i386: split seg_helper into user-only and sysemu parts

Signed-off-by: Claudio Fontana <cfontana@suse.de>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>

[claudio]:
Rebased on commit 68775856 ("target/i386: svm: do not discard high 32 bits")

Signed-off-by: Claudio Fontana <cfontana@suse.de>
Message-Id: <20210322132800.7470-18-cfontana@suse.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This commit is contained in:
Claudio Fontana 2021-03-22 14:27:53 +01:00 committed by Paolo Bonzini
parent b39030942d
commit 30493a030f
7 changed files with 311 additions and 229 deletions

View file

@ -84,6 +84,11 @@ void do_vmexit(CPUX86State *env);
/* seg_helper.c */
void do_interrupt_x86_hardirq(CPUX86State *env, int intno, int is_hw);
void do_interrupt_all(X86CPU *cpu, int intno, int is_int,
int error_code, target_ulong next_eip, int is_hw);
void handle_even_inj(CPUX86State *env, int intno, int is_int,
int error_code, int is_hw, int rm);
int exception_has_error_code(int intno);
/* smm_helper.c */
void do_smm_enter(X86CPU *cpu);

View file

@ -26,49 +26,7 @@
#include "exec/cpu_ldst.h"
#include "exec/log.h"
#include "helper-tcg.h"
//#define DEBUG_PCALL
#ifdef DEBUG_PCALL
# define LOG_PCALL(...) qemu_log_mask(CPU_LOG_PCALL, ## __VA_ARGS__)
# define LOG_PCALL_STATE(cpu) \
log_cpu_state_mask(CPU_LOG_PCALL, (cpu), CPU_DUMP_CCOP)
#else
# define LOG_PCALL(...) do { } while (0)
# define LOG_PCALL_STATE(cpu) do { } while (0)
#endif
/*
* TODO: Convert callers to compute cpu_mmu_index_kernel once
* and use *_mmuidx_ra directly.
*/
#define cpu_ldub_kernel_ra(e, p, r) \
cpu_ldub_mmuidx_ra(e, p, cpu_mmu_index_kernel(e), r)
#define cpu_lduw_kernel_ra(e, p, r) \
cpu_lduw_mmuidx_ra(e, p, cpu_mmu_index_kernel(e), r)
#define cpu_ldl_kernel_ra(e, p, r) \
cpu_ldl_mmuidx_ra(e, p, cpu_mmu_index_kernel(e), r)
#define cpu_ldq_kernel_ra(e, p, r) \
cpu_ldq_mmuidx_ra(e, p, cpu_mmu_index_kernel(e), r)
#define cpu_stb_kernel_ra(e, p, v, r) \
cpu_stb_mmuidx_ra(e, p, v, cpu_mmu_index_kernel(e), r)
#define cpu_stw_kernel_ra(e, p, v, r) \
cpu_stw_mmuidx_ra(e, p, v, cpu_mmu_index_kernel(e), r)
#define cpu_stl_kernel_ra(e, p, v, r) \
cpu_stl_mmuidx_ra(e, p, v, cpu_mmu_index_kernel(e), r)
#define cpu_stq_kernel_ra(e, p, v, r) \
cpu_stq_mmuidx_ra(e, p, v, cpu_mmu_index_kernel(e), r)
#define cpu_ldub_kernel(e, p) cpu_ldub_kernel_ra(e, p, 0)
#define cpu_lduw_kernel(e, p) cpu_lduw_kernel_ra(e, p, 0)
#define cpu_ldl_kernel(e, p) cpu_ldl_kernel_ra(e, p, 0)
#define cpu_ldq_kernel(e, p) cpu_ldq_kernel_ra(e, p, 0)
#define cpu_stb_kernel(e, p, v) cpu_stb_kernel_ra(e, p, v, 0)
#define cpu_stw_kernel(e, p, v) cpu_stw_kernel_ra(e, p, v, 0)
#define cpu_stl_kernel(e, p, v) cpu_stl_kernel_ra(e, p, v, 0)
#define cpu_stq_kernel(e, p, v) cpu_stq_kernel_ra(e, p, v, 0)
#include "seg_helper.h"
/* return non zero if error */
static inline int load_segment_ra(CPUX86State *env, uint32_t *e1_ptr,
@ -531,7 +489,7 @@ static inline unsigned int get_sp_mask(unsigned int e2)
}
}
static int exception_has_error_code(int intno)
int exception_has_error_code(int intno)
{
switch (intno) {
case 8:
@ -976,72 +934,6 @@ static void do_interrupt64(CPUX86State *env, int intno, int is_int,
}
#endif
#ifdef TARGET_X86_64
#if defined(CONFIG_USER_ONLY)
void helper_syscall(CPUX86State *env, int next_eip_addend)
{
CPUState *cs = env_cpu(env);
cs->exception_index = EXCP_SYSCALL;
env->exception_is_int = 0;
env->exception_next_eip = env->eip + next_eip_addend;
cpu_loop_exit(cs);
}
#else
void helper_syscall(CPUX86State *env, int next_eip_addend)
{
int selector;
if (!(env->efer & MSR_EFER_SCE)) {
raise_exception_err_ra(env, EXCP06_ILLOP, 0, GETPC());
}
selector = (env->star >> 32) & 0xffff;
if (env->hflags & HF_LMA_MASK) {
int code64;
env->regs[R_ECX] = env->eip + next_eip_addend;
env->regs[11] = cpu_compute_eflags(env) & ~RF_MASK;
code64 = env->hflags & HF_CS64_MASK;
env->eflags &= ~(env->fmask | RF_MASK);
cpu_load_eflags(env, env->eflags, 0);
cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
0, 0xffffffff,
DESC_G_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK |
DESC_L_MASK);
cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_W_MASK | DESC_A_MASK);
if (code64) {
env->eip = env->lstar;
} else {
env->eip = env->cstar;
}
} else {
env->regs[R_ECX] = (uint32_t)(env->eip + next_eip_addend);
env->eflags &= ~(IF_MASK | RF_MASK | VM_MASK);
cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_W_MASK | DESC_A_MASK);
env->eip = (uint32_t)env->star;
}
}
#endif
#endif
#ifdef TARGET_X86_64
void helper_sysret(CPUX86State *env, int dflag)
{
@ -1136,84 +1028,13 @@ static void do_interrupt_real(CPUX86State *env, int intno, int is_int,
env->eflags &= ~(IF_MASK | TF_MASK | AC_MASK | RF_MASK);
}
#if defined(CONFIG_USER_ONLY)
/* fake user mode interrupt. is_int is TRUE if coming from the int
* instruction. next_eip is the env->eip value AFTER the interrupt
* instruction. It is only relevant if is_int is TRUE or if intno
* is EXCP_SYSCALL.
*/
static void do_interrupt_user(CPUX86State *env, int intno, int is_int,
int error_code, target_ulong next_eip)
{
if (is_int) {
SegmentCache *dt;
target_ulong ptr;
int dpl, cpl, shift;
uint32_t e2;
dt = &env->idt;
if (env->hflags & HF_LMA_MASK) {
shift = 4;
} else {
shift = 3;
}
ptr = dt->base + (intno << shift);
e2 = cpu_ldl_kernel(env, ptr + 4);
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
cpl = env->hflags & HF_CPL_MASK;
/* check privilege if software int */
if (dpl < cpl) {
raise_exception_err(env, EXCP0D_GPF, (intno << shift) + 2);
}
}
/* Since we emulate only user space, we cannot do more than
exiting the emulation with the suitable exception and error
code. So update EIP for INT 0x80 and EXCP_SYSCALL. */
if (is_int || intno == EXCP_SYSCALL) {
env->eip = next_eip;
}
}
#else
static void handle_even_inj(CPUX86State *env, int intno, int is_int,
int error_code, int is_hw, int rm)
{
CPUState *cs = env_cpu(env);
uint32_t event_inj = x86_ldl_phys(cs, env->vm_vmcb + offsetof(struct vmcb,
control.event_inj));
if (!(event_inj & SVM_EVTINJ_VALID)) {
int type;
if (is_int) {
type = SVM_EVTINJ_TYPE_SOFT;
} else {
type = SVM_EVTINJ_TYPE_EXEPT;
}
event_inj = intno | type | SVM_EVTINJ_VALID;
if (!rm && exception_has_error_code(intno)) {
event_inj |= SVM_EVTINJ_VALID_ERR;
x86_stl_phys(cs, env->vm_vmcb + offsetof(struct vmcb,
control.event_inj_err),
error_code);
}
x86_stl_phys(cs,
env->vm_vmcb + offsetof(struct vmcb, control.event_inj),
event_inj);
}
}
#endif
/*
* Begin execution of an interruption. is_int is TRUE if coming from
* the int instruction. next_eip is the env->eip value AFTER the interrupt
* instruction. It is only relevant if is_int is TRUE.
*/
static void do_interrupt_all(X86CPU *cpu, int intno, int is_int,
int error_code, target_ulong next_eip, int is_hw)
void do_interrupt_all(X86CPU *cpu, int intno, int is_int,
int error_code, target_ulong next_eip, int is_hw)
{
CPUX86State *env = &cpu->env;
@ -1289,36 +1110,6 @@ static void do_interrupt_all(X86CPU *cpu, int intno, int is_int,
#endif
}
void x86_cpu_do_interrupt(CPUState *cs)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
#if defined(CONFIG_USER_ONLY)
/* if user mode only, we simulate a fake exception
which will be handled outside the cpu execution
loop */
do_interrupt_user(env, cs->exception_index,
env->exception_is_int,
env->error_code,
env->exception_next_eip);
/* successfully delivered */
env->old_exception = -1;
#else
if (cs->exception_index == EXCP_VMEXIT) {
assert(env->old_exception == -1);
do_vmexit(env);
} else {
do_interrupt_all(cpu, cs->exception_index,
env->exception_is_int,
env->error_code,
env->exception_next_eip, 0);
/* successfully delivered */
env->old_exception = -1;
}
#endif
}
void do_interrupt_x86_hardirq(CPUX86State *env, int intno, int is_hw)
{
do_interrupt_all(env_archcpu(env), intno, 0, 0, 0, is_hw);
@ -2626,22 +2417,6 @@ void helper_verw(CPUX86State *env, target_ulong selector1)
CC_SRC = eflags | CC_Z;
}
#if defined(CONFIG_USER_ONLY)
void cpu_x86_load_seg(CPUX86State *env, X86Seg seg_reg, int selector)
{
if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
int dpl = (env->eflags & VM_MASK) ? 3 : 0;
selector &= 0xffff;
cpu_x86_load_seg_cache(env, seg_reg, selector,
(selector << 4), 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK | (dpl << DESC_DPL_SHIFT));
} else {
helper_load_seg(env, seg_reg, selector);
}
}
#endif
/* check if Port I/O is allowed in TSS */
static inline void check_io(CPUX86State *env, int addr, int size,
uintptr_t retaddr)

View file

@ -0,0 +1,66 @@
/*
* x86 segmentation related helpers macros
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef SEG_HELPER_H
#define SEG_HELPER_H
//#define DEBUG_PCALL
#ifdef DEBUG_PCALL
# define LOG_PCALL(...) qemu_log_mask(CPU_LOG_PCALL, ## __VA_ARGS__)
# define LOG_PCALL_STATE(cpu) \
log_cpu_state_mask(CPU_LOG_PCALL, (cpu), CPU_DUMP_CCOP)
#else
# define LOG_PCALL(...) do { } while (0)
# define LOG_PCALL_STATE(cpu) do { } while (0)
#endif
/*
* TODO: Convert callers to compute cpu_mmu_index_kernel once
* and use *_mmuidx_ra directly.
*/
#define cpu_ldub_kernel_ra(e, p, r) \
cpu_ldub_mmuidx_ra(e, p, cpu_mmu_index_kernel(e), r)
#define cpu_lduw_kernel_ra(e, p, r) \
cpu_lduw_mmuidx_ra(e, p, cpu_mmu_index_kernel(e), r)
#define cpu_ldl_kernel_ra(e, p, r) \
cpu_ldl_mmuidx_ra(e, p, cpu_mmu_index_kernel(e), r)
#define cpu_ldq_kernel_ra(e, p, r) \
cpu_ldq_mmuidx_ra(e, p, cpu_mmu_index_kernel(e), r)
#define cpu_stb_kernel_ra(e, p, v, r) \
cpu_stb_mmuidx_ra(e, p, v, cpu_mmu_index_kernel(e), r)
#define cpu_stw_kernel_ra(e, p, v, r) \
cpu_stw_mmuidx_ra(e, p, v, cpu_mmu_index_kernel(e), r)
#define cpu_stl_kernel_ra(e, p, v, r) \
cpu_stl_mmuidx_ra(e, p, v, cpu_mmu_index_kernel(e), r)
#define cpu_stq_kernel_ra(e, p, v, r) \
cpu_stq_mmuidx_ra(e, p, v, cpu_mmu_index_kernel(e), r)
#define cpu_ldub_kernel(e, p) cpu_ldub_kernel_ra(e, p, 0)
#define cpu_lduw_kernel(e, p) cpu_lduw_kernel_ra(e, p, 0)
#define cpu_ldl_kernel(e, p) cpu_ldl_kernel_ra(e, p, 0)
#define cpu_ldq_kernel(e, p) cpu_ldq_kernel_ra(e, p, 0)
#define cpu_stb_kernel(e, p, v) cpu_stb_kernel_ra(e, p, v, 0)
#define cpu_stw_kernel(e, p, v) cpu_stw_kernel_ra(e, p, v, 0)
#define cpu_stl_kernel(e, p, v) cpu_stl_kernel_ra(e, p, v, 0)
#define cpu_stq_kernel(e, p, v) cpu_stq_kernel_ra(e, p, v, 0)
#endif /* SEG_HELPER_H */

View file

@ -6,4 +6,5 @@ i386_softmmu_ss.add(when: ['CONFIG_TCG', 'CONFIG_SOFTMMU'], if_true: files(
'misc_helper.c',
'fpu_helper.c',
'svm_helper.c',
'seg_helper.c',
))

View file

@ -0,0 +1,125 @@
/*
* x86 segmentation related helpers: (sysemu-only code)
* TSS, interrupts, system calls, jumps and call/task gates, descriptors
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/helper-proto.h"
#include "exec/cpu_ldst.h"
#include "tcg/helper-tcg.h"
#ifdef TARGET_X86_64
void helper_syscall(CPUX86State *env, int next_eip_addend)
{
int selector;
if (!(env->efer & MSR_EFER_SCE)) {
raise_exception_err_ra(env, EXCP06_ILLOP, 0, GETPC());
}
selector = (env->star >> 32) & 0xffff;
if (env->hflags & HF_LMA_MASK) {
int code64;
env->regs[R_ECX] = env->eip + next_eip_addend;
env->regs[11] = cpu_compute_eflags(env) & ~RF_MASK;
code64 = env->hflags & HF_CS64_MASK;
env->eflags &= ~(env->fmask | RF_MASK);
cpu_load_eflags(env, env->eflags, 0);
cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
0, 0xffffffff,
DESC_G_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK |
DESC_L_MASK);
cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_W_MASK | DESC_A_MASK);
if (code64) {
env->eip = env->lstar;
} else {
env->eip = env->cstar;
}
} else {
env->regs[R_ECX] = (uint32_t)(env->eip + next_eip_addend);
env->eflags &= ~(IF_MASK | RF_MASK | VM_MASK);
cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_W_MASK | DESC_A_MASK);
env->eip = (uint32_t)env->star;
}
}
#endif /* TARGET_X86_64 */
void handle_even_inj(CPUX86State *env, int intno, int is_int,
int error_code, int is_hw, int rm)
{
CPUState *cs = env_cpu(env);
uint32_t event_inj = x86_ldl_phys(cs, env->vm_vmcb + offsetof(struct vmcb,
control.event_inj));
if (!(event_inj & SVM_EVTINJ_VALID)) {
int type;
if (is_int) {
type = SVM_EVTINJ_TYPE_SOFT;
} else {
type = SVM_EVTINJ_TYPE_EXEPT;
}
event_inj = intno | type | SVM_EVTINJ_VALID;
if (!rm && exception_has_error_code(intno)) {
event_inj |= SVM_EVTINJ_VALID_ERR;
x86_stl_phys(cs, env->vm_vmcb + offsetof(struct vmcb,
control.event_inj_err),
error_code);
}
x86_stl_phys(cs,
env->vm_vmcb + offsetof(struct vmcb, control.event_inj),
event_inj);
}
}
void x86_cpu_do_interrupt(CPUState *cs)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
if (cs->exception_index == EXCP_VMEXIT) {
assert(env->old_exception == -1);
do_vmexit(env);
} else {
do_interrupt_all(cpu, cs->exception_index,
env->exception_is_int,
env->error_code,
env->exception_next_eip, 0);
/* successfully delivered */
env->old_exception = -1;
}
}

View file

@ -2,4 +2,5 @@ i386_user_ss.add(when: ['CONFIG_TCG', 'CONFIG_USER_ONLY'], if_true: files(
'excp_helper.c',
'misc_stubs.c',
'svm_stubs.c',
'seg_helper.c',
))

View file

@ -0,0 +1,109 @@
/*
* x86 segmentation related helpers (user-mode code):
* TSS, interrupts, system calls, jumps and call/task gates, descriptors
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/helper-proto.h"
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
#include "tcg/helper-tcg.h"
#include "tcg/seg_helper.h"
#ifdef TARGET_X86_64
void helper_syscall(CPUX86State *env, int next_eip_addend)
{
CPUState *cs = env_cpu(env);
cs->exception_index = EXCP_SYSCALL;
env->exception_is_int = 0;
env->exception_next_eip = env->eip + next_eip_addend;
cpu_loop_exit(cs);
}
#endif /* TARGET_X86_64 */
/*
* fake user mode interrupt. is_int is TRUE if coming from the int
* instruction. next_eip is the env->eip value AFTER the interrupt
* instruction. It is only relevant if is_int is TRUE or if intno
* is EXCP_SYSCALL.
*/
static void do_interrupt_user(CPUX86State *env, int intno, int is_int,
int error_code, target_ulong next_eip)
{
if (is_int) {
SegmentCache *dt;
target_ulong ptr;
int dpl, cpl, shift;
uint32_t e2;
dt = &env->idt;
if (env->hflags & HF_LMA_MASK) {
shift = 4;
} else {
shift = 3;
}
ptr = dt->base + (intno << shift);
e2 = cpu_ldl_kernel(env, ptr + 4);
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
cpl = env->hflags & HF_CPL_MASK;
/* check privilege if software int */
if (dpl < cpl) {
raise_exception_err(env, EXCP0D_GPF, (intno << shift) + 2);
}
}
/* Since we emulate only user space, we cannot do more than
exiting the emulation with the suitable exception and error
code. So update EIP for INT 0x80 and EXCP_SYSCALL. */
if (is_int || intno == EXCP_SYSCALL) {
env->eip = next_eip;
}
}
void x86_cpu_do_interrupt(CPUState *cs)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
/* if user mode only, we simulate a fake exception
which will be handled outside the cpu execution
loop */
do_interrupt_user(env, cs->exception_index,
env->exception_is_int,
env->error_code,
env->exception_next_eip);
/* successfully delivered */
env->old_exception = -1;
}
void cpu_x86_load_seg(CPUX86State *env, X86Seg seg_reg, int selector)
{
if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
int dpl = (env->eflags & VM_MASK) ? 3 : 0;
selector &= 0xffff;
cpu_x86_load_seg_cache(env, seg_reg, selector,
(selector << 4), 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK | (dpl << DESC_DPL_SHIFT));
} else {
helper_load_seg(env, seg_reg, selector);
}
}