memory: Define API for MemoryRegionOps to take attrs and return status

Define an API so that devices can register MemoryRegionOps whose read
and write callback functions are passed an arbitrary pointer to some
transaction attributes and can return a success-or-failure status code.
This will allow us to model devices which:
 * behave differently for ARM Secure/NonSecure memory accesses
 * behave differently for privileged/unprivileged accesses
 * may return a transaction failure (causing a guest exception)
   for erroneous accesses

This patch defines the new API and plumbs the attributes parameter through
to the memory.c public level functions io_mem_read() and io_mem_write(),
where it is currently dummied out.

The success/failure response indication is also propagated out to
io_mem_read() and io_mem_write(), which retain the old-style
boolean true-for-error return.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
This commit is contained in:
Peter Maydell 2015-04-26 16:49:23 +01:00
parent e1a5476354
commit cc05c43ad9
3 changed files with 204 additions and 68 deletions

41
include/exec/memattrs.h Normal file
View file

@ -0,0 +1,41 @@
/*
* Memory transaction attributes
*
* Copyright (c) 2015 Linaro Limited.
*
* Authors:
* Peter Maydell <peter.maydell@linaro.org>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#ifndef MEMATTRS_H
#define MEMATTRS_H
/* Every memory transaction has associated with it a set of
* attributes. Some of these are generic (such as the ID of
* the bus master); some are specific to a particular kind of
* bus (such as the ARM Secure/NonSecure bit). We define them
* all as non-overlapping bitfields in a single struct to avoid
* confusion if different parts of QEMU used the same bit for
* different semantics.
*/
typedef struct MemTxAttrs {
/* Bus masters which don't specify any attributes will get this
* (via the MEMTXATTRS_UNSPECIFIED constant), so that we can
* distinguish "all attributes deliberately clear" from
* "didn't specify" if necessary.
*/
unsigned int unspecified:1;
} MemTxAttrs;
/* Bus masters which don't specify any attributes will get this,
* which has all attribute bits clear except the topmost one
* (so that we can distinguish "all attributes deliberately clear"
* from "didn't specify" if necessary).
*/
#define MEMTXATTRS_UNSPECIFIED ((MemTxAttrs) { .unspecified = 1 })
#endif

View file

@ -28,6 +28,7 @@
#ifndef CONFIG_USER_ONLY
#include "exec/hwaddr.h"
#endif
#include "exec/memattrs.h"
#include "qemu/queue.h"
#include "qemu/int128.h"
#include "qemu/notify.h"
@ -68,6 +69,16 @@ struct IOMMUTLBEntry {
IOMMUAccessFlags perm;
};
/* New-style MMIO accessors can indicate that the transaction failed.
* A zero (MEMTX_OK) response means success; anything else is a failure
* of some kind. The memory subsystem will bitwise-OR together results
* if it is synthesizing an operation from multiple smaller accesses.
*/
#define MEMTX_OK 0
#define MEMTX_ERROR (1U << 0) /* device returned an error */
#define MEMTX_DECODE_ERROR (1U << 1) /* nothing at that address */
typedef uint32_t MemTxResult;
/*
* Memory region callbacks
*/
@ -84,6 +95,17 @@ struct MemoryRegionOps {
uint64_t data,
unsigned size);
MemTxResult (*read_with_attrs)(void *opaque,
hwaddr addr,
uint64_t *data,
unsigned size,
MemTxAttrs attrs);
MemTxResult (*write_with_attrs)(void *opaque,
hwaddr addr,
uint64_t data,
unsigned size,
MemTxAttrs attrs);
enum device_endian endianness;
/* Guest-visible constraints: */
struct {

209
memory.c
View file

@ -368,26 +368,29 @@ static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
}
}
static void memory_region_oldmmio_read_accessor(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask)
static MemTxResult memory_region_oldmmio_read_accessor(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask,
MemTxAttrs attrs)
{
uint64_t tmp;
tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
trace_memory_region_ops_read(mr, addr, tmp, size);
*value |= (tmp & mask) << shift;
return MEMTX_OK;
}
static void memory_region_read_accessor(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask)
static MemTxResult memory_region_read_accessor(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask,
MemTxAttrs attrs)
{
uint64_t tmp;
@ -397,28 +400,52 @@ static void memory_region_read_accessor(MemoryRegion *mr,
tmp = mr->ops->read(mr->opaque, addr, size);
trace_memory_region_ops_read(mr, addr, tmp, size);
*value |= (tmp & mask) << shift;
return MEMTX_OK;
}
static void memory_region_oldmmio_write_accessor(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask)
static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask,
MemTxAttrs attrs)
{
uint64_t tmp = 0;
MemTxResult r;
if (mr->flush_coalesced_mmio) {
qemu_flush_coalesced_mmio_buffer();
}
r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
trace_memory_region_ops_read(mr, addr, tmp, size);
*value |= (tmp & mask) << shift;
return r;
}
static MemTxResult memory_region_oldmmio_write_accessor(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask,
MemTxAttrs attrs)
{
uint64_t tmp;
tmp = (*value >> shift) & mask;
trace_memory_region_ops_write(mr, addr, tmp, size);
mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
return MEMTX_OK;
}
static void memory_region_write_accessor(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask)
static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask,
MemTxAttrs attrs)
{
uint64_t tmp;
@ -428,24 +455,46 @@ static void memory_region_write_accessor(MemoryRegion *mr,
tmp = (*value >> shift) & mask;
trace_memory_region_ops_write(mr, addr, tmp, size);
mr->ops->write(mr->opaque, addr, tmp, size);
return MEMTX_OK;
}
static void access_with_adjusted_size(hwaddr addr,
static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask,
MemTxAttrs attrs)
{
uint64_t tmp;
if (mr->flush_coalesced_mmio) {
qemu_flush_coalesced_mmio_buffer();
}
tmp = (*value >> shift) & mask;
trace_memory_region_ops_write(mr, addr, tmp, size);
return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
}
static MemTxResult access_with_adjusted_size(hwaddr addr,
uint64_t *value,
unsigned size,
unsigned access_size_min,
unsigned access_size_max,
void (*access)(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask),
MemoryRegion *mr)
MemTxResult (*access)(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask,
MemTxAttrs attrs),
MemoryRegion *mr,
MemTxAttrs attrs)
{
uint64_t access_mask;
unsigned access_size;
unsigned i;
MemTxResult r = MEMTX_OK;
if (!access_size_min) {
access_size_min = 1;
@ -459,14 +508,16 @@ static void access_with_adjusted_size(hwaddr addr,
access_mask = -1ULL >> (64 - access_size * 8);
if (memory_region_big_endian(mr)) {
for (i = 0; i < size; i += access_size) {
access(mr, addr + i, value, access_size,
(size - access_size - i) * 8, access_mask);
r |= access(mr, addr + i, value, access_size,
(size - access_size - i) * 8, access_mask, attrs);
}
} else {
for (i = 0; i < size; i += access_size) {
access(mr, addr + i, value, access_size, i * 8, access_mask);
r |= access(mr, addr + i, value, access_size, i * 8,
access_mask, attrs);
}
}
return r;
}
static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
@ -1053,62 +1104,82 @@ bool memory_region_access_valid(MemoryRegion *mr,
return true;
}
static uint64_t memory_region_dispatch_read1(MemoryRegion *mr,
hwaddr addr,
unsigned size)
static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
hwaddr addr,
uint64_t *pval,
unsigned size,
MemTxAttrs attrs)
{
uint64_t data = 0;
*pval = 0;
if (mr->ops->read) {
access_with_adjusted_size(addr, &data, size,
mr->ops->impl.min_access_size,
mr->ops->impl.max_access_size,
memory_region_read_accessor, mr);
return access_with_adjusted_size(addr, pval, size,
mr->ops->impl.min_access_size,
mr->ops->impl.max_access_size,
memory_region_read_accessor,
mr, attrs);
} else if (mr->ops->read_with_attrs) {
return access_with_adjusted_size(addr, pval, size,
mr->ops->impl.min_access_size,
mr->ops->impl.max_access_size,
memory_region_read_with_attrs_accessor,
mr, attrs);
} else {
access_with_adjusted_size(addr, &data, size, 1, 4,
memory_region_oldmmio_read_accessor, mr);
return access_with_adjusted_size(addr, pval, size, 1, 4,
memory_region_oldmmio_read_accessor,
mr, attrs);
}
return data;
}
static bool memory_region_dispatch_read(MemoryRegion *mr,
hwaddr addr,
uint64_t *pval,
unsigned size)
static MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
hwaddr addr,
uint64_t *pval,
unsigned size,
MemTxAttrs attrs)
{
MemTxResult r;
if (!memory_region_access_valid(mr, addr, size, false)) {
*pval = unassigned_mem_read(mr, addr, size);
return true;
return MEMTX_DECODE_ERROR;
}
*pval = memory_region_dispatch_read1(mr, addr, size);
r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
adjust_endianness(mr, pval, size);
return false;
return r;
}
static bool memory_region_dispatch_write(MemoryRegion *mr,
hwaddr addr,
uint64_t data,
unsigned size)
static MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
hwaddr addr,
uint64_t data,
unsigned size,
MemTxAttrs attrs)
{
if (!memory_region_access_valid(mr, addr, size, true)) {
unassigned_mem_write(mr, addr, data, size);
return true;
return MEMTX_DECODE_ERROR;
}
adjust_endianness(mr, &data, size);
if (mr->ops->write) {
access_with_adjusted_size(addr, &data, size,
mr->ops->impl.min_access_size,
mr->ops->impl.max_access_size,
memory_region_write_accessor, mr);
return access_with_adjusted_size(addr, &data, size,
mr->ops->impl.min_access_size,
mr->ops->impl.max_access_size,
memory_region_write_accessor, mr,
attrs);
} else if (mr->ops->write_with_attrs) {
return
access_with_adjusted_size(addr, &data, size,
mr->ops->impl.min_access_size,
mr->ops->impl.max_access_size,
memory_region_write_with_attrs_accessor,
mr, attrs);
} else {
access_with_adjusted_size(addr, &data, size, 1, 4,
memory_region_oldmmio_write_accessor, mr);
return access_with_adjusted_size(addr, &data, size, 1, 4,
memory_region_oldmmio_write_accessor,
mr, attrs);
}
return false;
}
void memory_region_init_io(MemoryRegion *mr,
@ -1994,13 +2065,15 @@ void address_space_destroy(AddressSpace *as)
bool io_mem_read(MemoryRegion *mr, hwaddr addr, uint64_t *pval, unsigned size)
{
return memory_region_dispatch_read(mr, addr, pval, size);
return memory_region_dispatch_read(mr, addr, pval, size,
MEMTXATTRS_UNSPECIFIED);
}
bool io_mem_write(MemoryRegion *mr, hwaddr addr,
uint64_t val, unsigned size)
{
return memory_region_dispatch_write(mr, addr, val, size);
return memory_region_dispatch_write(mr, addr, val, size,
MEMTXATTRS_UNSPECIFIED);
}
typedef struct MemoryRegionList MemoryRegionList;