qemu-patch-raspberry4/hw/s390x/css-bridge.c

167 lines
4.8 KiB
C
Raw Normal View History

/*
* css bridge implementation
*
* Copyright 2012,2016 IBM Corp.
* Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
* Pierre Morel <pmorel@linux.vnet.ibm.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or (at
* your option) any later version. See the COPYING file in the top-level
* directory.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "hw/hotplug.h"
#include "hw/qdev-properties.h"
#include "hw/sysbus.h"
#include "qemu/bitops.h"
#include "qemu/module.h"
#include "hw/s390x/css.h"
#include "ccw-device.h"
#include "hw/s390x/css-bridge.h"
/*
* Invoke device-specific unplug handler, disable the subchannel
* (including sending a channel report to the guest) and remove the
* device from the virtual css bus.
*/
static void ccw_device_unplug(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
CcwDevice *ccw_dev = CCW_DEVICE(dev);
CCWDeviceClass *k = CCW_DEVICE_GET_CLASS(ccw_dev);
SubchDev *sch = ccw_dev->sch;
Error *err = NULL;
if (k->unplug) {
k->unplug(hotplug_dev, dev, &err);
if (err) {
error_propagate(errp, err);
return;
}
}
/*
* We should arrive here only for device_del, since we don't support
* direct hot(un)plug of channels.
*/
assert(sch != NULL);
/* Subchannel is now disabled and no longer valid. */
sch->curr_status.pmcw.flags &= ~(PMCW_FLAGS_MASK_ENA |
PMCW_FLAGS_MASK_DNV);
css_generate_sch_crws(sch->cssid, sch->ssid, sch->schid, 1, 0);
qdev_unrealize(dev);
}
static void virtual_css_bus_reset(BusState *qbus)
{
/* This should actually be modelled via the generic css */
css_reset();
}
static char *virtual_css_bus_get_dev_path(DeviceState *dev)
{
CcwDevice *ccw_dev = CCW_DEVICE(dev);
SubchDev *sch = ccw_dev->sch;
VirtualCssBridge *bridge =
VIRTUAL_CSS_BRIDGE(qdev_get_parent_bus(dev)->parent);
/*
* We can't provide a dev path for backward compatibility on
* older machines, as it is visible in the migration stream.
*/
return bridge->css_dev_path ?
g_strdup_printf("/%02x.%1x.%04x", sch->cssid, sch->ssid, sch->devno) :
NULL;
}
static void virtual_css_bus_class_init(ObjectClass *klass, void *data)
{
BusClass *k = BUS_CLASS(klass);
k->reset = virtual_css_bus_reset;
k->get_dev_path = virtual_css_bus_get_dev_path;
}
static const TypeInfo virtual_css_bus_info = {
.name = TYPE_VIRTUAL_CSS_BUS,
.parent = TYPE_BUS,
.instance_size = sizeof(VirtualCssBus),
.class_init = virtual_css_bus_class_init,
};
VirtualCssBus *virtual_css_bus_init(void)
{
VirtualCssBus *cbus;
BusState *bus;
DeviceState *dev;
/* Create bridge device */
qdev: Convert uses of qdev_create() with Coccinelle This is the transformation explained in the commit before previous. Takes care of just one pattern that needs conversion. More to come in this series. Coccinelle script: @ depends on !(file in "hw/arm/highbank.c")@ expression bus, type_name, dev, expr; @@ - dev = qdev_create(bus, type_name); + dev = qdev_new(type_name); ... when != dev = expr - qdev_init_nofail(dev); + qdev_realize_and_unref(dev, bus, &error_fatal); @@ expression bus, type_name, dev, expr; identifier DOWN; @@ - dev = DOWN(qdev_create(bus, type_name)); + dev = DOWN(qdev_new(type_name)); ... when != dev = expr - qdev_init_nofail(DEVICE(dev)); + qdev_realize_and_unref(DEVICE(dev), bus, &error_fatal); @@ expression bus, type_name, expr; identifier dev; @@ - DeviceState *dev = qdev_create(bus, type_name); + DeviceState *dev = qdev_new(type_name); ... when != dev = expr - qdev_init_nofail(dev); + qdev_realize_and_unref(dev, bus, &error_fatal); @@ expression bus, type_name, dev, expr, errp; symbol true; @@ - dev = qdev_create(bus, type_name); + dev = qdev_new(type_name); ... when != dev = expr - object_property_set_bool(OBJECT(dev), true, "realized", errp); + qdev_realize_and_unref(dev, bus, errp); @@ expression bus, type_name, expr, errp; identifier dev; symbol true; @@ - DeviceState *dev = qdev_create(bus, type_name); + DeviceState *dev = qdev_new(type_name); ... when != dev = expr - object_property_set_bool(OBJECT(dev), true, "realized", errp); + qdev_realize_and_unref(dev, bus, errp); The first rule exempts hw/arm/highbank.c, because it matches along two control flow paths there, with different @type_name. Covered by the next commit's manual conversions. Missing #include "qapi/error.h" added manually. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20200610053247.1583243-10-armbru@redhat.com> [Conflicts in hw/misc/empty_slot.c and hw/sparc/leon3.c resolved]
2020-06-10 07:31:58 +02:00
dev = qdev_new(TYPE_VIRTUAL_CSS_BRIDGE);
object_property_add_child(qdev_get_machine(), TYPE_VIRTUAL_CSS_BRIDGE,
qom: Drop parameter @errp of object_property_add() & friends The only way object_property_add() can fail is when a property with the same name already exists. Since our property names are all hardcoded, failure is a programming error, and the appropriate way to handle it is passing &error_abort. Same for its variants, except for object_property_add_child(), which additionally fails when the child already has a parent. Parentage is also under program control, so this is a programming error, too. We have a bit over 500 callers. Almost half of them pass &error_abort, slightly fewer ignore errors, one test case handles errors, and the remaining few callers pass them to their own callers. The previous few commits demonstrated once again that ignoring programming errors is a bad idea. Of the few ones that pass on errors, several violate the Error API. The Error ** argument must be NULL, &error_abort, &error_fatal, or a pointer to a variable containing NULL. Passing an argument of the latter kind twice without clearing it in between is wrong: if the first call sets an error, it no longer points to NULL for the second call. ich9_pm_add_properties(), sparc32_ledma_realize(), sparc32_dma_realize(), xilinx_axidma_realize(), xilinx_enet_realize() are wrong that way. When the one appropriate choice of argument is &error_abort, letting users pick the argument is a bad idea. Drop parameter @errp and assert the preconditions instead. There's one exception to "duplicate property name is a programming error": the way object_property_add() implements the magic (and undocumented) "automatic arrayification". Don't drop @errp there. Instead, rename object_property_add() to object_property_try_add(), and add the obvious wrapper object_property_add(). Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20200505152926.18877-15-armbru@redhat.com> [Two semantic rebase conflicts resolved]
2020-05-05 17:29:22 +02:00
OBJECT(dev));
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
/* Create bus on bridge device */
bus = qbus_create(TYPE_VIRTUAL_CSS_BUS, dev, "virtual-css");
cbus = VIRTUAL_CSS_BUS(bus);
/* Enable hotplugging */
qbus_set_hotplug_handler(bus, OBJECT(dev));
css_register_io_adapters(CSS_IO_ADAPTER_VIRTIO, true, false,
0, &error_abort);
return cbus;
}
/***************** Virtual-css Bus Bridge Device ********************/
static Property virtual_css_bridge_properties[] = {
DEFINE_PROP_BOOL("css_dev_path", VirtualCssBridge, css_dev_path,
true),
DEFINE_PROP_END_OF_LIST(),
};
s390x/css: unrestrict cssids The default css 0xfe is currently restricted to virtual subchannel devices. The hope when the decision was made was, that non-virtual subchannel devices will come around when guest can exploit multiple channel subsystems. Since the guests generally don't do, the pain of the partitioned (cssid) namespace outweighs the gain. Let us remove the corresponding restrictions (virtual devices can be put only in 0xfe and non-virtual devices in any css except the 0xfe -- while s390-squash-mcss then remaps everything to cssid 0). At the same time, change our schema for generating css bus ids to put both virtual and non-virtual devices into the default css (spilling over into other css images, if needed). The intention is to deprecate s390-squash-mcss. With this change devices without a specified devno won't end up hidden to guests not supporting multiple channel subsystems, unless this can not be avoided (default css full). Let us also advertise the changes to the management software (so it can tell are cssids unrestricted or restricted). The adverse effect of getting rid of the restriction on migration should not be too severe. Vfio-ccw devices are not live-migratable yet, and for virtual devices using the extra freedom would only make sense with the aforementioned guest support in place. The auto-generated bus ids are affected by both changes. We hope to not encounter any auto-generated bus ids in production as Libvirt is always explicit about the bus id. Since 8ed179c937 ("s390x/css: catch section mismatch on load", 2017-05-18) the worst that can happen because the same device ended up having a different bus id is a cleanly failed migration. I find it hard to reason about the impact of changed auto-generated bus ids on migration for command line users as I don't know which rules is such an user supposed to follow. Another pain-point is down- or upgrade of QEMU for command line users. The old way and the new way of doing vfio-ccw are mutually incompatible. Libvirt is only going to support the new way, so for libvirt users, the possible problems at QEMU downgrade are the following. If a domain contains virtual devices placed into a css different than 0xfe the domain will refuse to start with a QEMU not having this patch. Putting devices into a css different that 0xfe however won't make much sense in the near future (guest support). Libvirt will refuse to do vfio-ccw with a QEMU not having this patch. This is business as usual. Signed-off-by: Halil Pasic <pasic@linux.vnet.ibm.com> Acked-by: Christian Borntraeger <borntraeger@de.ibm.com> Reviewed-by: Dong Jia Shi <bjsdjshi@linux.vnet.ibm.com> Message-Id: <20171206144438.28908-2-pasic@linux.vnet.ibm.com> Signed-off-by: Cornelia Huck <cohuck@redhat.com>
2017-12-06 15:44:37 +01:00
static bool prop_get_true(Object *obj, Error **errp)
{
return true;
}
static void virtual_css_bridge_class_init(ObjectClass *klass, void *data)
{
HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(klass);
DeviceClass *dc = DEVICE_CLASS(klass);
hc->unplug = ccw_device_unplug;
set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
device_class_set_props(dc, virtual_css_bridge_properties);
s390x/css: unrestrict cssids The default css 0xfe is currently restricted to virtual subchannel devices. The hope when the decision was made was, that non-virtual subchannel devices will come around when guest can exploit multiple channel subsystems. Since the guests generally don't do, the pain of the partitioned (cssid) namespace outweighs the gain. Let us remove the corresponding restrictions (virtual devices can be put only in 0xfe and non-virtual devices in any css except the 0xfe -- while s390-squash-mcss then remaps everything to cssid 0). At the same time, change our schema for generating css bus ids to put both virtual and non-virtual devices into the default css (spilling over into other css images, if needed). The intention is to deprecate s390-squash-mcss. With this change devices without a specified devno won't end up hidden to guests not supporting multiple channel subsystems, unless this can not be avoided (default css full). Let us also advertise the changes to the management software (so it can tell are cssids unrestricted or restricted). The adverse effect of getting rid of the restriction on migration should not be too severe. Vfio-ccw devices are not live-migratable yet, and for virtual devices using the extra freedom would only make sense with the aforementioned guest support in place. The auto-generated bus ids are affected by both changes. We hope to not encounter any auto-generated bus ids in production as Libvirt is always explicit about the bus id. Since 8ed179c937 ("s390x/css: catch section mismatch on load", 2017-05-18) the worst that can happen because the same device ended up having a different bus id is a cleanly failed migration. I find it hard to reason about the impact of changed auto-generated bus ids on migration for command line users as I don't know which rules is such an user supposed to follow. Another pain-point is down- or upgrade of QEMU for command line users. The old way and the new way of doing vfio-ccw are mutually incompatible. Libvirt is only going to support the new way, so for libvirt users, the possible problems at QEMU downgrade are the following. If a domain contains virtual devices placed into a css different than 0xfe the domain will refuse to start with a QEMU not having this patch. Putting devices into a css different that 0xfe however won't make much sense in the near future (guest support). Libvirt will refuse to do vfio-ccw with a QEMU not having this patch. This is business as usual. Signed-off-by: Halil Pasic <pasic@linux.vnet.ibm.com> Acked-by: Christian Borntraeger <borntraeger@de.ibm.com> Reviewed-by: Dong Jia Shi <bjsdjshi@linux.vnet.ibm.com> Message-Id: <20171206144438.28908-2-pasic@linux.vnet.ibm.com> Signed-off-by: Cornelia Huck <cohuck@redhat.com>
2017-12-06 15:44:37 +01:00
object_class_property_add_bool(klass, "cssid-unrestricted",
qom: Drop parameter @errp of object_property_add() & friends The only way object_property_add() can fail is when a property with the same name already exists. Since our property names are all hardcoded, failure is a programming error, and the appropriate way to handle it is passing &error_abort. Same for its variants, except for object_property_add_child(), which additionally fails when the child already has a parent. Parentage is also under program control, so this is a programming error, too. We have a bit over 500 callers. Almost half of them pass &error_abort, slightly fewer ignore errors, one test case handles errors, and the remaining few callers pass them to their own callers. The previous few commits demonstrated once again that ignoring programming errors is a bad idea. Of the few ones that pass on errors, several violate the Error API. The Error ** argument must be NULL, &error_abort, &error_fatal, or a pointer to a variable containing NULL. Passing an argument of the latter kind twice without clearing it in between is wrong: if the first call sets an error, it no longer points to NULL for the second call. ich9_pm_add_properties(), sparc32_ledma_realize(), sparc32_dma_realize(), xilinx_axidma_realize(), xilinx_enet_realize() are wrong that way. When the one appropriate choice of argument is &error_abort, letting users pick the argument is a bad idea. Drop parameter @errp and assert the preconditions instead. There's one exception to "duplicate property name is a programming error": the way object_property_add() implements the magic (and undocumented) "automatic arrayification". Don't drop @errp there. Instead, rename object_property_add() to object_property_try_add(), and add the obvious wrapper object_property_add(). Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20200505152926.18877-15-armbru@redhat.com> [Two semantic rebase conflicts resolved]
2020-05-05 17:29:22 +02:00
prop_get_true, NULL);
s390x/css: unrestrict cssids The default css 0xfe is currently restricted to virtual subchannel devices. The hope when the decision was made was, that non-virtual subchannel devices will come around when guest can exploit multiple channel subsystems. Since the guests generally don't do, the pain of the partitioned (cssid) namespace outweighs the gain. Let us remove the corresponding restrictions (virtual devices can be put only in 0xfe and non-virtual devices in any css except the 0xfe -- while s390-squash-mcss then remaps everything to cssid 0). At the same time, change our schema for generating css bus ids to put both virtual and non-virtual devices into the default css (spilling over into other css images, if needed). The intention is to deprecate s390-squash-mcss. With this change devices without a specified devno won't end up hidden to guests not supporting multiple channel subsystems, unless this can not be avoided (default css full). Let us also advertise the changes to the management software (so it can tell are cssids unrestricted or restricted). The adverse effect of getting rid of the restriction on migration should not be too severe. Vfio-ccw devices are not live-migratable yet, and for virtual devices using the extra freedom would only make sense with the aforementioned guest support in place. The auto-generated bus ids are affected by both changes. We hope to not encounter any auto-generated bus ids in production as Libvirt is always explicit about the bus id. Since 8ed179c937 ("s390x/css: catch section mismatch on load", 2017-05-18) the worst that can happen because the same device ended up having a different bus id is a cleanly failed migration. I find it hard to reason about the impact of changed auto-generated bus ids on migration for command line users as I don't know which rules is such an user supposed to follow. Another pain-point is down- or upgrade of QEMU for command line users. The old way and the new way of doing vfio-ccw are mutually incompatible. Libvirt is only going to support the new way, so for libvirt users, the possible problems at QEMU downgrade are the following. If a domain contains virtual devices placed into a css different than 0xfe the domain will refuse to start with a QEMU not having this patch. Putting devices into a css different that 0xfe however won't make much sense in the near future (guest support). Libvirt will refuse to do vfio-ccw with a QEMU not having this patch. This is business as usual. Signed-off-by: Halil Pasic <pasic@linux.vnet.ibm.com> Acked-by: Christian Borntraeger <borntraeger@de.ibm.com> Reviewed-by: Dong Jia Shi <bjsdjshi@linux.vnet.ibm.com> Message-Id: <20171206144438.28908-2-pasic@linux.vnet.ibm.com> Signed-off-by: Cornelia Huck <cohuck@redhat.com>
2017-12-06 15:44:37 +01:00
object_class_property_set_description(klass, "cssid-unrestricted",
"A css device can use any cssid, regardless whether virtual"
" or not (read only, always true)");
}
static const TypeInfo virtual_css_bridge_info = {
.name = TYPE_VIRTUAL_CSS_BRIDGE,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(VirtualCssBridge),
.class_init = virtual_css_bridge_class_init,
.interfaces = (InterfaceInfo[]) {
{ TYPE_HOTPLUG_HANDLER },
{ }
}
};
static void virtual_css_register(void)
{
type_register_static(&virtual_css_bridge_info);
type_register_static(&virtual_css_bus_info);
}
type_init(virtual_css_register)