Merge remote-tracking branch 'pmaydell/arm-devs.for-upstream' into staging

# By Peter Crosthwaite (3) and others
# Via Peter Maydell
* pmaydell/arm-devs.for-upstream:
  nand: Don't inherit from Sysbus
  block/nand: Convert Sysbus::init to Device::realize
  block/nand: QOM casting sweep
  i.MX31: Fix PRCS bit test
  arm/boot: Free dtb blob memory after use
  i.MX: Rework functions/types name and use new style initialization
  i.MX: Implement a more complete version of the GPT timer.
  ARM: Allow dumping of device tree

Message-id: 1372184516-32397-1-git-send-email-peter.maydell@linaro.org
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
This commit is contained in:
Anthony Liguori 2013-06-25 14:14:13 -05:00
commit 3e50873294
4 changed files with 369 additions and 260 deletions

View file

@ -237,14 +237,14 @@ static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo)
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename); filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
if (!filename) { if (!filename) {
fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename); fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
return -1; goto fail;
} }
fdt = load_device_tree(filename, &size); fdt = load_device_tree(filename, &size);
if (!fdt) { if (!fdt) {
fprintf(stderr, "Couldn't open dtb file %s\n", filename); fprintf(stderr, "Couldn't open dtb file %s\n", filename);
g_free(filename); g_free(filename);
return -1; goto fail;
} }
g_free(filename); g_free(filename);
@ -252,7 +252,7 @@ static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo)
scells = qemu_devtree_getprop_cell(fdt, "/", "#size-cells"); scells = qemu_devtree_getprop_cell(fdt, "/", "#size-cells");
if (acells == 0 || scells == 0) { if (acells == 0 || scells == 0) {
fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n"); fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
return -1; goto fail;
} }
mem_reg_propsize = acells + scells; mem_reg_propsize = acells + scells;
@ -264,7 +264,7 @@ static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo)
} else if (hival != 0) { } else if (hival != 0) {
fprintf(stderr, "qemu: dtb file not compatible with " fprintf(stderr, "qemu: dtb file not compatible with "
"RAM start address > 4GB\n"); "RAM start address > 4GB\n");
exit(1); goto fail;
} }
mem_reg_property[acells + scells - 1] = cpu_to_be32(binfo->ram_size); mem_reg_property[acells + scells - 1] = cpu_to_be32(binfo->ram_size);
hival = cpu_to_be32(binfo->ram_size >> 32); hival = cpu_to_be32(binfo->ram_size >> 32);
@ -273,13 +273,14 @@ static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo)
} else if (hival != 0) { } else if (hival != 0) {
fprintf(stderr, "qemu: dtb file not compatible with " fprintf(stderr, "qemu: dtb file not compatible with "
"RAM size > 4GB\n"); "RAM size > 4GB\n");
exit(1); goto fail;
} }
rc = qemu_devtree_setprop(fdt, "/memory", "reg", mem_reg_property, rc = qemu_devtree_setprop(fdt, "/memory", "reg", mem_reg_property,
mem_reg_propsize * sizeof(uint32_t)); mem_reg_propsize * sizeof(uint32_t));
if (rc < 0) { if (rc < 0) {
fprintf(stderr, "couldn't set /memory/reg\n"); fprintf(stderr, "couldn't set /memory/reg\n");
goto fail;
} }
if (binfo->kernel_cmdline && *binfo->kernel_cmdline) { if (binfo->kernel_cmdline && *binfo->kernel_cmdline) {
@ -287,6 +288,7 @@ static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo)
binfo->kernel_cmdline); binfo->kernel_cmdline);
if (rc < 0) { if (rc < 0) {
fprintf(stderr, "couldn't set /chosen/bootargs\n"); fprintf(stderr, "couldn't set /chosen/bootargs\n");
goto fail;
} }
} }
@ -295,18 +297,27 @@ static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo)
binfo->initrd_start); binfo->initrd_start);
if (rc < 0) { if (rc < 0) {
fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n"); fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
goto fail;
} }
rc = qemu_devtree_setprop_cell(fdt, "/chosen", "linux,initrd-end", rc = qemu_devtree_setprop_cell(fdt, "/chosen", "linux,initrd-end",
binfo->initrd_start + binfo->initrd_size); binfo->initrd_start + binfo->initrd_size);
if (rc < 0) { if (rc < 0) {
fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n"); fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
goto fail;
} }
} }
qemu_devtree_dumpdtb(fdt, size);
cpu_physical_memory_write(addr, fdt, size); cpu_physical_memory_write(addr, fdt, size);
g_free(fdt);
return 0; return 0;
fail:
g_free(fdt);
return -1;
} }
static void do_cpu_reset(void *opaque) static void do_cpu_reset(void *opaque)

View file

@ -21,7 +21,7 @@
# include "hw/hw.h" # include "hw/hw.h"
# include "hw/block/flash.h" # include "hw/block/flash.h"
# include "sysemu/blockdev.h" # include "sysemu/blockdev.h"
# include "hw/sysbus.h" #include "hw/qdev.h"
#include "qemu/error-report.h" #include "qemu/error-report.h"
# define NAND_CMD_READ0 0x00 # define NAND_CMD_READ0 0x00
@ -54,7 +54,8 @@
typedef struct NANDFlashState NANDFlashState; typedef struct NANDFlashState NANDFlashState;
struct NANDFlashState { struct NANDFlashState {
SysBusDevice busdev; DeviceState parent_obj;
uint8_t manf_id, chip_id; uint8_t manf_id, chip_id;
uint8_t buswidth; /* in BYTES */ uint8_t buswidth; /* in BYTES */
int size, pages; int size, pages;
@ -82,6 +83,11 @@ struct NANDFlashState {
uint32_t ioaddr_vmstate; uint32_t ioaddr_vmstate;
}; };
#define TYPE_NAND "nand"
#define NAND(obj) \
OBJECT_CHECK(NANDFlashState, (obj), TYPE_NAND)
static void mem_and(uint8_t *dest, const uint8_t *src, size_t n) static void mem_and(uint8_t *dest, const uint8_t *src, size_t n)
{ {
/* Like memcpy() but we logical-AND the data into the destination */ /* Like memcpy() but we logical-AND the data into the destination */
@ -224,7 +230,7 @@ static const struct {
static void nand_reset(DeviceState *dev) static void nand_reset(DeviceState *dev)
{ {
NANDFlashState *s = FROM_SYSBUS(NANDFlashState, SYS_BUS_DEVICE(dev)); NANDFlashState *s = NAND(dev);
s->cmd = NAND_CMD_READ0; s->cmd = NAND_CMD_READ0;
s->addr = 0; s->addr = 0;
s->addrlen = 0; s->addrlen = 0;
@ -279,7 +285,7 @@ static void nand_command(NANDFlashState *s)
break; break;
case NAND_CMD_RESET: case NAND_CMD_RESET:
nand_reset(&s->busdev.qdev); nand_reset(DEVICE(s));
break; break;
case NAND_CMD_PAGEPROGRAM1: case NAND_CMD_PAGEPROGRAM1:
@ -319,14 +325,14 @@ static void nand_command(NANDFlashState *s)
static void nand_pre_save(void *opaque) static void nand_pre_save(void *opaque)
{ {
NANDFlashState *s = opaque; NANDFlashState *s = NAND(opaque);
s->ioaddr_vmstate = s->ioaddr - s->io; s->ioaddr_vmstate = s->ioaddr - s->io;
} }
static int nand_post_load(void *opaque, int version_id) static int nand_post_load(void *opaque, int version_id)
{ {
NANDFlashState *s = opaque; NANDFlashState *s = NAND(opaque);
if (s->ioaddr_vmstate > sizeof(s->io)) { if (s->ioaddr_vmstate > sizeof(s->io)) {
return -EINVAL; return -EINVAL;
@ -362,10 +368,10 @@ static const VMStateDescription vmstate_nand = {
} }
}; };
static int nand_device_init(SysBusDevice *dev) static void nand_realize(DeviceState *dev, Error **errp)
{ {
int pagesize; int pagesize;
NANDFlashState *s = FROM_SYSBUS(NANDFlashState, dev); NANDFlashState *s = NAND(dev);
s->buswidth = nand_flash_ids[s->chip_id].width >> 3; s->buswidth = nand_flash_ids[s->chip_id].width >> 3;
s->size = nand_flash_ids[s->chip_id].size << 20; s->size = nand_flash_ids[s->chip_id].size << 20;
@ -388,16 +394,17 @@ static int nand_device_init(SysBusDevice *dev)
nand_init_2048(s); nand_init_2048(s);
break; break;
default: default:
error_report("Unsupported NAND block size"); error_setg(errp, "Unsupported NAND block size %#x\n",
return -1; 1 << s->page_shift);
return;
} }
pagesize = 1 << s->oob_shift; pagesize = 1 << s->oob_shift;
s->mem_oob = 1; s->mem_oob = 1;
if (s->bdrv) { if (s->bdrv) {
if (bdrv_is_read_only(s->bdrv)) { if (bdrv_is_read_only(s->bdrv)) {
error_report("Can't use a read-only drive"); error_setg(errp, "Can't use a read-only drive");
return -1; return;
} }
if (bdrv_getlength(s->bdrv) >= if (bdrv_getlength(s->bdrv) >=
(s->pages << s->page_shift) + (s->pages << s->oob_shift)) { (s->pages << s->page_shift) + (s->pages << s->oob_shift)) {
@ -413,8 +420,6 @@ static int nand_device_init(SysBusDevice *dev)
} }
/* Give s->ioaddr a sane value in case we save state before it is used. */ /* Give s->ioaddr a sane value in case we save state before it is used. */
s->ioaddr = s->io; s->ioaddr = s->io;
return 0;
} }
static Property nand_properties[] = { static Property nand_properties[] = {
@ -427,17 +432,16 @@ static Property nand_properties[] = {
static void nand_class_init(ObjectClass *klass, void *data) static void nand_class_init(ObjectClass *klass, void *data)
{ {
DeviceClass *dc = DEVICE_CLASS(klass); DeviceClass *dc = DEVICE_CLASS(klass);
SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
k->init = nand_device_init; dc->realize = nand_realize;
dc->reset = nand_reset; dc->reset = nand_reset;
dc->vmsd = &vmstate_nand; dc->vmsd = &vmstate_nand;
dc->props = nand_properties; dc->props = nand_properties;
} }
static const TypeInfo nand_info = { static const TypeInfo nand_info = {
.name = "nand", .name = TYPE_NAND,
.parent = TYPE_SYS_BUS_DEVICE, .parent = TYPE_DEVICE,
.instance_size = sizeof(NANDFlashState), .instance_size = sizeof(NANDFlashState),
.class_init = nand_class_init, .class_init = nand_class_init,
}; };
@ -456,7 +460,8 @@ static void nand_register_types(void)
void nand_setpins(DeviceState *dev, uint8_t cle, uint8_t ale, void nand_setpins(DeviceState *dev, uint8_t cle, uint8_t ale,
uint8_t ce, uint8_t wp, uint8_t gnd) uint8_t ce, uint8_t wp, uint8_t gnd)
{ {
NANDFlashState *s = (NANDFlashState *) dev; NANDFlashState *s = NAND(dev);
s->cle = cle; s->cle = cle;
s->ale = ale; s->ale = ale;
s->ce = ce; s->ce = ce;
@ -477,7 +482,8 @@ void nand_getpins(DeviceState *dev, int *rb)
void nand_setio(DeviceState *dev, uint32_t value) void nand_setio(DeviceState *dev, uint32_t value)
{ {
int i; int i;
NANDFlashState *s = (NANDFlashState *) dev; NANDFlashState *s = NAND(dev);
if (!s->ce && s->cle) { if (!s->ce && s->cle) {
if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) { if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2) if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2)
@ -581,7 +587,7 @@ uint32_t nand_getio(DeviceState *dev)
{ {
int offset; int offset;
uint32_t x = 0; uint32_t x = 0;
NANDFlashState *s = (NANDFlashState *) dev; NANDFlashState *s = NAND(dev);
/* Allow sequential reading */ /* Allow sequential reading */
if (!s->iolen && s->cmd == NAND_CMD_READ0) { if (!s->iolen && s->cmd == NAND_CMD_READ0) {

View file

@ -153,7 +153,7 @@ static void update_clocks(IMXCCMState *s)
* approach * approach
*/ */
if ((s->ccmr & CCMR_PRCS) == 1) { if ((s->ccmr & CCMR_PRCS) == 2) {
s->pll_refclk_freq = CKIL_FREQ * 1024; s->pll_refclk_freq = CKIL_FREQ * 1024;
} else { } else {
s->pll_refclk_freq = CKIH_FREQ; s->pll_refclk_freq = CKIH_FREQ;

View file

@ -5,6 +5,7 @@
* Copyright (c) 2011 NICTA Pty Ltd * Copyright (c) 2011 NICTA Pty Ltd
* Originally written by Hans Jiang * Originally written by Hans Jiang
* Updated by Peter Chubb * Updated by Peter Chubb
* Updated by Jean-Christophe Dubois
* *
* This code is licensed under GPL version 2 or later. See * This code is licensed under GPL version 2 or later. See
* the COPYING file in the top-level directory. * the COPYING file in the top-level directory.
@ -18,10 +19,44 @@
#include "hw/sysbus.h" #include "hw/sysbus.h"
#include "hw/arm/imx.h" #include "hw/arm/imx.h"
//#define DEBUG_TIMER 1 #define TYPE_IMX_GPT "imx.gpt"
#ifdef DEBUG_TIMER
/*
* Define to 1 for debug messages
*/
#define DEBUG_TIMER 0
#if DEBUG_TIMER
static char const *imx_gpt_reg_name(uint32_t reg)
{
switch (reg) {
case 0:
return "CR";
case 1:
return "PR";
case 2:
return "SR";
case 3:
return "IR";
case 4:
return "OCR1";
case 5:
return "OCR2";
case 6:
return "OCR3";
case 7:
return "ICR1";
case 8:
return "ICR2";
case 9:
return "CNT";
default:
return "[?]";
}
}
# define DPRINTF(fmt, args...) \ # define DPRINTF(fmt, args...) \
do { printf("imx_timer: " fmt , ##args); } while (0) do { printf("%s: " fmt , __func__, ##args); } while (0)
#else #else
# define DPRINTF(fmt, args...) do {} while (0) # define DPRINTF(fmt, args...) do {} while (0)
#endif #endif
@ -32,27 +67,20 @@
*/ */
#define DEBUG_IMPLEMENTATION 1 #define DEBUG_IMPLEMENTATION 1
#if DEBUG_IMPLEMENTATION #if DEBUG_IMPLEMENTATION
# define IPRINTF(fmt, args...) \ # define IPRINTF(fmt, args...) \
do { fprintf(stderr, "imx_timer: " fmt, ##args); } while (0) do { fprintf(stderr, "%s: " fmt, __func__, ##args); } while (0)
#else #else
# define IPRINTF(fmt, args...) do {} while (0) # define IPRINTF(fmt, args...) do {} while (0)
#endif #endif
#define IMX_GPT(obj) \
OBJECT_CHECK(IMXGPTState, (obj), TYPE_IMX_GPT)
/* /*
* GPT : General purpose timer * GPT : General purpose timer
* *
* This timer counts up continuously while it is enabled, resetting itself * This timer counts up continuously while it is enabled, resetting itself
* to 0 when it reaches TIMER_MAX (in freerun mode) or when it * to 0 when it reaches TIMER_MAX (in freerun mode) or when it
* reaches the value of ocr1 (in periodic mode). WE simulate this using a * reaches the value of one of the ocrX (in periodic mode).
* QEMU ptimer counting down from ocr1 and reloading from ocr1 in
* periodic mode, or counting from ocr1 to zero, then TIMER_MAX - ocr1.
* waiting_rov is set when counting from TIMER_MAX.
*
* In the real hardware, there are three comparison registers that can
* trigger interrupts, and compare channel 1 can be used to
* force-reset the timer. However, this is a `bare-bones'
* implementation: only what Linux 3.x uses has been implemented
* (free-running timer from 0 to OCR1 or TIMER_MAX) .
*/ */
#define TIMER_MAX 0XFFFFFFFFUL #define TIMER_MAX 0XFFFFFFFFUL
@ -79,9 +107,13 @@
#define GPT_CR_FO3 (1 << 31) /* Force Output Compare Channel 3 */ #define GPT_CR_FO3 (1 << 31) /* Force Output Compare Channel 3 */
#define GPT_SR_OF1 (1 << 0) #define GPT_SR_OF1 (1 << 0)
#define GPT_SR_OF2 (1 << 1)
#define GPT_SR_OF3 (1 << 2)
#define GPT_SR_ROV (1 << 5) #define GPT_SR_ROV (1 << 5)
#define GPT_IR_OF1IE (1 << 0) #define GPT_IR_OF1IE (1 << 0)
#define GPT_IR_OF2IE (1 << 1)
#define GPT_IR_OF3IE (1 << 2)
#define GPT_IR_ROVIE (1 << 5) #define GPT_IR_ROVIE (1 << 5)
typedef struct { typedef struct {
@ -101,33 +133,39 @@ typedef struct {
uint32_t icr2; uint32_t icr2;
uint32_t cnt; uint32_t cnt;
uint32_t waiting_rov; uint32_t next_timeout;
qemu_irq irq; uint32_t next_int;
} IMXTimerGState;
static const VMStateDescription vmstate_imx_timerg = { uint32_t freq;
.name = "imx-timerg",
.version_id = 2, qemu_irq irq;
.minimum_version_id = 2, } IMXGPTState;
.minimum_version_id_old = 2,
static const VMStateDescription vmstate_imx_timer_gpt = {
.name = TYPE_IMX_GPT,
.version_id = 3,
.minimum_version_id = 3,
.minimum_version_id_old = 3,
.fields = (VMStateField[]) { .fields = (VMStateField[]) {
VMSTATE_UINT32(cr, IMXTimerGState), VMSTATE_UINT32(cr, IMXGPTState),
VMSTATE_UINT32(pr, IMXTimerGState), VMSTATE_UINT32(pr, IMXGPTState),
VMSTATE_UINT32(sr, IMXTimerGState), VMSTATE_UINT32(sr, IMXGPTState),
VMSTATE_UINT32(ir, IMXTimerGState), VMSTATE_UINT32(ir, IMXGPTState),
VMSTATE_UINT32(ocr1, IMXTimerGState), VMSTATE_UINT32(ocr1, IMXGPTState),
VMSTATE_UINT32(ocr2, IMXTimerGState), VMSTATE_UINT32(ocr2, IMXGPTState),
VMSTATE_UINT32(ocr3, IMXTimerGState), VMSTATE_UINT32(ocr3, IMXGPTState),
VMSTATE_UINT32(icr1, IMXTimerGState), VMSTATE_UINT32(icr1, IMXGPTState),
VMSTATE_UINT32(icr2, IMXTimerGState), VMSTATE_UINT32(icr2, IMXGPTState),
VMSTATE_UINT32(cnt, IMXTimerGState), VMSTATE_UINT32(cnt, IMXGPTState),
VMSTATE_UINT32(waiting_rov, IMXTimerGState), VMSTATE_UINT32(next_timeout, IMXGPTState),
VMSTATE_PTIMER(timer, IMXTimerGState), VMSTATE_UINT32(next_int, IMXGPTState),
VMSTATE_UINT32(freq, IMXGPTState),
VMSTATE_PTIMER(timer, IMXGPTState),
VMSTATE_END_OF_LIST() VMSTATE_END_OF_LIST()
} }
}; };
static const IMXClk imx_timerg_clocks[] = { static const IMXClk imx_gpt_clocks[] = {
NOCLK, /* 000 No clock source */ NOCLK, /* 000 No clock source */
IPG, /* 001 ipg_clk, 532MHz*/ IPG, /* 001 ipg_clk, 532MHz*/
IPG, /* 010 ipg_clk_highfreq */ IPG, /* 010 ipg_clk_highfreq */
@ -138,128 +176,190 @@ static const IMXClk imx_timerg_clocks[] = {
NOCLK, /* 111 not defined */ NOCLK, /* 111 not defined */
}; };
static void imx_gpt_set_freq(IMXGPTState *s)
static void imx_timerg_set_freq(IMXTimerGState *s)
{ {
int clksrc; uint32_t clksrc = extract32(s->cr, GPT_CR_CLKSRC_SHIFT, 3);
uint32_t freq; uint32_t freq = imx_clock_frequency(s->ccm, imx_gpt_clocks[clksrc])
/ (1 + s->pr);
s->freq = freq;
clksrc = (s->cr >> GPT_CR_CLKSRC_SHIFT) & GPT_CR_CLKSRC_MASK; DPRINTF("Setting clksrc %d to frequency %d\n", clksrc, freq);
freq = imx_clock_frequency(s->ccm, imx_timerg_clocks[clksrc]) / (1 + s->pr);
DPRINTF("Setting gtimer clksrc %d to frequency %d\n", clksrc, freq);
if (freq) { if (freq) {
ptimer_set_freq(s->timer, freq); ptimer_set_freq(s->timer, freq);
} }
} }
static void imx_timerg_update(IMXTimerGState *s) static void imx_gpt_update_int(IMXGPTState *s)
{ {
uint32_t flags = s->sr & s->ir & (GPT_SR_OF1 | GPT_SR_ROV); if ((s->sr & s->ir) && (s->cr & GPT_CR_EN)) {
qemu_irq_raise(s->irq);
DPRINTF("g-timer SR: %s %s IR=%s %s, %s\n", } else {
s->sr & GPT_SR_OF1 ? "OF1" : "", qemu_irq_lower(s->irq);
s->sr & GPT_SR_ROV ? "ROV" : "", }
s->ir & GPT_SR_OF1 ? "OF1" : "",
s->ir & GPT_SR_ROV ? "ROV" : "",
s->cr & GPT_CR_EN ? "CR_EN" : "Not Enabled");
qemu_set_irq(s->irq, (s->cr & GPT_CR_EN) && flags);
} }
static uint32_t imx_timerg_update_counts(IMXTimerGState *s) static uint32_t imx_gpt_update_count(IMXGPTState *s)
{ {
uint64_t target = s->waiting_rov ? TIMER_MAX : s->ocr1; s->cnt = s->next_timeout - (uint32_t)ptimer_get_count(s->timer);
uint64_t cnt = ptimer_get_count(s->timer);
s->cnt = target - cnt;
return s->cnt; return s->cnt;
} }
static void imx_timerg_reload(IMXTimerGState *s, uint32_t timeout) static inline uint32_t imx_gpt_find_limit(uint32_t count, uint32_t reg,
uint32_t timeout)
{ {
uint64_t diff_cnt; if ((count < reg) && (timeout > reg)) {
timeout = reg;
}
if (!(s->cr & GPT_CR_FRR)) { return timeout;
IPRINTF("IMX_timerg_reload --- called in reset-mode\n"); }
static void imx_gpt_compute_next_timeout(IMXGPTState *s, bool event)
{
uint32_t timeout = TIMER_MAX;
uint32_t count = 0;
long long limit;
if (!(s->cr & GPT_CR_EN)) {
/* if not enabled just return */
return; return;
} }
/* if (event) {
* For small timeouts, qemu sometimes runs too slow. /* This is a timer event */
* Better deliver a late interrupt than none.
* if ((s->cr & GPT_CR_FRR) && (s->next_timeout != TIMER_MAX)) {
* In Reset mode (FRR bit clear) /*
* the ptimer reloads itself from OCR1; * if we are in free running mode and we have not reached
* in free-running mode we need to fake * the TIMER_MAX limit, then update the count
* running from 0 to ocr1 to TIMER_MAX */
*/ count = imx_gpt_update_count(s);
if (timeout > s->cnt) { }
diff_cnt = timeout - s->cnt;
} else { } else {
diff_cnt = 0; /* not a timer event, then just update the count */
count = imx_gpt_update_count(s);
}
/* now, find the next timeout related to count */
if (s->ir & GPT_IR_OF1IE) {
timeout = imx_gpt_find_limit(count, s->ocr1, timeout);
}
if (s->ir & GPT_IR_OF2IE) {
timeout = imx_gpt_find_limit(count, s->ocr2, timeout);
}
if (s->ir & GPT_IR_OF3IE) {
timeout = imx_gpt_find_limit(count, s->ocr3, timeout);
}
/* find the next set of interrupts to raise for next timer event */
s->next_int = 0;
if ((s->ir & GPT_IR_OF1IE) && (timeout == s->ocr1)) {
s->next_int |= GPT_SR_OF1;
}
if ((s->ir & GPT_IR_OF2IE) && (timeout == s->ocr2)) {
s->next_int |= GPT_SR_OF2;
}
if ((s->ir & GPT_IR_OF3IE) && (timeout == s->ocr3)) {
s->next_int |= GPT_SR_OF3;
}
if ((s->ir & GPT_IR_ROVIE) && (timeout == TIMER_MAX)) {
s->next_int |= GPT_SR_ROV;
}
/* the new range to count down from */
limit = timeout - imx_gpt_update_count(s);
if (limit < 0) {
/*
* if we reach here, then QEMU is running too slow and we pass the
* timeout limit while computing it. Let's deliver the interrupt
* and compute a new limit.
*/
s->sr |= s->next_int;
imx_gpt_compute_next_timeout(s, event);
imx_gpt_update_int(s);
} else {
/* New timeout value */
s->next_timeout = timeout;
/* reset the limit to the computed range */
ptimer_set_limit(s->timer, limit, 1);
} }
ptimer_set_count(s->timer, diff_cnt);
} }
static uint64_t imx_timerg_read(void *opaque, hwaddr offset, static uint64_t imx_gpt_read(void *opaque, hwaddr offset, unsigned size)
unsigned size)
{ {
IMXTimerGState *s = (IMXTimerGState *)opaque; IMXGPTState *s = IMX_GPT(opaque);
uint32_t reg_value = 0;
uint32_t reg = offset >> 2;
DPRINTF("g-read(offset=%x)", (unsigned int)(offset >> 2)); switch (reg) {
switch (offset >> 2) {
case 0: /* Control Register */ case 0: /* Control Register */
DPRINTF(" cr = %x\n", s->cr); reg_value = s->cr;
return s->cr; break;
case 1: /* prescaler */ case 1: /* prescaler */
DPRINTF(" pr = %x\n", s->pr); reg_value = s->pr;
return s->pr; break;
case 2: /* Status Register */ case 2: /* Status Register */
DPRINTF(" sr = %x\n", s->sr); reg_value = s->sr;
return s->sr; break;
case 3: /* Interrupt Register */ case 3: /* Interrupt Register */
DPRINTF(" ir = %x\n", s->ir); reg_value = s->ir;
return s->ir; break;
case 4: /* Output Compare Register 1 */ case 4: /* Output Compare Register 1 */
DPRINTF(" ocr1 = %x\n", s->ocr1); reg_value = s->ocr1;
return s->ocr1; break;
case 5: /* Output Compare Register 2 */ case 5: /* Output Compare Register 2 */
DPRINTF(" ocr2 = %x\n", s->ocr2); reg_value = s->ocr2;
return s->ocr2; break;
case 6: /* Output Compare Register 3 */ case 6: /* Output Compare Register 3 */
DPRINTF(" ocr3 = %x\n", s->ocr3); reg_value = s->ocr3;
return s->ocr3; break;
case 7: /* input Capture Register 1 */ case 7: /* input Capture Register 1 */
DPRINTF(" icr1 = %x\n", s->icr1); qemu_log_mask(LOG_UNIMP, "icr1 feature is not implemented\n");
return s->icr1; reg_value = s->icr1;
break;
case 8: /* input Capture Register 2 */ case 8: /* input Capture Register 2 */
DPRINTF(" icr2 = %x\n", s->icr2); qemu_log_mask(LOG_UNIMP, "icr2 feature is not implemented\n");
return s->icr2; reg_value = s->icr2;
break;
case 9: /* cnt */ case 9: /* cnt */
imx_timerg_update_counts(s); imx_gpt_update_count(s);
DPRINTF(" cnt = %x\n", s->cnt); reg_value = s->cnt;
return s->cnt; break;
default:
IPRINTF("Bad offset %x\n", reg);
break;
} }
IPRINTF("imx_timerg_read: Bad offset %x\n", DPRINTF("(%s) = 0x%08x\n", imx_gpt_reg_name(reg), reg_value);
(int)offset >> 2);
return 0; return reg_value;
} }
static void imx_timerg_reset(DeviceState *dev) static void imx_gpt_reset(DeviceState *dev)
{ {
IMXTimerGState *s = container_of(dev, IMXTimerGState, busdev.qdev); IMXGPTState *s = IMX_GPT(dev);
/* stop timer */
ptimer_stop(s->timer);
/* /*
* Soft reset doesn't touch some bits; hard reset clears them * Soft reset doesn't touch some bits; hard reset clears them
@ -275,191 +375,183 @@ static void imx_timerg_reset(DeviceState *dev)
s->ocr3 = TIMER_MAX; s->ocr3 = TIMER_MAX;
s->icr1 = 0; s->icr1 = 0;
s->icr2 = 0; s->icr2 = 0;
ptimer_stop(s->timer);
s->next_timeout = TIMER_MAX;
s->next_int = 0;
/* compute new freq */
imx_gpt_set_freq(s);
/* reset the limit to TIMER_MAX */
ptimer_set_limit(s->timer, TIMER_MAX, 1); ptimer_set_limit(s->timer, TIMER_MAX, 1);
ptimer_set_count(s->timer, TIMER_MAX);
imx_timerg_set_freq(s); /* if the timer is still enabled, restart it */
if (s->freq && (s->cr & GPT_CR_EN)) {
ptimer_run(s->timer, 1);
}
} }
static void imx_timerg_write(void *opaque, hwaddr offset, static void imx_gpt_write(void *opaque, hwaddr offset, uint64_t value,
uint64_t value, unsigned size) unsigned size)
{ {
IMXTimerGState *s = (IMXTimerGState *)opaque; IMXGPTState *s = IMX_GPT(opaque);
DPRINTF("g-write(offset=%x, value = 0x%x)\n", (unsigned int)offset >> 2, uint32_t oldreg;
(unsigned int)value); uint32_t reg = offset >> 2;
switch (offset >> 2) { DPRINTF("(%s, value = 0x%08x)\n", imx_gpt_reg_name(reg),
case 0: { (uint32_t)value);
uint32_t oldcr = s->cr;
/* CR */
if (value & GPT_CR_SWR) { /* force reset */
value &= ~GPT_CR_SWR;
imx_timerg_reset(&s->busdev.qdev);
imx_timerg_update(s);
}
s->cr = value & ~0x7c00; switch (reg) {
imx_timerg_set_freq(s); case 0:
if ((oldcr ^ value) & GPT_CR_EN) { oldreg = s->cr;
if (value & GPT_CR_EN) { s->cr = value & ~0x7c14;
if (value & GPT_CR_ENMOD) { if (s->cr & GPT_CR_SWR) { /* force reset */
ptimer_set_count(s->timer, s->ocr1); /* handle the reset */
s->cnt = 0; imx_gpt_reset(DEVICE(s));
} else {
/* set our freq, as the source might have changed */
imx_gpt_set_freq(s);
if ((oldreg ^ s->cr) & GPT_CR_EN) {
if (s->cr & GPT_CR_EN) {
if (s->cr & GPT_CR_ENMOD) {
s->next_timeout = TIMER_MAX;
ptimer_set_count(s->timer, TIMER_MAX);
imx_gpt_compute_next_timeout(s, false);
}
ptimer_run(s->timer, 1);
} else {
/* stop timer */
ptimer_stop(s->timer);
} }
ptimer_run(s->timer, }
(value & GPT_CR_FRR) && (s->ocr1 != TIMER_MAX));
} else {
ptimer_stop(s->timer);
};
} }
return; break;
}
case 1: /* Prescaler */ case 1: /* Prescaler */
s->pr = value & 0xfff; s->pr = value & 0xfff;
imx_timerg_set_freq(s); imx_gpt_set_freq(s);
return; break;
case 2: /* SR */ case 2: /* SR */
/* s->sr &= ~(value & 0x3f);
* No point in implementing the status register bits to do with imx_gpt_update_int(s);
* external interrupt sources. break;
*/
value &= GPT_SR_OF1 | GPT_SR_ROV;
s->sr &= ~value;
imx_timerg_update(s);
return;
case 3: /* IR -- interrupt register */ case 3: /* IR -- interrupt register */
s->ir = value & 0x3f; s->ir = value & 0x3f;
imx_timerg_update(s); imx_gpt_update_int(s);
return;
imx_gpt_compute_next_timeout(s, false);
break;
case 4: /* OCR1 -- output compare register */ case 4: /* OCR1 -- output compare register */
s->ocr1 = value;
/* In non-freerun mode, reset count when this register is written */ /* In non-freerun mode, reset count when this register is written */
if (!(s->cr & GPT_CR_FRR)) { if (!(s->cr & GPT_CR_FRR)) {
s->waiting_rov = 0; s->next_timeout = TIMER_MAX;
ptimer_set_limit(s->timer, value, 1); ptimer_set_limit(s->timer, TIMER_MAX, 1);
} else {
imx_timerg_update_counts(s);
if (value > s->cnt) {
s->waiting_rov = 0;
imx_timerg_reload(s, value);
} else {
s->waiting_rov = 1;
imx_timerg_reload(s, TIMER_MAX - s->cnt);
}
} }
s->ocr1 = value;
return; /* compute the new timeout */
imx_gpt_compute_next_timeout(s, false);
break;
case 5: /* OCR2 -- output compare register */ case 5: /* OCR2 -- output compare register */
s->ocr2 = value;
/* compute the new timeout */
imx_gpt_compute_next_timeout(s, false);
break;
case 6: /* OCR3 -- output compare register */ case 6: /* OCR3 -- output compare register */
s->ocr3 = value;
/* compute the new timeout */
imx_gpt_compute_next_timeout(s, false);
break;
default: default:
IPRINTF("imx_timerg_write: Bad offset %x\n", IPRINTF("Bad offset %x\n", reg);
(int)offset >> 2); break;
} }
} }
static void imx_timerg_timeout(void *opaque) static void imx_gpt_timeout(void *opaque)
{ {
IMXTimerGState *s = (IMXTimerGState *)opaque; IMXGPTState *s = IMX_GPT(opaque);
DPRINTF("imx_timerg_timeout, waiting rov=%d\n", s->waiting_rov); DPRINTF("\n");
if (s->cr & GPT_CR_FRR) {
/*
* Free running timer from 0 -> TIMERMAX
* Generates interrupt at TIMER_MAX and at cnt==ocr1
* If ocr1 == TIMER_MAX, then no need to reload timer.
*/
if (s->ocr1 == TIMER_MAX) {
DPRINTF("s->ocr1 == TIMER_MAX, FRR\n");
s->sr |= GPT_SR_OF1 | GPT_SR_ROV;
imx_timerg_update(s);
return;
}
if (s->waiting_rov) { s->sr |= s->next_int;
/* s->next_int = 0;
* We were waiting for cnt==TIMER_MAX
*/ imx_gpt_compute_next_timeout(s, true);
s->sr |= GPT_SR_ROV;
s->waiting_rov = 0; imx_gpt_update_int(s);
s->cnt = 0;
imx_timerg_reload(s, s->ocr1); if (s->freq && (s->cr & GPT_CR_EN)) {
} else { ptimer_run(s->timer, 1);
/* Must have got a cnt==ocr1 timeout. */
s->sr |= GPT_SR_OF1;
s->cnt = s->ocr1;
s->waiting_rov = 1;
imx_timerg_reload(s, TIMER_MAX);
}
imx_timerg_update(s);
return;
} }
s->sr |= GPT_SR_OF1;
imx_timerg_update(s);
} }
static const MemoryRegionOps imx_timerg_ops = { static const MemoryRegionOps imx_gpt_ops = {
.read = imx_timerg_read, .read = imx_gpt_read,
.write = imx_timerg_write, .write = imx_gpt_write,
.endianness = DEVICE_NATIVE_ENDIAN, .endianness = DEVICE_NATIVE_ENDIAN,
}; };
static int imx_timerg_init(SysBusDevice *dev) static void imx_gpt_realize(DeviceState *dev, Error **errp)
{ {
IMXTimerGState *s = FROM_SYSBUS(IMXTimerGState, dev); IMXGPTState *s = IMX_GPT(dev);
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
QEMUBH *bh; QEMUBH *bh;
sysbus_init_irq(dev, &s->irq); sysbus_init_irq(sbd, &s->irq);
memory_region_init_io(&s->iomem, &imx_timerg_ops, memory_region_init_io(&s->iomem, &imx_gpt_ops, s, TYPE_IMX_GPT,
s, "imxg-timer",
0x00001000); 0x00001000);
sysbus_init_mmio(dev, &s->iomem); sysbus_init_mmio(sbd, &s->iomem);
bh = qemu_bh_new(imx_timerg_timeout, s); bh = qemu_bh_new(imx_gpt_timeout, s);
s->timer = ptimer_init(bh); s->timer = ptimer_init(bh);
/* Hard reset resets extra bits in CR */
s->cr = 0;
return 0;
} }
void imx_timerg_create(const hwaddr addr, void imx_timerg_create(const hwaddr addr, qemu_irq irq, DeviceState *ccm)
qemu_irq irq,
DeviceState *ccm)
{ {
IMXTimerGState *pp; IMXGPTState *pp;
DeviceState *dev; DeviceState *dev;
dev = sysbus_create_simple("imx_timerg", addr, irq); dev = sysbus_create_simple(TYPE_IMX_GPT, addr, irq);
pp = container_of(dev, IMXTimerGState, busdev.qdev); pp = IMX_GPT(dev);
pp->ccm = ccm; pp->ccm = ccm;
} }
static void imx_timerg_class_init(ObjectClass *klass, void *data) static void imx_gpt_class_init(ObjectClass *klass, void *data)
{ {
DeviceClass *dc = DEVICE_CLASS(klass); DeviceClass *dc = DEVICE_CLASS(klass);
SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
k->init = imx_timerg_init; dc->realize = imx_gpt_realize;
dc->vmsd = &vmstate_imx_timerg; dc->reset = imx_gpt_reset;
dc->reset = imx_timerg_reset; dc->vmsd = &vmstate_imx_timer_gpt;
dc->desc = "i.MX general timer"; dc->desc = "i.MX general timer";
} }
static const TypeInfo imx_timerg_info = { static const TypeInfo imx_gpt_info = {
.name = "imx_timerg", .name = TYPE_IMX_GPT,
.parent = TYPE_SYS_BUS_DEVICE, .parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(IMXTimerGState), .instance_size = sizeof(IMXGPTState),
.class_init = imx_timerg_class_init, .class_init = imx_gpt_class_init,
}; };
static void imx_timer_register_types(void) static void imx_gpt_register_types(void)
{ {
type_register_static(&imx_timerg_info); type_register_static(&imx_gpt_info);
} }
type_init(imx_timer_register_types) type_init(imx_gpt_register_types)