \
static void NAME(CPURISCVState *env, abi_ptr addr, \
uint32_t idx, void *vd, uintptr_t retaddr)\
{ \
ETYPE data = *((ETYPE *)vd + H(idx)); \
cpu_##STSUF##_data_ra(env, addr, data, retaddr); \
}
GEN_VEXT_ST_ELEM(stb_b, int8_t, H1, stb)
GEN_VEXT_ST_ELEM(stb_h, int16_t, H2, stb)
GEN_VEXT_ST_ELEM(stb_w, int32_t, H4, stb)
GEN_VEXT_ST_ELEM(stb_d, int64_t, H8, stb)
GEN_VEXT_ST_ELEM(sth_h, int16_t, H2, stw)
GEN_VEXT_ST_ELEM(sth_w, int32_t, H4, stw)
GEN_VEXT_ST_ELEM(sth_d, int64_t, H8, stw)
GEN_VEXT_ST_ELEM(stw_w, int32_t, H4, stl)
GEN_VEXT_ST_ELEM(stw_d, int64_t, H8, stl)
GEN_VEXT_ST_ELEM(ste_b, int8_t, H1, stb)
GEN_VEXT_ST_ELEM(ste_h, int16_t, H2, stw)
GEN_VEXT_ST_ELEM(ste_w, int32_t, H4, stl)
GEN_VEXT_ST_ELEM(ste_d, int64_t, H8, stq)
/*
*** stride: access vector element from strided memory
*/
static void
vext_ldst_stride(void *vd, void *v0, target_ulong base,
target_ulong stride, CPURISCVState *env,
uint32_t desc, uint32_t vm,
vext_ldst_elem_fn *ldst_elem, clear_fn *clear_elem,
uint32_t esz, uint32_t msz, uintptr_t ra,
MMUAccessType access_type)
{
uint32_t i, k;
uint32_t nf = vext_nf(desc);
uint32_t mlen = vext_mlen(desc);
uint32_t vlmax = vext_maxsz(desc) / esz;
/* probe every access*/
for (i = 0; i < env->vl; i++) {
if (!vm && !vext_elem_mask(v0, mlen, i)) {
continue;
}
probe_pages(env, base + stride * i, nf * msz, ra, access_type);
}
/* do real access */
for (i = 0; i < env->vl; i++) {
k = 0;
if (!vm && !vext_elem_mask(v0, mlen, i)) {
continue;
}
while (k < nf) {
target_ulong addr = base + stride * i + k * msz;
ldst_elem(env, addr, i + k * vlmax, vd, ra);
k++;
}
}
/* clear tail elements */
if (clear_elem) {
for (k = 0; k < nf; k++) {
clear_elem(vd, env->vl + k * vlmax, env->vl * esz, vlmax * esz);
}
}
}
#define GEN_VEXT_LD_STRIDE(NAME, MTYPE, ETYPE, LOAD_FN, CLEAR_FN) \
void HELPER(NAME)(void *vd, void * v0, target_ulong base, \
target_ulong stride, CPURISCVState *env, \
uint32_t desc) \
{ \
uint32_t vm = vext_vm(desc); \
vext_ldst_stride(vd, v0, base, stride, env, desc, vm, LOAD_FN, \
CLEAR_FN, sizeof(ETYPE), sizeof(MTYPE), \
GETPC(), MMU_DATA_LOAD); \
}
GEN_VEXT_LD_STRIDE(vlsb_v_b, int8_t, int8_t, ldb_b, clearb)
GEN_VEXT_LD_STRIDE(vlsb_v_h, int8_t, int16_t, ldb_h, clearh)
GEN_VEXT_LD_STRIDE(vlsb_v_w, int8_t, int32_t, ldb_w, clearl)
GEN_VEXT_LD_STRIDE(vlsb_v_d, int8_t, int64_t, ldb_d, clearq)
GEN_VEXT_LD_STRIDE(vlsh_v_h, int16_t, int16_t, ldh_h, clearh)
GEN_VEXT_LD_STRIDE(vlsh_v_w, int16_t, int32_t, ldh_w, clearl)
GEN_VEXT_LD_STRIDE(vlsh_v_d, int16_t, int64_t, ldh_d, clearq)
GEN_VEXT_LD_STRIDE(vlsw_v_w, int32_t, int32_t, ldw_w, clearl)
GEN_VEXT_LD_STRIDE(vlsw_v_d, int32_t, int64_t, ldw_d, clearq)
GEN_VEXT_LD_STRIDE(vlse_v_b, int8_t, int8_t, lde_b, clearb)
GEN_VEXT_LD_STRIDE(vlse_v_h, int16_t, int16_t, lde_h, clearh)
GEN_VEXT_LD_STRIDE(vlse_v_w, int32_t, int32_t, lde_w, clearl)
GEN_VEXT_LD_STRIDE(vlse_v_d, int64_t, int64_t, lde_d, clearq)
GEN_VEXT_LD_STRIDE(vlsbu_v_b, uint8_t, uint8_t, ldbu_b, clearb)
GEN_VEXT_LD_STRIDE(vlsbu_v_h, uint8_t, uint16_t, ldbu_h, clearh)
GEN_VEXT_LD_STRIDE(vlsbu_v_w, uint8_t, uint32_t, ldbu_w, clearl)
GEN_VEXT_LD_STRIDE(vlsbu_v_d, uint8_t, uint64_t, ldbu_d, clearq)
GEN_VEXT_LD_STRIDE(vlshu_v_h, uint16_t, uint16_t, ldhu_h, clearh)
GEN_VEXT_LD_STRIDE(vlshu_v_w, uint16_t, uint32_t, ldhu_w, clearl)
GEN_VEXT_LD_STRIDE(vlshu_v_d, uint16_t, uint64_t, ldhu_d, clearq)
GEN_VEXT_LD_STRIDE(vlswu_v_w, uint32_t, uint32_t, ldwu_w, clearl)
GEN_VEXT_LD_STRIDE(vlswu_v_d, uint32_t, uint64_t, ldwu_d, clearq)
#define GEN_VEXT_ST_STRIDE(NAME, MTYPE, ETYPE, STORE_FN) \
void HELPER(NAME)(void *vd, void *v0, target_ulong base, \
target_ulong stride, CPURISCVState *env, \
uint32_t desc) \
{ \
uint32_t vm = vext_vm(desc); \
vext_ldst_stride(vd, v0, base, stride, env, desc, vm, STORE_FN, \
NULL, sizeof(ETYPE), sizeof(MTYPE), \
GETPC(), MMU_DATA_STORE); \
}
GEN_VEXT_ST_STRIDE(vssb_v_b, int8_t, int8_t, stb_b)
GEN_VEXT_ST_STRIDE(vssb_v_h, int8_t, int16_t, stb_h)
GEN_VEXT_ST_STRIDE(vssb_v_w, int8_t, int32_t, stb_w)
GEN_VEXT_ST_STRIDE(vssb_v_d, int8_t, int64_t, stb_d)
GEN_VEXT_ST_STRIDE(vssh_v_h, int16_t, int16_t, sth_h)
GEN_VEXT_ST_STRIDE(vssh_v_w, int16_t, int32_t, sth_w)
GEN_VEXT_ST_STRIDE(vssh_v_d, int16_t, int64_t, sth_d)
GEN_VEXT_ST_STRIDE(vssw_v_w, int32_t, int32_t, stw_w)
GEN_VEXT_ST_STRIDE(vssw_v_d, int32_t, int64_t, stw_d)
GEN_VEXT_ST_STRIDE(vsse_v_b, int8_t, int8_t, ste_b)
GEN_VEXT_ST_STRIDE(vsse_v_h, int16_t, int16_t, ste_h)
GEN_VEXT_ST_STRIDE(vsse_v_w, int32_t, int32_t, ste_w)
GEN_VEXT_ST_STRIDE(vsse_v_d, int64_t, int64_t, ste_d)
/*
*** unit-stride: access elements stored contiguously in memory
*/
/* unmasked unit-stride load and store operation*/
static void
vext_ldst_us(void *vd, target_ulong base, CPURISCVState *env, uint32_t desc,
vext_ldst_elem_fn *ldst_elem, clear_fn *clear_elem,
uint32_t esz, uint32_t msz, uintptr_t ra,
MMUAccessType access_type)
{
uint32_t i, k;
uint32_t nf = vext_nf(desc);
uint32_t vlmax = vext_maxsz(desc) / esz;
/* probe every access */
probe_pages(env, base, env->vl * nf * msz, ra, access_type);
/* load bytes from guest memory */
for (i = 0; i < env->vl; i++) {
k = 0;
while (k < nf) {
target_ulong addr = base + (i * nf + k) * msz;
ldst_elem(env, addr, i + k * vlmax, vd, ra);
k++;
}
}
/* clear tail elements */
if (clear_elem) {
for (k = 0; k < nf; k++) {
clear_elem(vd, env->vl + k * vlmax, env->vl * esz, vlmax * esz);
}
}
}
/*
* masked unit-stride load and store operation will be a special case of stride,
* stride = NF * sizeof (MTYPE)
*/
#define GEN_VEXT_LD_US(NAME, MTYPE, ETYPE, LOAD_FN, CLEAR_FN) \
void HELPER(NAME##_mask)(void *vd, void *v0, target_ulong base, \
CPURISCVState *env, uint32_t desc) \
{ \
uint32_t stride = vext_nf(desc) * sizeof(MTYPE); \
vext_ldst_stride(vd, v0, base, stride, env, desc, false, LOAD_FN, \
CLEAR_FN, sizeof(ETYPE), sizeof(MTYPE), \
GETPC(), MMU_DATA_LOAD); \
} \
\
void HELPER(NAME)(void *vd, void *v0, target_ulong base, \
CPURISCVState *env, uint32_t desc) \
{ \
vext_ldst_us(vd, base, env, desc, LOAD_FN, CLEAR_FN, \
sizeof(ETYPE), sizeof(MTYPE), GETPC(), MMU_DATA_LOAD); \
}
GEN_VEXT_LD_US(vlb_v_b, int8_t, int8_t, ldb_b, clearb)
GEN_VEXT_LD_US(vlb_v_h, int8_t, int16_t, ldb_h, clearh)
GEN_VEXT_LD_US(vlb_v_w, int8_t, int32_t, ldb_w, clearl)
GEN_VEXT_LD_US(vlb_v_d, int8_t, int64_t, ldb_d, clearq)
GEN_VEXT_LD_US(vlh_v_h, int16_t, int16_t, ldh_h, clearh)
GEN_VEXT_LD_US(vlh_v_w, int16_t, int32_t, ldh_w, clearl)
GEN_VEXT_LD_US(vlh_v_d, int16_t, int64_t, ldh_d, clearq)
GEN_VEXT_LD_US(vlw_v_w, int32_t, int32_t, ldw_w, clearl)
GEN_VEXT_LD_US(vlw_v_d, int32_t, int64_t, ldw_d, clearq)
GEN_VEXT_LD_US(vle_v_b, int8_t, int8_t, lde_b, clearb)
GEN_VEXT_LD_US(vle_v_h, int16_t, int16_t, lde_h, clearh)
GEN_VEXT_LD_US(vle_v_w, int32_t, int32_t, lde_w, clearl)
GEN_VEXT_LD_US(vle_v_d, int64_t, int64_t, lde_d, clearq)
GEN_VEXT_LD_US(vlbu_v_b, uint8_t, uint8_t, ldbu_b, clearb)
GEN_VEXT_LD_US(vlbu_v_h, uint8_t, uint16_t, ldbu_h, clearh)
GEN_VEXT_LD_US(vlbu_v_w, uint8_t, uint32_t, ldbu_w, clearl)
GEN_VEXT_LD_US(vlbu_v_d, uint8_t, uint64_t, ldbu_d, clearq)
GEN_VEXT_LD_US(vlhu_v_h, uint16_t, uint16_t, ldhu_h, clearh)
GEN_VEXT_LD_US(vlhu_v_w, uint16_t, uint32_t, ldhu_w, clearl)
GEN_VEXT_LD_US(vlhu_v_d, uint16_t, uint64_t, ldhu_d, clearq)
GEN_VEXT_LD_US(vlwu_v_w, uint32_t, uint32_t, ldwu_w, clearl)
GEN_VEXT_LD_US(vlwu_v_d, uint32_t, uint64_t, ldwu_d, clearq)
#define GEN_VEXT_ST_US(NAME, MTYPE, ETYPE, STORE_FN) \
void HELPER(NAME##_mask)(void *vd, void *v0, target_ulong base, \
CPURISCVState *env, uint32_t desc) \
{ \
uint32_t stride = vext_nf(desc) * sizeof(MTYPE); \
vext_ldst_stride(vd, v0, base, stride, env, desc, false, STORE_FN, \
NULL, sizeof(ETYPE), sizeof(MTYPE), \
GETPC(), MMU_DATA_STORE); \
} \
\
void HELPER(NAME)(void *vd, void *v0, target_ulong base, \
CPURISCVState *env, uint32_t desc) \
{ \
vext_ldst_us(vd, base, env, desc, STORE_FN, NULL, \
sizeof(ETYPE), sizeof(MTYPE), GETPC(), MMU_DATA_STORE);\
}
GEN_VEXT_ST_US(vsb_v_b, int8_t, int8_t , stb_b)
GEN_VEXT_ST_US(vsb_v_h, int8_t, int16_t, stb_h)
GEN_VEXT_ST_US(vsb_v_w, int8_t, int32_t, stb_w)
GEN_VEXT_ST_US(vsb_v_d, int8_t, int64_t, stb_d)
GEN_VEXT_ST_US(vsh_v_h, int16_t, int16_t, sth_h)
GEN_VEXT_ST_US(vsh_v_w, int16_t, int32_t, sth_w)
GEN_VEXT_ST_US(vsh_v_d, int16_t, int64_t, sth_d)
GEN_VEXT_ST_US(vsw_v_w, int32_t, int32_t, stw_w)
GEN_VEXT_ST_US(vsw_v_d, int32_t, int64_t, stw_d)
GEN_VEXT_ST_US(vse_v_b, int8_t, int8_t , ste_b)
GEN_VEXT_ST_US(vse_v_h, int16_t, int16_t, ste_h)
GEN_VEXT_ST_US(vse_v_w, int32_t, int32_t, ste_w)
GEN_VEXT_ST_US(vse_v_d, int64_t, int64_t, ste_d)
/*
*** index: access vector element from indexed memory
*/
typedef target_ulong vext_get_index_addr(target_ulong base,
uint32_t idx, void *vs2);
#define GEN_VEXT_GET_INDEX_ADDR(NAME, ETYPE, H) \
static target_ulong NAME(target_ulong base, \
uint32_t idx, void *vs2) \
{ \
return (base + *((ETYPE *)vs2 + H(idx))); \
}
GEN_VEXT_GET_INDEX_ADDR(idx_b, int8_t, H1)
GEN_VEXT_GET_INDEX_ADDR(idx_h, int16_t, H2)
GEN_VEXT_GET_INDEX_ADDR(idx_w, int32_t, H4)
GEN_VEXT_GET_INDEX_ADDR(idx_d, int64_t, H8)
static inline void
vext_ldst_index(void *vd, void *v0, target_ulong base,
void *vs2, CPURISCVState *env, uint32_t desc,
vext_get_index_addr get_index_addr,
vext_ldst_elem_fn *ldst_elem,
clear_fn *clear_elem,
uint32_t esz, uint32_t msz, uintptr_t ra,
MMUAccessType access_type)
{
uint32_t i, k;
uint32_t nf = vext_nf(desc);
uint32_t vm = vext_vm(desc);
uint32_t mlen = vext_mlen(desc);
uint32_t vlmax = vext_maxsz(desc) / esz;
/* probe every access*/
for (i = 0; i < env->vl; i++) {
if (!vm && !vext_elem_mask(v0, mlen, i)) {
continue;
}
probe_pages(env, get_index_addr(base, i, vs2), nf * msz, ra,
access_type);
}
/* load bytes from guest memory */
for (i = 0; i < env->vl; i++) {
k = 0;
if (!vm && !vext_elem_mask(v0, mlen, i)) {
continue;
}
while (k < nf) {
abi_ptr addr = get_index_addr(base, i, vs2) + k * msz;
ldst_elem(env, addr, i + k * vlmax, vd, ra);
k++;
}
}
/* clear tail elements */
if (clear_elem) {
for (k = 0; k < nf; k++) {
clear_elem(vd, env->vl + k * vlmax, env->vl * esz, vlmax * esz);
}
}
}
#define GEN_VEXT_LD_INDEX(NAME, MTYPE, ETYPE, INDEX_FN, LOAD_FN, CLEAR_FN) \
void HELPER(NAME)(void *vd, void *v0, target_ulong base, \
void *vs2, CPURISCVState *env, uint32_t desc) \
{ \
vext_ldst_index(vd, v0, base, vs2, env, desc, INDEX_FN, \
LOAD_FN, CLEAR_FN, sizeof(ETYPE), sizeof(MTYPE), \
GETPC(), MMU_DATA_LOAD); \
}
GEN_VEXT_LD_INDEX(vlxb_v_b, int8_t, int8_t, idx_b, ldb_b, clearb)
GEN_VEXT_LD_INDEX(vlxb_v_h, int8_t, int16_t, idx_h, ldb_h, clearh)
GEN_VEXT_LD_INDEX(vlxb_v_w, int8_t, int32_t, idx_w, ldb_w, clearl)
GEN_VEXT_LD_INDEX(vlxb_v_d, int8_t, int64_t, idx_d, ldb_d, clearq)
GEN_VEXT_LD_INDEX(vlxh_v_h, int16_t, int16_t, idx_h, ldh_h, clearh)
GEN_VEXT_LD_INDEX(vlxh_v_w, int16_t, int32_t, idx_w, ldh_w, clearl)
GEN_VEXT_LD_INDEX(vlxh_v_d, int16_t, int64_t, idx_d, ldh_d, clearq)
GEN_VEXT_LD_INDEX(vlxw_v_w, int32_t, int32_t, idx_w, ldw_w, clearl)
GEN_VEXT_LD_INDEX(vlxw_v_d, int32_t, int64_t, idx_d, ldw_d, clearq)
GEN_VEXT_LD_INDEX(vlxe_v_b, int8_t, int8_t, idx_b, lde_b, clearb)
GEN_VEXT_LD_INDEX(vlxe_v_h, int16_t, int16_t, idx_h, lde_h, clearh)
GEN_VEXT_LD_INDEX(vlxe_v_w, int32_t, int32_t, idx_w, lde_w, clearl)
GEN_VEXT_LD_INDEX(vlxe_v_d, int64_t, int64_t, idx_d, lde_d, clearq)
GEN_VEXT_LD_INDEX(vlxbu_v_b, uint8_t, uint8_t, idx_b, ldbu_b, clearb)
GEN_VEXT_LD_INDEX(vlxbu_v_h, uint8_t, uint16_t, idx_h, ldbu_h, clearh)
GEN_VEXT_LD_INDEX(vlxbu_v_w, uint8_t, uint32_t, idx_w, ldbu_w, clearl)
GEN_VEXT_LD_INDEX(vlxbu_v_d, uint8_t, uint64_t, idx_d, ldbu_d, clearq)
GEN_VEXT_LD_INDEX(vlxhu_v_h, uint16_t, uint16_t, idx_h, ldhu_h, clearh)
GEN_VEXT_LD_INDEX(vlxhu_v_w, uint16_t, uint32_t, idx_w, ldhu_w, clearl)
GEN_VEXT_LD_INDEX(vlxhu_v_d, uint16_t, uint64_t, idx_d, ldhu_d, clearq)
GEN_VEXT_LD_INDEX(vlxwu_v_w, uint32_t, uint32_t, idx_w, ldwu_w, clearl)
GEN_VEXT_LD_INDEX(vlxwu_v_d, uint32_t, uint64_t, idx_d, ldwu_d, clearq)
#define GEN_VEXT_ST_INDEX(NAME, MTYPE, ETYPE, INDEX_FN, STORE_FN)\
void HELPER(NAME)(void *vd, void *v0, target_ulong base, \
void *vs2, CPURISCVState *env, uint32_t desc) \
{ \
vext_ldst_index(vd, v0, base, vs2, env, desc, INDEX_FN, \
STORE_FN, NULL, sizeof(ETYPE), sizeof(MTYPE),\
GETPC(), MMU_DATA_STORE); \
}
GEN_VEXT_ST_INDEX(vsxb_v_b, int8_t, int8_t, idx_b, stb_b)
GEN_VEXT_ST_INDEX(vsxb_v_h, int8_t, int16_t, idx_h, stb_h)
GEN_VEXT_ST_INDEX(vsxb_v_w, int8_t, int32_t, idx_w, stb_w)
GEN_VEXT_ST_INDEX(vsxb_v_d, int8_t, int64_t, idx_d, stb_d)
GEN_VEXT_ST_INDEX(vsxh_v_h, int16_t, int16_t, idx_h, sth_h)
GEN_VEXT_ST_INDEX(vsxh_v_w, int16_t, int32_t, idx_w, sth_w)
GEN_VEXT_ST_INDEX(vsxh_v_d, int16_t, int64_t, idx_d, sth_d)
GEN_VEXT_ST_INDEX(vsxw_v_w, int32_t, int32_t, idx_w, stw_w)
GEN_VEXT_ST_INDEX(vsxw_v_d, int32_t, int64_t, idx_d, stw_d)
GEN_VEXT_ST_INDEX(vsxe_v_b, int8_t, int8_t, idx_b, ste_b)
GEN_VEXT_ST_INDEX(vsxe_v_h, int16_t, int16_t, idx_h, ste_h)
GEN_VEXT_ST_INDEX(vsxe_v_w, int32_t, int32_t, idx_w, ste_w)
GEN_VEXT_ST_INDEX(vsxe_v_d, int64_t, int64_t, idx_d, ste_d)
/*
*** unit-stride fault-only-fisrt load instructions
*/
static inline void
vext_ldff(void *vd, void *v0, target_ulong base,
CPURISCVState *env, uint32_t desc,
vext_ldst_elem_fn *ldst_elem,
clear_fn *clear_elem,
uint32_t esz, uint32_t msz, uintptr_t ra)
{
void *host;
uint32_t i, k, vl = 0;
uint32_t mlen = vext_mlen(desc);
uint32_t nf = vext_nf(desc);
uint32_t vm = vext_vm(desc);
uint32_t vlmax = vext_maxsz(desc) / esz;
target_ulong addr, offset, remain;
/* probe every access*/
for (i = 0; i < env->vl; i++) {
if (!vm && !vext_elem_mask(v0, mlen, i)) {
continue;
}
addr = base + nf * i * msz;
if (i == 0) {
probe_pages(env, addr, nf * msz, ra, MMU_DATA_LOAD);
} else {
/* if it triggers an exception, no need to check watchpoint */
remain = nf * msz;
while (remain > 0) {
offset = -(addr | TARGET_PAGE_MASK);
host = tlb_vaddr_to_host(env, addr, MMU_DATA_LOAD,
cpu_mmu_index(env, false));
if (host) {
#ifdef CONFIG_USER_ONLY
if (page_check_range(addr, nf * msz, PAGE_READ) < 0) {
vl = i;
goto ProbeSuccess;
}
#else
probe_pages(env, addr, nf * msz, ra, MMU_DATA_LOAD);
#endif
} else {
vl = i;
goto ProbeSuccess;
}
if (remain <= offset) {
break;
}
remain -= offset;
addr += offset;
}
}
}
ProbeSuccess:
/* load bytes from guest memory */
if (vl != 0) {
env->vl = vl;
}
for (i = 0; i < env->vl; i++) {
k = 0;
if (!vm && !vext_elem_mask(v0, mlen, i)) {
continue;
}
while (k < nf) {
target_ulong addr = base + (i * nf + k) * msz;
ldst_elem(env, addr, i + k * vlmax, vd, ra);
k++;
}
}
/* clear tail elements */
if (vl != 0) {
return;
}
for (k = 0; k < nf; k++) {
clear_elem(vd, env->vl + k * vlmax, env->vl * esz, vlmax * esz);
}
}
#define GEN_VEXT_LDFF(NAME, MTYPE, ETYPE, LOAD_FN, CLEAR_FN) \
void HELPER(NAME)(void *vd, void *v0, target_ulong base, \
CPURISCVState *env, uint32_t desc) \
{ \
vext_ldff(vd, v0, base, env, desc, LOAD_FN, CLEAR_FN, \
sizeof(ETYPE), sizeof(MTYPE), GETPC()); \
}
GEN_VEXT_LDFF(vlbff_v_b, int8_t, int8_t, ldb_b, clearb)
GEN_VEXT_LDFF(vlbff_v_h, int8_t, int16_t, ldb_h, clearh)
GEN_VEXT_LDFF(vlbff_v_w, int8_t, int32_t, ldb_w, clearl)
GEN_VEXT_LDFF(vlbff_v_d, int8_t, int64_t, ldb_d, clearq)
GEN_VEXT_LDFF(vlhff_v_h, int16_t, int16_t, ldh_h, clearh)
GEN_VEXT_LDFF(vlhff_v_w, int16_t, int32_t, ldh_w, clearl)
GEN_VEXT_LDFF(vlhff_v_d, int16_t, int64_t, ldh_d, clearq)
GEN_VEXT_LDFF(vlwff_v_w, int32_t, int32_t, ldw_w, clearl)
GEN_VEXT_LDFF(vlwff_v_d, int32_t, int64_t, ldw_d, clearq)
GEN_VEXT_LDFF(vleff_v_b, int8_t, int8_t, lde_b, clearb)
GEN_VEXT_LDFF(vleff_v_h, int16_t, int16_t, lde_h, clearh)
GEN_VEXT_LDFF(vleff_v_w, int32_t, int32_t, lde_w, clearl)
GEN_VEXT_LDFF(vleff_v_d, int64_t, int64_t, lde_d, clearq)
GEN_VEXT_LDFF(vlbuff_v_b, uint8_t, uint8_t, ldbu_b, clearb)
GEN_VEXT_LDFF(vlbuff_v_h, uint8_t, uint16_t, ldbu_h, clearh)
GEN_VEXT_LDFF(vlbuff_v_w, uint8_t, uint32_t, ldbu_w, clearl)
GEN_VEXT_LDFF(vlbuff_v_d, uint8_t, uint64_t, ldbu_d, clearq)
GEN_VEXT_LDFF(vlhuff_v_h, uint16_t, uint16_t, ldhu_h, clearh)
GEN_VEXT_LDFF(vlhuff_v_w, uint16_t, uint32_t, ldhu_w, clearl)
GEN_VEXT_LDFF(vlhuff_v_d, uint16_t, uint64_t, ldhu_d, clearq)
GEN_VEXT_LDFF(vlwuff_v_w, uint32_t, uint32_t, ldwu_w, clearl)
GEN_VEXT_LDFF(vlwuff_v_d, uint32_t, uint64_t, ldwu_d, clearq)
/*
*** Vector AMO Operations (Zvamo)
*/
typedef void vext_amo_noatomic_fn(void *vs3, target_ulong addr,
uint32_t wd, uint32_t idx, CPURISCVState *env,
uintptr_t retaddr);
/* no atomic opreation for vector atomic insructions */
#define DO_SWAP(N, M) (M)
#define DO_AND(N, M) (N & M)
#define DO_XOR(N, M) (N ^ M)
#define DO_OR(N, M) (N | M)
#define DO_ADD(N, M) (N + M)
#define GEN_VEXT_AMO_NOATOMIC_OP(NAME, ESZ, MSZ, H, DO_OP, SUF) \
static void \
vext_##NAME##_noatomic_op(void *vs3, target_ulong addr, \
uint32_t wd, uint32_t idx, \
CPURISCVState *env, uintptr_t retaddr)\
{ \
typedef int##ESZ##_t ETYPE; \
typedef int##MSZ##_t MTYPE; \
typedef uint##MSZ##_t UMTYPE __attribute__((unused)); \
ETYPE *pe3 = (ETYPE *)vs3 + H(idx); \
MTYPE a = cpu_ld##SUF##_data(env, addr), b = *pe3; \
\
cpu_st##SUF##_data(env, addr, DO_OP(a, b)); \
if (wd) { \
*pe3 = a; \
} \
}
/* Signed min/max */
#define DO_MAX(N, M) ((N) >= (M) ? (N) : (M))
#define DO_MIN(N, M) ((N) >= (M) ? (M) : (N))
/* Unsigned min/max */
#define DO_MAXU(N, M) DO_MAX((UMTYPE)N, (UMTYPE)M)
#define DO_MINU(N, M) DO_MIN((UMTYPE)N, (UMTYPE)M)
GEN_VEXT_AMO_NOATOMIC_OP(vamoswapw_v_w, 32, 32, H4, DO_SWAP, l)
GEN_VEXT_AMO_NOATOMIC_OP(vamoaddw_v_w, 32, 32, H4, DO_ADD, l)
GEN_VEXT_AMO_NOATOMIC_OP(vamoxorw_v_w, 32, 32, H4, DO_XOR, l)
GEN_VEXT_AMO_NOATOMIC_OP(vamoandw_v_w, 32, 32, H4, DO_AND, l)
GEN_VEXT_AMO_NOATOMIC_OP(vamoorw_v_w, 32, 32, H4, DO_OR, l)
GEN_VEXT_AMO_NOATOMIC_OP(vamominw_v_w, 32, 32, H4, DO_MIN, l)
GEN_VEXT_AMO_NOATOMIC_OP(vamomaxw_v_w, 32, 32, H4, DO_MAX, l)
GEN_VEXT_AMO_NOATOMIC_OP(vamominuw_v_w, 32, 32, H4, DO_MINU, l)
GEN_VEXT_AMO_NOATOMIC_OP(vamomaxuw_v_w, 32, 32, H4, DO_MAXU, l)
#ifdef TARGET_RISCV64
GEN_VEXT_AMO_NOATOMIC_OP(vamoswapw_v_d, 64, 32, H8, DO_SWAP, l)
GEN_VEXT_AMO_NOATOMIC_OP(vamoswapd_v_d, 64, 64, H8, DO_SWAP, q)
GEN_VEXT_AMO_NOATOMIC_OP(vamoaddw_v_d, 64, 32, H8, DO_ADD, l)
GEN_VEXT_AMO_NOATOMIC_OP(vamoaddd_v_d, 64, 64, H8, DO_ADD, q)
GEN_VEXT_AMO_NOATOMIC_OP(vamoxorw_v_d, 64, 32, H8, DO_XOR, l)
GEN_VEXT_AMO_NOATOMIC_OP(vamoxord_v_d, 64, 64, H8, DO_XOR, q)
GEN_VEXT_AMO_NOATOMIC_OP(vamoandw_v_d, 64, 32, H8, DO_AND, l)
GEN_VEXT_AMO_NOATOMIC_OP(vamoandd_v_d, 64, 64, H8, DO_AND, q)
GEN_VEXT_AMO_NOATOMIC_OP(vamoorw_v_d, 64, 32, H8, DO_OR, l)
GEN_VEXT_AMO_NOATOMIC_OP(vamoord_v_d, 64, 64, H8, DO_OR, q)
GEN_VEXT_AMO_NOATOMIC_OP(vamominw_v_d, 64, 32, H8, DO_MIN, l)
GEN_VEXT_AMO_NOATOMIC_OP(vamomind_v_d, 64, 64, H8, DO_MIN, q)
GEN_VEXT_AMO_NOATOMIC_OP(vamomaxw_v_d, 64, 32, H8, DO_MAX, l)
GEN_VEXT_AMO_NOATOMIC_OP(vamomaxd_v_d, 64, 64, H8, DO_MAX, q)
GEN_VEXT_AMO_NOATOMIC_OP(vamominuw_v_d, 64, 32, H8, DO_MINU, l)
GEN_VEXT_AMO_NOATOMIC_OP(vamominud_v_d, 64, 64, H8, DO_MINU, q)
GEN_VEXT_AMO_NOATOMIC_OP(vamomaxuw_v_d, 64, 32, H8, DO_MAXU, l)
GEN_VEXT_AMO_NOATOMIC_OP(vamomaxud_v_d, 64, 64, H8, DO_MAXU, q)
#endif
static inline void
vext_amo_noatomic(void *vs3, void *v0, target_ulong base,
void *vs2, CPURISCVState *env, uint32_t desc,
vext_get_index_addr get_index_addr,
vext_amo_noatomic_fn *noatomic_op,
clear_fn *clear_elem,
uint32_t esz, uint32_t msz, uintptr_t ra)
{
uint32_t i;
target_long addr;
uint32_t wd = vext_wd(desc);
uint32_t vm = vext_vm(desc);
uint32_t mlen = vext_mlen(desc);
uint32_t vlmax = vext_maxsz(desc) / esz;
for (i = 0; i < env->vl; i++) {
if (!vm && !vext_elem_mask(v0, mlen, i)) {
continue;
}
probe_pages(env, get_index_addr(base, i, vs2), msz, ra, MMU_DATA_LOAD);
probe_pages(env, get_index_addr(base, i, vs2), msz, ra, MMU_DATA_STORE);
}
for (i = 0; i < env->vl; i++) {
if (!vm && !vext_elem_mask(v0, mlen, i)) {
continue;
}
addr = get_index_addr(base, i, vs2);
noatomic_op(vs3, addr, wd, i, env, ra);
}
clear_elem(vs3, env->vl, env->vl * esz, vlmax * esz);
}
#define GEN_VEXT_AMO(NAME, MTYPE, ETYPE, INDEX_FN, CLEAR_FN) \
void HELPER(NAME)(void *vs3, void *v0, target_ulong base, \
void *vs2, CPURISCVState *env, uint32_t desc) \
{ \
vext_amo_noatomic(vs3, v0, base, vs2, env, desc, \
INDEX_FN, vext_##NAME##_noatomic_op, \
CLEAR_FN, sizeof(ETYPE), sizeof(MTYPE), \
GETPC()); \
}
#ifdef TARGET_RISCV64
GEN_VEXT_AMO(vamoswapw_v_d, int32_t, int64_t, idx_d, clearq)
GEN_VEXT_AMO(vamoswapd_v_d, int64_t, int64_t, idx_d, clearq)
GEN_VEXT_AMO(vamoaddw_v_d, int32_t, int64_t, idx_d, clearq)
GEN_VEXT_AMO(vamoaddd_v_d, int64_t, int64_t, idx_d, clearq)
GEN_VEXT_AMO(vamoxorw_v_d, int32_t, int64_t, idx_d, clearq)
GEN_VEXT_AMO(vamoxord_v_d, int64_t, int64_t, idx_d, clearq)
GEN_VEXT_AMO(vamoandw_v_d, int32_t, int64_t, idx_d, clearq)
GEN_VEXT_AMO(vamoandd_v_d, int64_t, int64_t, idx_d, clearq)
GEN_VEXT_AMO(vamoorw_v_d, int32_t, int64_t, idx_d, clearq)
GEN_VEXT_AMO(vamoord_v_d, int64_t, int64_t, idx_d, clearq)
GEN_VEXT_AMO(vamominw_v_d, int32_t, int64_t, idx_d, clearq)
GEN_VEXT_AMO(vamomind_v_d, int64_t, int64_t, idx_d, clearq)
GEN_VEXT_AMO(vamomaxw_v_d, int32_t, int64_t, idx_d, clearq)
GEN_VEXT_AMO(vamomaxd_v_d, int64_t, int64_t, idx_d, clearq)
GEN_VEXT_AMO(vamominuw_v_d, uint32_t, uint64_t, idx_d, clearq)
GEN_VEXT_AMO(vamominud_v_d, uint64_t, uint64_t, idx_d, clearq)
GEN_VEXT_AMO(vamomaxuw_v_d, uint32_t, uint64_t, idx_d, clearq)
GEN_VEXT_AMO(vamomaxud_v_d, uint64_t, uint64_t, idx_d, clearq)
#endif
GEN_VEXT_AMO(vamoswapw_v_w, int32_t, int32_t, idx_w, clearl)
GEN_VEXT_AMO(vamoaddw_v_w, int32_t, int32_t, idx_w, clearl)
GEN_VEXT_AMO(vamoxorw_v_w, int32_t, int32_t, idx_w, clearl)
GEN_VEXT_AMO(vamoandw_v_w, int32_t, int32_t, idx_w, clearl)
GEN_VEXT_AMO(vamoorw_v_w, int32_t, int32_t, idx_w, clearl)
GEN_VEXT_AMO(vamominw_v_w, int32_t, int32_t, idx_w, clearl)
GEN_VEXT_AMO(vamomaxw_v_w, int32_t, int32_t, idx_w, clearl)
GEN_VEXT_AMO(vamominuw_v_w, uint32_t, uint32_t, idx_w, clearl)
GEN_VEXT_AMO(vamomaxuw_v_w, uint32_t, uint32_t, idx_w, clearl)