- Migration and linuxboot fixes for 2.2 regressions

- valgrind/KVM support
 - small i386 patches
 - PCI SD host controller support
 - malloc/free cleanups from Markus (x86/scsi)
 - IvyBridge model
 - XSAVES support for KVM
 - initial patches from record/replay
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJUjw28AAoJEL/70l94x66D9kcH/RBoc4mNjrSt+MLy9Y+Fu1bu
 HNhfd1n/yA0MKSHtSYwJPgkiuoxG3jHt0N69gbpZE0kdBcK+PPZZZUpTFIAU6vD/
 D0O7l+2viOcl2z7SPuHIp9/O0CChsAYZkH+Zn2XbeStbe4d4f6bFzdy4vblMsirQ
 BfMn/Y2Dw1uLknvrO3/QKgGhbK5Nxo/Te7lavRP+w7FgOhAdAUHOhBPfGrPWtG+0
 0hVWmxoQyJtk+Ltt2oF4zUkql7czDsgyXkaO82l3TkecCvtqolCuby4lQIFJnq7E
 vw0XUDwC/l/MWnXFq/rG97yopfIxkSAthT/xP/+TTJKM/oJEWDTh6I8ghQTdG90=
 =ncys
 -----END PGP SIGNATURE-----

Merge remote-tracking branch 'remotes/bonzini/tags/for-upstream' into staging

- Migration and linuxboot fixes for 2.2 regressions
- valgrind/KVM support
- small i386 patches
- PCI SD host controller support
- malloc/free cleanups from Markus (x86/scsi)
- IvyBridge model
- XSAVES support for KVM
- initial patches from record/replay

# gpg: Signature made Mon 15 Dec 2014 16:35:08 GMT using RSA key ID 78C7AE83
# gpg: Good signature from "Paolo Bonzini <bonzini@gnu.org>"
# gpg:                 aka "Paolo Bonzini <pbonzini@redhat.com>"
# gpg: WARNING: This key is not certified with sufficiently trusted signatures!
# gpg:          It is not certain that the signature belongs to the owner.
# Primary key fingerprint: 46F5 9FBD 57D6 12E7 BFD4  E2F7 7E15 100C CD36 69B1
#      Subkey fingerprint: F133 3857 4B66 2389 866C  7682 BFFB D25F 78C7 AE83

* remotes/bonzini/tags/for-upstream: (47 commits)
  sdhci: Support SDHCI devices on PCI
  sdhci: Define SDHCI PCI ids
  sdhci: Add "sysbus" to sdhci QOM types and methods
  sdhci: Remove class "virtual" methods
  sdhci: Set a default frequency clock
  serial: only resample THR interrupt on rising edge of IER.THRI
  serial: update LSR on enabling/disabling FIFOs
  serial: clean up THRE/TEMT handling
  serial: reset thri_pending on IER writes with THRI=0
  linuxboot: fix loading old kernels
  kvm/apic: fix 2.2->2.1 migration
  target-i386: add Ivy Bridge CPU model
  target-i386: add f16c and rdrand to Haswell and Broadwell
  target-i386: add VME to all CPUs
  pc: add 2.3 machine types
  i386: do not cross the pages boundaries in replay mode
  cpus: make icount warp behave well with respect to stop/cont
  timer: introduce new QEMU_CLOCK_VIRTUAL_RT clock
  cpu-exec: invalidate nocache translation if they are interrupted
  icount: introduce cpu_get_icount_raw
  ...

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
Peter Maydell 2014-12-15 16:43:42 +00:00
commit dfa9c2a0f4
44 changed files with 604 additions and 263 deletions

View file

@ -168,7 +168,9 @@ static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, uint8_t *tb_ptr)
}
#endif /* DEBUG_DISAS */
cpu->can_do_io = 0;
next_tb = tcg_qemu_tb_exec(env, tb_ptr);
cpu->can_do_io = 1;
trace_exec_tb_exit((void *) (next_tb & ~TB_EXIT_MASK),
next_tb & TB_EXIT_MASK);
@ -202,14 +204,19 @@ static void cpu_exec_nocache(CPUArchState *env, int max_cycles,
{
CPUState *cpu = ENV_GET_CPU(env);
TranslationBlock *tb;
target_ulong pc = orig_tb->pc;
target_ulong cs_base = orig_tb->cs_base;
uint64_t flags = orig_tb->flags;
/* Should never happen.
We only end up here when an existing TB is too long. */
if (max_cycles > CF_COUNT_MASK)
max_cycles = CF_COUNT_MASK;
tb = tb_gen_code(cpu, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
max_cycles);
/* tb_gen_code can flush our orig_tb, invalidate it now */
tb_phys_invalidate(orig_tb, -1);
tb = tb_gen_code(cpu, pc, cs_base, flags,
max_cycles | CF_NOCACHE);
cpu->current_tb = tb;
/* execute the generated code */
trace_exec_tb_nocache(tb, tb->pc);
@ -353,7 +360,6 @@ int cpu_exec(CPUArchState *env)
}
cc->cpu_exec_enter(cpu);
cpu->exception_index = -1;
/* Calculate difference between guest clock and host clock.
* This delay includes the delay of the last cycle, so
@ -373,6 +379,7 @@ int cpu_exec(CPUArchState *env)
if (ret == EXCP_DEBUG) {
cpu_handle_debug_exception(env);
}
cpu->exception_index = -1;
break;
} else {
#if defined(CONFIG_USER_ONLY)
@ -383,6 +390,7 @@ int cpu_exec(CPUArchState *env)
cc->do_interrupt(cpu);
#endif
ret = cpu->exception_index;
cpu->exception_index = -1;
break;
#else
cc->do_interrupt(cpu);
@ -537,6 +545,7 @@ int cpu_exec(CPUArchState *env)
cpu = current_cpu;
env = cpu->env_ptr;
cc = CPU_GET_CLASS(cpu);
cpu->can_do_io = 1;
#ifdef TARGET_I386
x86_cpu = X86_CPU(cpu);
#endif

40
cpus.c
View file

@ -136,8 +136,7 @@ typedef struct TimersState {
static TimersState timers_state;
/* Return the virtual CPU time, based on the instruction counter. */
static int64_t cpu_get_icount_locked(void)
int64_t cpu_get_icount_raw(void)
{
int64_t icount;
CPUState *cpu = current_cpu;
@ -145,10 +144,18 @@ static int64_t cpu_get_icount_locked(void)
icount = timers_state.qemu_icount;
if (cpu) {
if (!cpu_can_do_io(cpu)) {
fprintf(stderr, "Bad clock read\n");
fprintf(stderr, "Bad icount read\n");
exit(1);
}
icount -= (cpu->icount_decr.u16.low + cpu->icount_extra);
}
return icount;
}
/* Return the virtual CPU time, based on the instruction counter. */
static int64_t cpu_get_icount_locked(void)
{
int64_t icount = cpu_get_icount_raw();
return timers_state.qemu_icount_bias + cpu_icount_to_ns(icount);
}
@ -345,7 +352,7 @@ static void icount_warp_rt(void *opaque)
seqlock_write_lock(&timers_state.vm_clock_seqlock);
if (runstate_is_running()) {
int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
int64_t clock = cpu_get_clock_locked();
int64_t warp_delta;
warp_delta = clock - vm_clock_warp_start;
@ -354,9 +361,8 @@ static void icount_warp_rt(void *opaque)
* In adaptive mode, do not let QEMU_CLOCK_VIRTUAL run too
* far ahead of real time.
*/
int64_t cur_time = cpu_get_clock_locked();
int64_t cur_icount = cpu_get_icount_locked();
int64_t delta = cur_time - cur_icount;
int64_t delta = clock - cur_icount;
warp_delta = MIN(warp_delta, delta);
}
timers_state.qemu_icount_bias += warp_delta;
@ -419,7 +425,7 @@ void qemu_clock_warp(QEMUClockType type)
}
/* We want to use the earliest deadline from ALL vm_clocks */
clock = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
if (deadline < 0) {
return;
@ -437,8 +443,8 @@ void qemu_clock_warp(QEMUClockType type)
* sleep in icount mode if there is a pending QEMU_CLOCK_VIRTUAL
* timer; rather time could just advance to the next QEMU_CLOCK_VIRTUAL
* event. Instead, we do stop VCPUs and only advance QEMU_CLOCK_VIRTUAL
* after some e"real" time, (related to the time left until the next
* event) has passed. The QEMU_CLOCK_REALTIME timer will do this.
* after some "real" time, (related to the time left until the next
* event) has passed. The QEMU_CLOCK_VIRTUAL_RT clock will do this.
* This avoids that the warps are visible externally; for example,
* you will not be sending network packets continuously instead of
* every 100ms.
@ -512,8 +518,8 @@ void configure_icount(QemuOpts *opts, Error **errp)
return;
}
icount_align_option = qemu_opt_get_bool(opts, "align", false);
icount_warp_timer = timer_new_ns(QEMU_CLOCK_REALTIME,
icount_warp_rt, NULL);
icount_warp_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
icount_warp_rt, NULL);
if (strcmp(option, "auto") != 0) {
errno = 0;
icount_time_shift = strtol(option, &rem_str, 0);
@ -537,10 +543,10 @@ void configure_icount(QemuOpts *opts, Error **errp)
the virtual time trigger catches emulated time passing too fast.
Realtime triggers occur even when idle, so use them less frequently
than VM triggers. */
icount_rt_timer = timer_new_ms(QEMU_CLOCK_REALTIME,
icount_adjust_rt, NULL);
icount_rt_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL_RT,
icount_adjust_rt, NULL);
timer_mod(icount_rt_timer,
qemu_clock_get_ms(QEMU_CLOCK_REALTIME) + 1000);
qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
icount_vm_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
icount_adjust_vm, NULL);
timer_mod(icount_vm_timer,
@ -934,6 +940,8 @@ static void *qemu_kvm_cpu_thread_fn(void *arg)
qemu_mutex_lock(&qemu_global_mutex);
qemu_thread_get_self(cpu->thread);
cpu->thread_id = qemu_get_thread_id();
cpu->exception_index = -1;
cpu->can_do_io = 1;
current_cpu = cpu;
r = kvm_init_vcpu(cpu);
@ -974,6 +982,8 @@ static void *qemu_dummy_cpu_thread_fn(void *arg)
qemu_mutex_lock_iothread();
qemu_thread_get_self(cpu->thread);
cpu->thread_id = qemu_get_thread_id();
cpu->exception_index = -1;
cpu->can_do_io = 1;
sigemptyset(&waitset);
sigaddset(&waitset, SIG_IPI);
@ -1016,6 +1026,8 @@ static void *qemu_tcg_cpu_thread_fn(void *arg)
CPU_FOREACH(cpu) {
cpu->thread_id = qemu_get_thread_id();
cpu->created = true;
cpu->exception_index = -1;
cpu->can_do_io = 1;
}
qemu_cond_signal(&qemu_cpu_cond);

View file

@ -30,3 +30,5 @@ CONFIG_IPACK=y
CONFIG_WDT_IB6300ESB=y
CONFIG_PCI_TESTDEV=y
CONFIG_NVME_PCI=y
CONFIG_SD=y
CONFIG_SDHCI=y

View file

@ -44,6 +44,8 @@ PCI devices (other than virtio):
1b36:0002 PCI serial port (16550A) adapter (docs/specs/pci-serial.txt)
1b36:0003 PCI Dual-port 16550A adapter (docs/specs/pci-serial.txt)
1b36:0004 PCI Quad-port 16550A adapter (docs/specs/pci-serial.txt)
1b36:0005 PCI test device (docs/specs/pci-testdev.txt)
1b36:0006 PCI SD Card Host Controller Interface (SDHCI)
All these devices are documented in docs/specs.

View file

@ -224,21 +224,23 @@ static gboolean serial_xmit(GIOChannel *chan, GIOCondition cond, void *opaque)
SerialState *s = opaque;
do {
assert(!(s->lsr & UART_LSR_TEMT));
if (s->tsr_retry <= 0) {
assert(!(s->lsr & UART_LSR_THRE));
if (s->fcr & UART_FCR_FE) {
if (fifo8_is_empty(&s->xmit_fifo)) {
return FALSE;
}
assert(!fifo8_is_empty(&s->xmit_fifo));
s->tsr = fifo8_pop(&s->xmit_fifo);
if (!s->xmit_fifo.num) {
s->lsr |= UART_LSR_THRE;
}
} else if ((s->lsr & UART_LSR_THRE)) {
return FALSE;
} else {
s->tsr = s->thr;
s->lsr |= UART_LSR_THRE;
s->lsr &= ~UART_LSR_TEMT;
}
if ((s->lsr & UART_LSR_THRE) && !s->thr_ipending) {
s->thr_ipending = 1;
serial_update_irq(s);
}
}
@ -256,17 +258,13 @@ static gboolean serial_xmit(GIOChannel *chan, GIOCondition cond, void *opaque)
} else {
s->tsr_retry = 0;
}
/* Transmit another byte if it is already available. It is only
possible when FIFO is enabled and not empty. */
} while ((s->fcr & UART_FCR_FE) && !fifo8_is_empty(&s->xmit_fifo));
} while (!(s->lsr & UART_LSR_THRE));
s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
if (s->lsr & UART_LSR_THRE) {
s->lsr |= UART_LSR_TEMT;
s->thr_ipending = 1;
serial_update_irq(s);
}
s->lsr |= UART_LSR_TEMT;
return FALSE;
}
@ -323,10 +321,10 @@ static void serial_ioport_write(void *opaque, hwaddr addr, uint64_t val,
fifo8_pop(&s->xmit_fifo);
}
fifo8_push(&s->xmit_fifo, s->thr);
s->lsr &= ~UART_LSR_TEMT;
}
s->thr_ipending = 0;
s->lsr &= ~UART_LSR_THRE;
s->lsr &= ~UART_LSR_TEMT;
serial_update_irq(s);
if (s->tsr_retry <= 0) {
serial_xmit(NULL, G_IO_OUT, s);
@ -338,10 +336,12 @@ static void serial_ioport_write(void *opaque, hwaddr addr, uint64_t val,
s->divider = (s->divider & 0x00ff) | (val << 8);
serial_update_parameters(s);
} else {
uint8_t changed = (s->ier ^ val) & 0x0f;
s->ier = val & 0x0f;
/* If the backend device is a real serial port, turn polling of the modem
status lines on physical port on or off depending on UART_IER_MSI state */
if (s->poll_msl >= 0) {
* status lines on physical port on or off depending on UART_IER_MSI state.
*/
if ((changed & UART_IER_MSI) && s->poll_msl >= 0) {
if (s->ier & UART_IER_MSI) {
s->poll_msl = 1;
serial_update_msl(s);
@ -350,8 +350,27 @@ static void serial_ioport_write(void *opaque, hwaddr addr, uint64_t val,
s->poll_msl = 0;
}
}
if (s->lsr & UART_LSR_THRE) {
s->thr_ipending = 1;
/* Turning on the THRE interrupt on IER can trigger the interrupt
* if LSR.THRE=1, even if it had been masked before by reading IIR.
* This is not in the datasheet, but Windows relies on it. It is
* unclear if THRE has to be resampled every time THRI becomes
* 1, or only on the rising edge. Bochs does the latter, and Windows
* always toggles IER to all zeroes and back to all ones, so do the
* same.
*
* If IER.THRI is zero, thr_ipending is not used. Set it to zero
* so that the thr_ipending subsection is not migrated.
*/
if (changed & UART_IER_THRI) {
if ((s->ier & UART_IER_THRI) && (s->lsr & UART_LSR_THRE)) {
s->thr_ipending = 1;
} else {
s->thr_ipending = 0;
}
}
if (changed) {
serial_update_irq(s);
}
}
@ -365,12 +384,15 @@ static void serial_ioport_write(void *opaque, hwaddr addr, uint64_t val,
/* FIFO clear */
if (val & UART_FCR_RFR) {
s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
timer_del(s->fifo_timeout_timer);
s->timeout_ipending = 0;
fifo8_reset(&s->recv_fifo);
}
if (val & UART_FCR_XFR) {
s->lsr |= UART_LSR_THRE;
s->thr_ipending = 1;
fifo8_reset(&s->xmit_fifo);
}

View file

@ -171,13 +171,16 @@ static const MemoryRegionOps kvm_apic_io_ops = {
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void kvm_apic_reset(APICCommonState *s)
{
/* Not used by KVM, which uses the CPU mp_state instead. */
s->wait_for_sipi = 0;
}
static void kvm_apic_realize(DeviceState *dev, Error **errp)
{
APICCommonState *s = APIC_COMMON(dev);
/* Not used by KVM, which uses the CPU mp_state instead. */
s->wait_for_sipi = 0;
memory_region_init_io(&s->io_memory, NULL, &kvm_apic_io_ops, s, "kvm-apic-msi",
APIC_SPACE_SIZE);
@ -191,6 +194,7 @@ static void kvm_apic_class_init(ObjectClass *klass, void *data)
APICCommonClass *k = APIC_COMMON_CLASS(klass);
k->realize = kvm_apic_realize;
k->reset = kvm_apic_reset;
k->set_base = kvm_apic_set_base;
k->set_tpr = kvm_apic_set_tpr;
k->get_tpr = kvm_apic_get_tpr;

View file

@ -88,7 +88,7 @@ static void kvmclock_vm_state_change(void *opaque, int running,
int ret;
if (running) {
struct kvm_clock_data data;
struct kvm_clock_data data = {};
uint64_t time_at_migration = kvmclock_current_nsec(s);
s->clock_valid = false;
@ -99,7 +99,6 @@ static void kvmclock_vm_state_change(void *opaque, int running,
}
data.clock = s->clock;
data.flags = 0;
ret = kvm_vm_ioctl(kvm_state, KVM_SET_CLOCK, &data);
if (ret < 0) {
fprintf(stderr, "KVM_SET_CLOCK failed: %s\n", strerror(ret));

View file

@ -138,7 +138,7 @@ static void kvm_pit_get(PITCommonState *pit)
static void kvm_pit_put(PITCommonState *pit)
{
KVMPITState *s = KVM_PIT(pit);
struct kvm_pit_state2 kpit;
struct kvm_pit_state2 kpit = {};
struct kvm_pit_channel_state *kchan;
struct PITChannelState *sc;
int i, ret;

View file

@ -54,6 +54,7 @@ enum {
MBI_MODS_COUNT = 20,
MBI_MODS_ADDR = 24,
MBI_MMAP_ADDR = 48,
MBI_BOOTLOADER = 64,
MBI_SIZE = 88,
@ -74,6 +75,7 @@ enum {
MULTIBOOT_FLAGS_CMDLINE = 1 << 2,
MULTIBOOT_FLAGS_MODULES = 1 << 3,
MULTIBOOT_FLAGS_MMAP = 1 << 6,
MULTIBOOT_FLAGS_BOOTLOADER = 1 << 9,
};
typedef struct {
@ -87,6 +89,8 @@ typedef struct {
hwaddr offset_mbinfo;
/* offset in buffer for cmdlines in bytes */
hwaddr offset_cmdlines;
/* offset in buffer for bootloader name in bytes */
hwaddr offset_bootloader;
/* offset of modules in bytes */
hwaddr offset_mods;
/* available slots for mb modules infos */
@ -95,6 +99,8 @@ typedef struct {
int mb_mods_count;
} MultibootState;
const char *bootloader_name = "qemu";
static uint32_t mb_add_cmdline(MultibootState *s, const char *cmdline)
{
hwaddr p = s->offset_cmdlines;
@ -105,6 +111,16 @@ static uint32_t mb_add_cmdline(MultibootState *s, const char *cmdline)
return s->mb_buf_phys + p;
}
static uint32_t mb_add_bootloader(MultibootState *s, const char *bootloader)
{
hwaddr p = s->offset_bootloader;
char *b = (char *)s->mb_buf + p;
memcpy(b, bootloader, strlen(bootloader) + 1);
s->offset_bootloader += strlen(b) + 1;
return s->mb_buf_phys + p;
}
static void mb_add_mod(MultibootState *s,
hwaddr start, hwaddr end,
hwaddr cmdline_phys)
@ -241,9 +257,10 @@ int load_multiboot(FWCfgState *fw_cfg,
mbs.mb_buf_size = TARGET_PAGE_ALIGN(mb_kernel_size);
mbs.offset_mbinfo = mbs.mb_buf_size;
/* Calculate space for cmdlines and mb_mods */
/* Calculate space for cmdlines, bootloader name, and mb_mods */
mbs.mb_buf_size += strlen(kernel_filename) + 1;
mbs.mb_buf_size += strlen(kernel_cmdline) + 1;
mbs.mb_buf_size += strlen(bootloader_name) + 1;
if (initrd_filename) {
const char *r = initrd_filename;
mbs.mb_buf_size += strlen(r) + 1;
@ -257,9 +274,11 @@ int load_multiboot(FWCfgState *fw_cfg,
mbs.mb_buf_size = TARGET_PAGE_ALIGN(mbs.mb_buf_size);
/* enlarge mb_buf to hold cmdlines and mb-info structs */
mbs.mb_buf = g_realloc(mbs.mb_buf, mbs.mb_buf_size);
mbs.offset_cmdlines = mbs.offset_mbinfo + mbs.mb_mods_avail * MB_MOD_SIZE;
/* enlarge mb_buf to hold cmdlines, bootloader, mb-info structs */
mbs.mb_buf = g_realloc(mbs.mb_buf, mbs.mb_buf_size);
mbs.offset_cmdlines = mbs.offset_mbinfo + mbs.mb_mods_avail * MB_MOD_SIZE;
mbs.offset_bootloader = mbs.offset_cmdlines + strlen(kernel_filename) + 1
+ strlen(kernel_cmdline) + 1;
if (initrd_filename) {
char *next_initrd, not_last;
@ -306,6 +325,8 @@ int load_multiboot(FWCfgState *fw_cfg,
kernel_filename, kernel_cmdline);
stl_p(bootinfo + MBI_CMDLINE, mb_add_cmdline(&mbs, kcmdline));
stl_p(bootinfo + MBI_BOOTLOADER, mb_add_bootloader(&mbs, bootloader_name));
stl_p(bootinfo + MBI_MODS_ADDR, mbs.mb_buf_phys + mbs.offset_mbinfo);
stl_p(bootinfo + MBI_MODS_COUNT, mbs.mb_mods_count); /* mods_count */
@ -314,7 +335,8 @@ int load_multiboot(FWCfgState *fw_cfg,
| MULTIBOOT_FLAGS_BOOT_DEVICE
| MULTIBOOT_FLAGS_CMDLINE
| MULTIBOOT_FLAGS_MODULES
| MULTIBOOT_FLAGS_MMAP);
| MULTIBOOT_FLAGS_MMAP
| MULTIBOOT_FLAGS_BOOTLOADER);
stl_p(bootinfo + MBI_BOOT_DEVICE, 0x8000ffff); /* XXX: use the -boot switch? */
stl_p(bootinfo + MBI_MMAP_ADDR, ADDR_E820_MAP);

View file

@ -602,8 +602,7 @@ int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
}
/* new "etc/e820" file -- include ram too */
e820_table = g_realloc(e820_table,
sizeof(struct e820_entry) * (e820_entries+1));
e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
e820_table[e820_entries].address = cpu_to_le64(address);
e820_table[e820_entries].length = cpu_to_le64(length);
e820_table[e820_entries].type = cpu_to_le32(type);

View file

@ -308,9 +308,33 @@ static void pc_init_pci(MachineState *machine)
pc_init1(machine, 1, 1);
}
static void pc_compat_2_2(MachineState *machine)
{
x86_cpu_compat_set_features("kvm64", FEAT_1_EDX, 0, CPUID_VME);
x86_cpu_compat_set_features("kvm32", FEAT_1_EDX, 0, CPUID_VME);
x86_cpu_compat_set_features("Conroe", FEAT_1_EDX, 0, CPUID_VME);
x86_cpu_compat_set_features("Penryn", FEAT_1_EDX, 0, CPUID_VME);
x86_cpu_compat_set_features("Nehalem", FEAT_1_EDX, 0, CPUID_VME);
x86_cpu_compat_set_features("Westmere", FEAT_1_EDX, 0, CPUID_VME);
x86_cpu_compat_set_features("SandyBridge", FEAT_1_EDX, 0, CPUID_VME);
x86_cpu_compat_set_features("Haswell", FEAT_1_EDX, 0, CPUID_VME);
x86_cpu_compat_set_features("Broadwell", FEAT_1_EDX, 0, CPUID_VME);
x86_cpu_compat_set_features("Opteron_G1", FEAT_1_EDX, 0, CPUID_VME);
x86_cpu_compat_set_features("Opteron_G2", FEAT_1_EDX, 0, CPUID_VME);
x86_cpu_compat_set_features("Opteron_G3", FEAT_1_EDX, 0, CPUID_VME);
x86_cpu_compat_set_features("Opteron_G4", FEAT_1_EDX, 0, CPUID_VME);
x86_cpu_compat_set_features("Opteron_G5", FEAT_1_EDX, 0, CPUID_VME);
x86_cpu_compat_set_features("Haswell", FEAT_1_ECX, 0, CPUID_EXT_F16C);
x86_cpu_compat_set_features("Haswell", FEAT_1_ECX, 0, CPUID_EXT_RDRAND);
x86_cpu_compat_set_features("Broadwell", FEAT_1_ECX, 0, CPUID_EXT_F16C);
x86_cpu_compat_set_features("Broadwell", FEAT_1_ECX, 0, CPUID_EXT_RDRAND);
}
static void pc_compat_2_1(MachineState *machine)
{
PCMachineState *pcms = PC_MACHINE(machine);
pc_compat_2_2(machine);
smbios_uuid_encoded = false;
x86_cpu_compat_set_features("coreduo", FEAT_1_ECX, CPUID_EXT_VMX, 0);
x86_cpu_compat_set_features("core2duo", FEAT_1_ECX, CPUID_EXT_VMX, 0);
@ -385,6 +409,12 @@ static void pc_compat_1_2(MachineState *machine)
x86_cpu_compat_kvm_no_autoenable(FEAT_KVM, KVM_FEATURE_PV_EOI);
}
static void pc_init_pci_2_2(MachineState *machine)
{
pc_compat_2_2(machine);
pc_init_pci(machine);
}
static void pc_init_pci_2_1(MachineState *machine)
{
pc_compat_2_1(machine);
@ -478,19 +508,27 @@ static void pc_xen_hvm_init(MachineState *machine)
.desc = "Standard PC (i440FX + PIIX, 1996)", \
.hot_add_cpu = pc_hot_add_cpu
#define PC_I440FX_2_2_MACHINE_OPTIONS \
#define PC_I440FX_2_3_MACHINE_OPTIONS \
PC_I440FX_MACHINE_OPTIONS, \
.default_machine_opts = "firmware=bios-256k.bin", \
.default_display = "std"
static QEMUMachine pc_i440fx_machine_v2_2 = {
PC_I440FX_2_2_MACHINE_OPTIONS,
.name = "pc-i440fx-2.2",
static QEMUMachine pc_i440fx_machine_v2_3 = {
PC_I440FX_2_3_MACHINE_OPTIONS,
.name = "pc-i440fx-2.3",
.alias = "pc",
.init = pc_init_pci,
.is_default = 1,
};
#define PC_I440FX_2_2_MACHINE_OPTIONS PC_I440FX_2_3_MACHINE_OPTIONS
static QEMUMachine pc_i440fx_machine_v2_2 = {
PC_I440FX_2_2_MACHINE_OPTIONS,
.name = "pc-i440fx-2.2",
.init = pc_init_pci_2_2,
};
#define PC_I440FX_2_1_MACHINE_OPTIONS \
PC_I440FX_MACHINE_OPTIONS, \
.default_machine_opts = "firmware=bios-256k.bin"
@ -928,6 +966,7 @@ static QEMUMachine xenfv_machine = {
static void pc_machine_init(void)
{
qemu_register_pc_machine(&pc_i440fx_machine_v2_3);
qemu_register_pc_machine(&pc_i440fx_machine_v2_2);
qemu_register_pc_machine(&pc_i440fx_machine_v2_1);
qemu_register_pc_machine(&pc_i440fx_machine_v2_0);

View file

@ -287,10 +287,33 @@ static void pc_q35_init(MachineState *machine)
}
}
static void pc_compat_2_2(MachineState *machine)
{
x86_cpu_compat_set_features("kvm64", FEAT_1_EDX, 0, CPUID_VME);
x86_cpu_compat_set_features("kvm32", FEAT_1_EDX, 0, CPUID_VME);
x86_cpu_compat_set_features("Conroe", FEAT_1_EDX, 0, CPUID_VME);
x86_cpu_compat_set_features("Penryn", FEAT_1_EDX, 0, CPUID_VME);
x86_cpu_compat_set_features("Nehalem", FEAT_1_EDX, 0, CPUID_VME);
x86_cpu_compat_set_features("Westmere", FEAT_1_EDX, 0, CPUID_VME);
x86_cpu_compat_set_features("SandyBridge", FEAT_1_EDX, 0, CPUID_VME);
x86_cpu_compat_set_features("Haswell", FEAT_1_EDX, 0, CPUID_VME);
x86_cpu_compat_set_features("Broadwell", FEAT_1_EDX, 0, CPUID_VME);
x86_cpu_compat_set_features("Opteron_G1", FEAT_1_EDX, 0, CPUID_VME);
x86_cpu_compat_set_features("Opteron_G2", FEAT_1_EDX, 0, CPUID_VME);
x86_cpu_compat_set_features("Opteron_G3", FEAT_1_EDX, 0, CPUID_VME);
x86_cpu_compat_set_features("Opteron_G4", FEAT_1_EDX, 0, CPUID_VME);
x86_cpu_compat_set_features("Opteron_G5", FEAT_1_EDX, 0, CPUID_VME);
x86_cpu_compat_set_features("Haswell", FEAT_1_ECX, 0, CPUID_EXT_F16C);
x86_cpu_compat_set_features("Haswell", FEAT_1_ECX, 0, CPUID_EXT_RDRAND);
x86_cpu_compat_set_features("Broadwell", FEAT_1_ECX, 0, CPUID_EXT_F16C);
x86_cpu_compat_set_features("Broadwell", FEAT_1_ECX, 0, CPUID_EXT_RDRAND);
}
static void pc_compat_2_1(MachineState *machine)
{
PCMachineState *pcms = PC_MACHINE(machine);
pc_compat_2_2(machine);
pcms->enforce_aligned_dimm = false;
smbios_uuid_encoded = false;
x86_cpu_compat_set_features("coreduo", FEAT_1_ECX, CPUID_EXT_VMX, 0);
@ -334,6 +357,12 @@ static void pc_compat_1_4(MachineState *machine)
x86_cpu_compat_set_features("Westmere", FEAT_1_ECX, 0, CPUID_EXT_PCLMULQDQ);
}
static void pc_q35_init_2_2(MachineState *machine)
{
pc_compat_2_2(machine);
pc_q35_init(machine);
}
static void pc_q35_init_2_1(MachineState *machine)
{
pc_compat_2_1(machine);
@ -377,16 +406,24 @@ static void pc_q35_init_1_4(MachineState *machine)
.hot_add_cpu = pc_hot_add_cpu, \
.units_per_default_bus = 1
#define PC_Q35_2_2_MACHINE_OPTIONS \
#define PC_Q35_2_3_MACHINE_OPTIONS \
PC_Q35_MACHINE_OPTIONS, \
.default_machine_opts = "firmware=bios-256k.bin", \
.default_display = "std"
static QEMUMachine pc_q35_machine_v2_3 = {
PC_Q35_2_3_MACHINE_OPTIONS,
.name = "pc-q35-2.3",
.alias = "q35",
.init = pc_q35_init,
};
#define PC_Q35_2_2_MACHINE_OPTIONS PC_Q35_2_3_MACHINE_OPTIONS
static QEMUMachine pc_q35_machine_v2_2 = {
PC_Q35_2_2_MACHINE_OPTIONS,
.name = "pc-q35-2.2",
.alias = "q35",
.init = pc_q35_init,
.init = pc_q35_init_2_2,
};
#define PC_Q35_2_1_MACHINE_OPTIONS \
@ -465,6 +502,7 @@ static QEMUMachine pc_q35_machine_v1_4 = {
static void pc_q35_machine_init(void)
{
qemu_register_pc_machine(&pc_q35_machine_v2_3);
qemu_register_pc_machine(&pc_q35_machine_v2_2);
qemu_register_pc_machine(&pc_q35_machine_v2_1);
qemu_register_pc_machine(&pc_q35_machine_v2_0);

View file

@ -204,9 +204,7 @@ static void old_pc_system_rom_init(MemoryRegion *rom_memory, bool isapc_ram_fw)
fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
exit(1);
}
if (filename) {
g_free(filename);
}
g_free(filename);
/* map the last 128KB of the BIOS in ISA space */
isa_bios_size = bios_size;

View file

@ -178,6 +178,7 @@ bool apic_next_timer(APICCommonState *s, int64_t current_time)
void apic_init_reset(DeviceState *dev)
{
APICCommonState *s = APIC_COMMON(dev);
APICCommonClass *info = APIC_COMMON_GET_CLASS(s);
int i;
if (!s) {
@ -206,6 +207,10 @@ void apic_init_reset(DeviceState *dev)
timer_del(s->timer);
}
s->timer_expiry = -1;
if (info->reset) {
info->reset(s);
}
}
void apic_designate_bsp(DeviceState *dev)

View file

@ -248,7 +248,6 @@ static void kvm_openpic_realize(DeviceState *dev, Error **errp)
kvm_irqchip_add_irq_route(kvm_state, i, 0, i);
}
kvm_irqfds_allowed = true;
kvm_msi_via_irqfd_allowed = true;
kvm_gsi_routing_allowed = true;

View file

@ -448,7 +448,6 @@ static void xics_kvm_realize(DeviceState *dev, Error **errp)
}
kvm_kernel_irqchip = true;
kvm_irqfds_allowed = true;
kvm_msi_via_irqfd_allowed = true;
kvm_gsi_direct_mapping = true;

View file

@ -406,7 +406,7 @@ static void vfio_enable_intx_kvm(VFIODevice *vdev)
if (!VFIO_ALLOW_KVM_INTX || !kvm_irqfds_enabled() ||
vdev->intx.route.mode != PCI_INTX_ENABLED ||
!kvm_check_extension(kvm_state, KVM_CAP_IRQFD_RESAMPLE)) {
!kvm_resamplefds_enabled()) {
return;
}
@ -568,8 +568,7 @@ static int vfio_enable_intx(VFIODevice *vdev)
* Only conditional to avoid generating error messages on platforms
* where we won't actually use the result anyway.
*/
if (kvm_irqfds_enabled() &&
kvm_check_extension(kvm_state, KVM_CAP_IRQFD_RESAMPLE)) {
if (kvm_irqfds_enabled() && kvm_resamplefds_enabled()) {
vdev->intx.route = pci_device_route_intx_to_irq(&vdev->pdev,
vdev->intx.pin);
}

View file

@ -781,7 +781,7 @@ static void lsi_do_command(LSIState *s)
}
assert(s->current == NULL);
s->current = g_malloc0(sizeof(lsi_request));
s->current = g_new0(lsi_request, 1);
s->current->tag = s->select_tag;
s->current->req = scsi_req_new(dev, s->current->tag, s->current_lun, buf,
s->current);

View file

@ -1018,8 +1018,7 @@ static int megasas_pd_get_info_submit(SCSIDevice *sdev, int lun,
size_t len, resid;
if (!cmd->iov_buf) {
cmd->iov_buf = g_malloc(dcmd_size);
memset(cmd->iov_buf, 0, dcmd_size);
cmd->iov_buf = g_malloc0(dcmd_size);
info = cmd->iov_buf;
info->inquiry_data[0] = 0x7f; /* Force PQual 0x3, PType 0x1f */
info->vpd_page83[0] = 0x7f;
@ -1221,8 +1220,7 @@ static int megasas_ld_get_info_submit(SCSIDevice *sdev, int lun,
uint64_t ld_size;
if (!cmd->iov_buf) {
cmd->iov_buf = g_malloc(dcmd_size);
memset(cmd->iov_buf, 0x0, dcmd_size);
cmd->iov_buf = g_malloc0(dcmd_size);
info = cmd->iov_buf;
megasas_setup_inquiry(cdb, 0x83, sizeof(info->vpd_page83));
req = scsi_req_new(sdev, cmd->index, lun, cdb, cmd);

View file

@ -49,6 +49,7 @@ do { printf("scsi-disk: " fmt , ## __VA_ARGS__); } while (0)
#define DEFAULT_DISCARD_GRANULARITY 4096
#define DEFAULT_MAX_UNMAP_SIZE (1 << 30) /* 1 GB */
#define DEFAULT_MAX_IO_SIZE INT_MAX /* 2 GB - 1 block */
typedef struct SCSIDiskState SCSIDiskState;
@ -79,6 +80,7 @@ struct SCSIDiskState
uint64_t port_wwn;
uint16_t port_index;
uint64_t max_unmap_size;
uint64_t max_io_size;
QEMUBH *bh;
char *version;
char *serial;
@ -635,6 +637,8 @@ static int scsi_disk_emulate_inquiry(SCSIRequest *req, uint8_t *outbuf)
s->qdev.conf.opt_io_size / s->qdev.blocksize;
unsigned int max_unmap_sectors =
s->max_unmap_size / s->qdev.blocksize;
unsigned int max_io_sectors =
s->max_io_size / s->qdev.blocksize;
if (s->qdev.type == TYPE_ROM) {
DPRINTF("Inquiry (EVPD[%02X] not supported for CDROM\n",
@ -651,6 +655,12 @@ static int scsi_disk_emulate_inquiry(SCSIRequest *req, uint8_t *outbuf)
outbuf[6] = (min_io_size >> 8) & 0xff;
outbuf[7] = min_io_size & 0xff;
/* maximum transfer length */
outbuf[8] = (max_io_sectors >> 24) & 0xff;
outbuf[9] = (max_io_sectors >> 16) & 0xff;
outbuf[10] = (max_io_sectors >> 8) & 0xff;
outbuf[11] = max_io_sectors & 0xff;
/* optimal transfer length */
outbuf[12] = (opt_io_size >> 24) & 0xff;
outbuf[13] = (opt_io_size >> 16) & 0xff;
@ -674,6 +684,17 @@ static int scsi_disk_emulate_inquiry(SCSIRequest *req, uint8_t *outbuf)
outbuf[29] = (unmap_sectors >> 16) & 0xff;
outbuf[30] = (unmap_sectors >> 8) & 0xff;
outbuf[31] = unmap_sectors & 0xff;
/* max write same size */
outbuf[36] = 0;
outbuf[37] = 0;
outbuf[38] = 0;
outbuf[39] = 0;
outbuf[40] = (max_io_sectors >> 24) & 0xff;
outbuf[41] = (max_io_sectors >> 16) & 0xff;
outbuf[42] = (max_io_sectors >> 8) & 0xff;
outbuf[43] = max_io_sectors & 0xff;
break;
}
case 0xb2: /* thin provisioning */
@ -2579,6 +2600,8 @@ static Property scsi_hd_properties[] = {
DEFINE_PROP_UINT16("port_index", SCSIDiskState, port_index, 0),
DEFINE_PROP_UINT64("max_unmap_size", SCSIDiskState, max_unmap_size,
DEFAULT_MAX_UNMAP_SIZE),
DEFINE_PROP_UINT64("max_io_size", SCSIDiskState, max_io_size,
DEFAULT_MAX_IO_SIZE),
DEFINE_BLOCK_CHS_PROPERTIES(SCSIDiskState, qdev.conf),
DEFINE_PROP_END_OF_LIST(),
};
@ -2625,6 +2648,8 @@ static Property scsi_cd_properties[] = {
DEFINE_PROP_UINT64("wwn", SCSIDiskState, wwn, 0),
DEFINE_PROP_UINT64("port_wwn", SCSIDiskState, port_wwn, 0),
DEFINE_PROP_UINT16("port_index", SCSIDiskState, port_index, 0),
DEFINE_PROP_UINT64("max_io_size", SCSIDiskState, max_io_size,
DEFAULT_MAX_IO_SIZE),
DEFINE_PROP_END_OF_LIST(),
};
@ -2690,6 +2715,8 @@ static Property scsi_disk_properties[] = {
DEFINE_PROP_UINT16("port_index", SCSIDiskState, port_index, 0),
DEFINE_PROP_UINT64("max_unmap_size", SCSIDiskState, max_unmap_size,
DEFAULT_MAX_UNMAP_SIZE),
DEFINE_PROP_UINT64("max_io_size", SCSIDiskState, max_io_size,
DEFAULT_MAX_IO_SIZE),
DEFINE_PROP_END_OF_LIST(),
};

View file

@ -298,8 +298,7 @@ static int32_t scsi_send_command(SCSIRequest *req, uint8_t *cmd)
#endif
if (r->req.cmd.xfer == 0) {
if (r->buf != NULL)
g_free(r->buf);
g_free(r->buf);
r->buflen = 0;
r->buf = NULL;
/* The request is used as the AIO opaque value, so add a ref. */
@ -314,8 +313,7 @@ static int32_t scsi_send_command(SCSIRequest *req, uint8_t *cmd)
}
if (r->buflen != r->req.cmd.xfer) {
if (r->buf != NULL)
g_free(r->buf);
g_free(r->buf);
r->buf = g_malloc(r->req.cmd.xfer);
r->buflen = r->req.cmd.xfer;
}

View file

@ -829,7 +829,7 @@ void virtio_scsi_common_realize(DeviceState *dev, Error **errp,
virtio_cleanup(vdev);
return;
}
s->cmd_vqs = g_malloc0(s->conf.num_queues * sizeof(VirtQueue *));
s->cmd_vqs = g_new0(VirtQueue *, s->conf.num_queues);
s->sense_size = VIRTIO_SCSI_SENSE_SIZE;
s->cdb_size = VIRTIO_SCSI_CDB_SIZE;

View file

@ -74,10 +74,10 @@
#define SDHC_CAPAB_MAXBLOCKLENGTH 512ul
/* Maximum clock frequency for SDclock in MHz
* value in range 10-63 MHz, 0 - not defined */
#define SDHC_CAPAB_BASECLKFREQ 0ul
#define SDHC_CAPAB_BASECLKFREQ 52ul
#define SDHC_CAPAB_TOUNIT 1ul /* Timeout clock unit 0 - kHz, 1 - MHz */
/* Timeout clock frequency 1-63, 0 - not defined */
#define SDHC_CAPAB_TOCLKFREQ 0ul
#define SDHC_CAPAB_TOCLKFREQ 52ul
/* Now check all parameters and calculate CAPABILITIES REGISTER value */
#if SDHC_CAPAB_64BITBUS > 1 || SDHC_CAPAB_18V > 1 || SDHC_CAPAB_30V > 1 || \
@ -198,12 +198,7 @@ static void sdhci_reset(SDHCIState *s)
s->stopped_state = sdhc_not_stopped;
}
static void sdhci_do_data_transfer(void *opaque)
{
SDHCIState *s = (SDHCIState *)opaque;
SDHCI_GET_CLASS(s)->data_transfer(s);
}
static void sdhci_data_transfer(void *opaque);
static void sdhci_send_command(SDHCIState *s)
{
@ -261,7 +256,7 @@ static void sdhci_send_command(SDHCIState *s)
if (s->blksize && (s->cmdreg & SDHC_CMD_DATA_PRESENT)) {
s->data_count = 0;
sdhci_do_data_transfer(s);
sdhci_data_transfer(s);
}
}
@ -367,9 +362,9 @@ static uint32_t sdhci_read_dataport(SDHCIState *s, unsigned size)
/* stop at gap request */
(s->stopped_state == sdhc_gap_read &&
!(s->prnsts & SDHC_DAT_LINE_ACTIVE))) {
SDHCI_GET_CLASS(s)->end_data_transfer(s);
sdhci_end_transfer(s);
} else { /* if there are more data, read next block from card */
SDHCI_GET_CLASS(s)->read_block_from_card(s);
sdhci_read_block_from_card(s);
}
break;
}
@ -410,7 +405,7 @@ static void sdhci_write_block_to_card(SDHCIState *s)
if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
((s->trnmod & SDHC_TRNS_MULTI) &&
(s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0))) {
SDHCI_GET_CLASS(s)->end_data_transfer(s);
sdhci_end_transfer(s);
} else if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
s->norintsts |= SDHC_NIS_WBUFRDY;
}
@ -422,7 +417,7 @@ static void sdhci_write_block_to_card(SDHCIState *s)
if (s->norintstsen & SDHC_EISEN_BLKGAP) {
s->norintsts |= SDHC_EIS_BLKGAP;
}
SDHCI_GET_CLASS(s)->end_data_transfer(s);
sdhci_end_transfer(s);
}
sdhci_update_irq(s);
@ -450,7 +445,7 @@ static void sdhci_write_dataport(SDHCIState *s, uint32_t value, unsigned size)
s->data_count = 0;
s->prnsts &= ~SDHC_SPACE_AVAILABLE;
if (s->prnsts & SDHC_DOING_WRITE) {
SDHCI_GET_CLASS(s)->write_block_to_card(s);
sdhci_write_block_to_card(s);
}
}
}
@ -537,7 +532,7 @@ static void sdhci_sdma_transfer_multi_blocks(SDHCIState *s)
}
if (s->blkcnt == 0) {
SDHCI_GET_CLASS(s)->end_data_transfer(s);
sdhci_end_transfer(s);
} else {
if (s->norintstsen & SDHC_NISEN_DMA) {
s->norintsts |= SDHC_NIS_DMA;
@ -571,7 +566,7 @@ static void sdhci_sdma_transfer_single_block(SDHCIState *s)
s->blkcnt--;
}
SDHCI_GET_CLASS(s)->end_data_transfer(s);
sdhci_end_transfer(s);
}
typedef struct ADMADescr {
@ -758,7 +753,7 @@ static void sdhci_do_adma(SDHCIState *s)
sdhci_update_irq(s);
}
SDHCI_GET_CLASS(s)->end_data_transfer(s);
sdhci_end_transfer(s);
return;
}
@ -771,9 +766,9 @@ static void sdhci_do_adma(SDHCIState *s)
/* Perform data transfer according to controller configuration */
static void sdhci_data_transfer(SDHCIState *s)
static void sdhci_data_transfer(void *opaque)
{
SDHCIClass *k = SDHCI_GET_CLASS(s);
SDHCIState *s = (SDHCIState *)opaque;
if (s->trnmod & SDHC_TRNS_DMA) {
switch (SDHC_DMA_TYPE(s->hostctl)) {
@ -784,9 +779,9 @@ static void sdhci_data_transfer(SDHCIState *s)
}
if ((s->blkcnt == 1) || !(s->trnmod & SDHC_TRNS_MULTI)) {
k->do_sdma_single(s);
sdhci_sdma_transfer_single_block(s);
} else {
k->do_sdma_multi(s);
sdhci_sdma_transfer_multi_blocks(s);
}
break;
@ -796,7 +791,7 @@ static void sdhci_data_transfer(SDHCIState *s)
break;
}
k->do_adma(s);
sdhci_do_adma(s);
break;
case SDHC_CTRL_ADMA2_32:
if (!(s->capareg & SDHC_CAN_DO_ADMA2)) {
@ -804,7 +799,7 @@ static void sdhci_data_transfer(SDHCIState *s)
break;
}
k->do_adma(s);
sdhci_do_adma(s);
break;
case SDHC_CTRL_ADMA2_64:
if (!(s->capareg & SDHC_CAN_DO_ADMA2) ||
@ -813,7 +808,7 @@ static void sdhci_data_transfer(SDHCIState *s)
break;
}
k->do_adma(s);
sdhci_do_adma(s);
break;
default:
ERRPRINT("Unsupported DMA type\n");
@ -823,11 +818,11 @@ static void sdhci_data_transfer(SDHCIState *s)
if ((s->trnmod & SDHC_TRNS_READ) && sd_data_ready(s->card)) {
s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
SDHC_DAT_LINE_ACTIVE;
SDHCI_GET_CLASS(s)->read_block_from_card(s);
sdhci_read_block_from_card(s);
} else {
s->prnsts |= SDHC_DOING_WRITE | SDHC_DAT_LINE_ACTIVE |
SDHC_SPACE_AVAILABLE | SDHC_DATA_INHIBIT;
SDHCI_GET_CLASS(s)->write_block_to_card(s);
sdhci_write_block_to_card(s);
}
}
}
@ -858,8 +853,9 @@ sdhci_buff_access_is_sequential(SDHCIState *s, unsigned byte_num)
return true;
}
static uint32_t sdhci_read(SDHCIState *s, unsigned int offset, unsigned size)
static uint64_t sdhci_read(void *opaque, hwaddr offset, unsigned size)
{
SDHCIState *s = (SDHCIState *)opaque;
uint32_t ret = 0;
switch (offset & ~0x3) {
@ -880,8 +876,8 @@ static uint32_t sdhci_read(SDHCIState *s, unsigned int offset, unsigned size)
break;
case SDHC_BDATA:
if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
ret = SDHCI_GET_CLASS(s)->bdata_read(s, size);
DPRINT_L2("read %ub: addr[0x%04x] -> %u(0x%x)\n", size, offset,
ret = sdhci_read_dataport(s, size);
DPRINT_L2("read %ub: addr[0x%04x] -> %u(0x%x)\n", size, (int)offset,
ret, ret);
return ret;
}
@ -927,13 +923,13 @@ static uint32_t sdhci_read(SDHCIState *s, unsigned int offset, unsigned size)
ret = (SD_HOST_SPECv2_VERS << 16) | sdhci_slotint(s);
break;
default:
ERRPRINT("bad %ub read: addr[0x%04x]\n", size, offset);
ERRPRINT("bad %ub read: addr[0x%04x]\n", size, (int)offset);
break;
}
ret >>= (offset & 0x3) * 8;
ret &= (1ULL << (size * 8)) - 1;
DPRINT_L2("read %ub: addr[0x%04x] -> %u(0x%x)\n", size, offset, ret, ret);
DPRINT_L2("read %ub: addr[0x%04x] -> %u(0x%x)\n", size, (int)offset, ret, ret);
return ret;
}
@ -948,10 +944,10 @@ static inline void sdhci_blkgap_write(SDHCIState *s, uint8_t value)
(s->blkgap & SDHC_STOP_AT_GAP_REQ) == 0) {
if (s->stopped_state == sdhc_gap_read) {
s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ;
SDHCI_GET_CLASS(s)->read_block_from_card(s);
sdhci_read_block_from_card(s);
} else {
s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_WRITE;
SDHCI_GET_CLASS(s)->write_block_to_card(s);
sdhci_write_block_to_card(s);
}
s->stopped_state = sdhc_not_stopped;
} else if (!s->stopped_state && (value & SDHC_STOP_AT_GAP_REQ)) {
@ -967,7 +963,7 @@ static inline void sdhci_reset_write(SDHCIState *s, uint8_t value)
{
switch (value) {
case SDHC_RESET_ALL:
DEVICE_GET_CLASS(s)->reset(DEVICE(s));
sdhci_reset(s);
break;
case SDHC_RESET_CMD:
s->prnsts &= ~SDHC_CMD_INHIBIT;
@ -987,10 +983,12 @@ static inline void sdhci_reset_write(SDHCIState *s, uint8_t value)
}
static void
sdhci_write(SDHCIState *s, unsigned int offset, uint32_t value, unsigned size)
sdhci_write(void *opaque, hwaddr offset, uint64_t val, unsigned size)
{
SDHCIState *s = (SDHCIState *)opaque;
unsigned shift = 8 * (offset & 0x3);
uint32_t mask = ~(((1ULL << (size * 8)) - 1) << shift);
uint32_t value = val;
value <<= shift;
switch (offset & ~0x3) {
@ -1000,7 +998,7 @@ sdhci_write(SDHCIState *s, unsigned int offset, uint32_t value, unsigned size)
/* Writing to last byte of sdmasysad might trigger transfer */
if (!(mask & 0xFF000000) && TRANSFERRING_DATA(s->prnsts) && s->blkcnt &&
s->blksize && SDHC_DMA_TYPE(s->hostctl) == SDHC_CTRL_SDMA) {
SDHCI_GET_CLASS(s)->do_sdma_multi(s);
sdhci_sdma_transfer_multi_blocks(s);
}
break;
case SDHC_BLKSIZE:
@ -1022,15 +1020,15 @@ sdhci_write(SDHCIState *s, unsigned int offset, uint32_t value, unsigned size)
MASKED_WRITE(s->cmdreg, mask >> 16, value >> 16);
/* Writing to the upper byte of CMDREG triggers SD command generation */
if ((mask & 0xFF000000) || !SDHCI_GET_CLASS(s)->can_issue_command(s)) {
if ((mask & 0xFF000000) || !sdhci_can_issue_command(s)) {
break;
}
SDHCI_GET_CLASS(s)->send_command(s);
sdhci_send_command(s);
break;
case SDHC_BDATA:
if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
SDHCI_GET_CLASS(s)->bdata_write(s, value >> shift, size);
sdhci_write_dataport(s, value >> shift, size);
}
break;
case SDHC_HOSTCTL:
@ -1111,32 +1109,16 @@ sdhci_write(SDHCIState *s, unsigned int offset, uint32_t value, unsigned size)
break;
default:
ERRPRINT("bad %ub write offset: addr[0x%04x] <- %u(0x%x)\n",
size, offset, value >> shift, value >> shift);
size, (int)offset, value >> shift, value >> shift);
break;
}
DPRINT_L2("write %ub: addr[0x%04x] <- %u(0x%x)\n",
size, offset, value >> shift, value >> shift);
}
static uint64_t
sdhci_readfn(void *opaque, hwaddr offset, unsigned size)
{
SDHCIState *s = (SDHCIState *)opaque;
return SDHCI_GET_CLASS(s)->mem_read(s, offset, size);
}
static void
sdhci_writefn(void *opaque, hwaddr off, uint64_t val, unsigned sz)
{
SDHCIState *s = (SDHCIState *)opaque;
SDHCI_GET_CLASS(s)->mem_write(s, off, val, sz);
size, (int)offset, value >> shift, value >> shift);
}
static const MemoryRegionOps sdhci_mmio_ops = {
.read = sdhci_readfn,
.write = sdhci_writefn,
.read = sdhci_read,
.write = sdhci_write,
.valid = {
.min_access_size = 1,
.max_access_size = 4,
@ -1160,9 +1142,8 @@ static inline unsigned int sdhci_get_fifolen(SDHCIState *s)
}
}
static void sdhci_initfn(Object *obj)
static void sdhci_initfn(SDHCIState *s)
{
SDHCIState *s = SDHCI(obj);
DriveInfo *di;
di = drive_get_next(IF_SD);
@ -1175,13 +1156,11 @@ static void sdhci_initfn(Object *obj)
sd_set_cb(s->card, s->ro_cb, s->eject_cb);
s->insert_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_raise_insertion_irq, s);
s->transfer_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_do_data_transfer, s);
s->transfer_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_data_transfer, s);
}
static void sdhci_uninitfn(Object *obj)
static void sdhci_uninitfn(SDHCIState *s)
{
SDHCIState *s = SDHCI(obj);
timer_del(s->insert_timer);
timer_free(s->insert_timer);
timer_del(s->transfer_timer);
@ -1241,9 +1220,64 @@ static Property sdhci_properties[] = {
DEFINE_PROP_END_OF_LIST(),
};
static void sdhci_realize(DeviceState *dev, Error ** errp)
static int sdhci_pci_init(PCIDevice *dev)
{
SDHCIState *s = SDHCI(dev);
SDHCIState *s = PCI_SDHCI(dev);
dev->config[PCI_CLASS_PROG] = 0x01; /* Standard Host supported DMA */
dev->config[PCI_INTERRUPT_PIN] = 0x01; /* interrupt pin A */
sdhci_initfn(s);
s->buf_maxsz = sdhci_get_fifolen(s);
s->fifo_buffer = g_malloc0(s->buf_maxsz);
s->irq = pci_allocate_irq(dev);
memory_region_init_io(&s->iomem, OBJECT(s), &sdhci_mmio_ops, s, "sdhci",
SDHC_REGISTERS_MAP_SIZE);
pci_register_bar(dev, 0, 0, &s->iomem);
return 0;
}
static void sdhci_pci_exit(PCIDevice *dev)
{
SDHCIState *s = PCI_SDHCI(dev);
sdhci_uninitfn(s);
}
static void sdhci_pci_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
k->init = sdhci_pci_init;
k->exit = sdhci_pci_exit;
k->vendor_id = PCI_VENDOR_ID_REDHAT;
k->device_id = PCI_DEVICE_ID_REDHAT_SDHCI;
k->class_id = PCI_CLASS_SYSTEM_SDHCI;
set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
dc->vmsd = &sdhci_vmstate;
dc->props = sdhci_properties;
}
static const TypeInfo sdhci_pci_info = {
.name = TYPE_PCI_SDHCI,
.parent = TYPE_PCI_DEVICE,
.instance_size = sizeof(SDHCIState),
.class_init = sdhci_pci_class_init,
};
static void sdhci_sysbus_init(Object *obj)
{
SDHCIState *s = SYSBUS_SDHCI(obj);
sdhci_initfn(s);
}
static void sdhci_sysbus_finalize(Object *obj)
{
SDHCIState *s = SYSBUS_SDHCI(obj);
sdhci_uninitfn(s);
}
static void sdhci_sysbus_realize(DeviceState *dev, Error ** errp)
{
SDHCIState *s = SYSBUS_SDHCI(dev);
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
s->buf_maxsz = sdhci_get_fifolen(s);
@ -1254,51 +1288,28 @@ static void sdhci_realize(DeviceState *dev, Error ** errp)
sysbus_init_mmio(sbd, &s->iomem);
}
static void sdhci_generic_reset(DeviceState *ds)
{
SDHCIState *s = SDHCI(ds);
SDHCI_GET_CLASS(s)->reset(s);
}
static void sdhci_class_init(ObjectClass *klass, void *data)
static void sdhci_sysbus_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
SDHCIClass *k = SDHCI_CLASS(klass);
dc->vmsd = &sdhci_vmstate;
dc->props = sdhci_properties;
dc->reset = sdhci_generic_reset;
dc->realize = sdhci_realize;
k->reset = sdhci_reset;
k->mem_read = sdhci_read;
k->mem_write = sdhci_write;
k->send_command = sdhci_send_command;
k->can_issue_command = sdhci_can_issue_command;
k->data_transfer = sdhci_data_transfer;
k->end_data_transfer = sdhci_end_transfer;
k->do_sdma_single = sdhci_sdma_transfer_single_block;
k->do_sdma_multi = sdhci_sdma_transfer_multi_blocks;
k->do_adma = sdhci_do_adma;
k->read_block_from_card = sdhci_read_block_from_card;
k->write_block_to_card = sdhci_write_block_to_card;
k->bdata_read = sdhci_read_dataport;
k->bdata_write = sdhci_write_dataport;
dc->realize = sdhci_sysbus_realize;
}
static const TypeInfo sdhci_type_info = {
.name = TYPE_SDHCI,
static const TypeInfo sdhci_sysbus_info = {
.name = TYPE_SYSBUS_SDHCI,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(SDHCIState),
.instance_init = sdhci_initfn,
.instance_finalize = sdhci_uninitfn,
.class_init = sdhci_class_init,
.class_size = sizeof(SDHCIClass)
.instance_init = sdhci_sysbus_init,
.instance_finalize = sdhci_sysbus_finalize,
.class_init = sdhci_sysbus_class_init,
};
static void sdhci_register_types(void)
{
type_register_static(&sdhci_type_info);
type_register_static(&sdhci_pci_info);
type_register_static(&sdhci_sysbus_info);
}
type_init(sdhci_register_types)

View file

@ -26,6 +26,7 @@
#define SDHCI_H
#include "qemu-common.h"
#include "hw/pci/pci.h"
#include "hw/sysbus.h"
#include "hw/sd.h"
@ -232,7 +233,10 @@ enum {
/* SD/MMC host controller state */
typedef struct SDHCIState {
SysBusDevice busdev;
union {
PCIDevice pcidev;
SysBusDevice busdev;
};
SDState *card;
MemoryRegion iomem;
@ -279,34 +283,13 @@ typedef struct SDHCIState {
/* RO Host Controller Version Register always reads as 0x2401 */
} SDHCIState;
typedef struct SDHCIClass {
SysBusDeviceClass busdev_class;
void (*reset)(SDHCIState *s);
uint32_t (*mem_read)(SDHCIState *s, unsigned int offset, unsigned size);
void (*mem_write)(SDHCIState *s, unsigned int offset, uint32_t value,
unsigned size);
void (*send_command)(SDHCIState *s);
bool (*can_issue_command)(SDHCIState *s);
void (*data_transfer)(SDHCIState *s);
void (*end_data_transfer)(SDHCIState *s);
void (*do_sdma_single)(SDHCIState *s);
void (*do_sdma_multi)(SDHCIState *s);
void (*do_adma)(SDHCIState *s);
void (*read_block_from_card)(SDHCIState *s);
void (*write_block_to_card)(SDHCIState *s);
uint32_t (*bdata_read)(SDHCIState *s, unsigned size);
void (*bdata_write)(SDHCIState *s, uint32_t value, unsigned size);
} SDHCIClass;
extern const VMStateDescription sdhci_vmstate;
#define TYPE_SDHCI "generic-sdhci"
#define SDHCI(obj) \
OBJECT_CHECK(SDHCIState, (obj), TYPE_SDHCI)
#define SDHCI_CLASS(klass) \
OBJECT_CLASS_CHECK(SDHCIClass, (klass), TYPE_SDHCI)
#define SDHCI_GET_CLASS(obj) \
OBJECT_GET_CLASS(SDHCIClass, (obj), TYPE_SDHCI)
#define TYPE_PCI_SDHCI "sdhci-pci"
#define PCI_SDHCI(obj) OBJECT_CHECK(SDHCIState, (obj), TYPE_PCI_SDHCI)
#define TYPE_SYSBUS_SDHCI "generic-sdhci"
#define SYSBUS_SDHCI(obj) \
OBJECT_CHECK(SDHCIState, (obj), TYPE_SYSBUS_SDHCI)
#endif /* SDHCI_H */

View file

@ -145,6 +145,7 @@ struct TranslationBlock {
uint16_t cflags; /* compile flags */
#define CF_COUNT_MASK 0x7fff
#define CF_LAST_IO 0x8000 /* Last insn may be an IO access. */
#define CF_NOCACHE 0x10000 /* To be freed after execution */
void *tc_ptr; /* pointer to the translated code */
/* next matching tb for physical address. */

View file

@ -89,6 +89,7 @@ typedef struct APICCommonClass
void (*external_nmi)(APICCommonState *s);
void (*pre_save)(APICCommonState *s);
void (*post_load)(APICCommonState *s);
void (*reset)(APICCommonState *s);
} APICCommonClass;
struct APICCommonState {

View file

@ -88,6 +88,7 @@
#define PCI_DEVICE_ID_REDHAT_SERIAL2 0x0003
#define PCI_DEVICE_ID_REDHAT_SERIAL4 0x0004
#define PCI_DEVICE_ID_REDHAT_TEST 0x0005
#define PCI_DEVICE_ID_REDHAT_SDHCI 0x0006
#define PCI_DEVICE_ID_REDHAT_QXL 0x0100
#define FMT_PCIBUS PRIx64

View file

@ -31,6 +31,7 @@
#define PCI_CLASS_MEMORY_RAM 0x0500
#define PCI_CLASS_SYSTEM_SDHCI 0x0805
#define PCI_CLASS_SYSTEM_OTHER 0x0880
#define PCI_CLASS_SERIAL_USB 0x0c03

View file

@ -36,12 +36,20 @@
* is suspended, and it will reflect system time changes the host may
* undergo (e.g. due to NTP). The host clock has the same precision as
* the virtual clock.
*
* @QEMU_CLOCK_VIRTUAL_RT: realtime clock used for icount warp
*
* Outside icount mode, this clock is the same as @QEMU_CLOCK_VIRTUAL.
* In icount mode, this clock counts nanoseconds while the virtual
* machine is running. It is used to increase @QEMU_CLOCK_VIRTUAL
* while the CPUs are sleeping and thus not executing instructions.
*/
typedef enum {
QEMU_CLOCK_REALTIME = 0,
QEMU_CLOCK_VIRTUAL = 1,
QEMU_CLOCK_HOST = 2,
QEMU_CLOCK_VIRTUAL_RT = 3,
QEMU_CLOCK_MAX
} QEMUClockType;
@ -743,6 +751,7 @@ static inline int64_t get_clock(void)
#endif
/* icount */
int64_t cpu_get_icount_raw(void);
int64_t cpu_get_icount(void);
int64_t cpu_get_clock(void);
int64_t cpu_get_clock_offset(void);

View file

@ -45,6 +45,7 @@ extern bool kvm_async_interrupts_allowed;
extern bool kvm_halt_in_kernel_allowed;
extern bool kvm_eventfds_allowed;
extern bool kvm_irqfds_allowed;
extern bool kvm_resamplefds_allowed;
extern bool kvm_msi_via_irqfd_allowed;
extern bool kvm_gsi_routing_allowed;
extern bool kvm_gsi_direct_mapping;
@ -101,6 +102,15 @@ extern bool kvm_readonly_mem_allowed;
*/
#define kvm_irqfds_enabled() (kvm_irqfds_allowed)
/**
* kvm_resamplefds_enabled:
*
* Returns: true if we can use resamplefds to inject interrupts into
* a KVM CPU (ie the kernel supports resamplefds and we are running
* with a configuration where it is meaningful to use them).
*/
#define kvm_resamplefds_enabled() (kvm_resamplefds_allowed)
/**
* kvm_msi_via_irqfd_enabled:
*

View file

@ -120,6 +120,7 @@ bool kvm_async_interrupts_allowed;
bool kvm_halt_in_kernel_allowed;
bool kvm_eventfds_allowed;
bool kvm_irqfds_allowed;
bool kvm_resamplefds_allowed;
bool kvm_msi_via_irqfd_allowed;
bool kvm_gsi_routing_allowed;
bool kvm_gsi_direct_mapping;
@ -416,7 +417,7 @@ static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
{
KVMState *s = kvm_state;
unsigned long size, allocated_size = 0;
KVMDirtyLog d;
KVMDirtyLog d = {};
KVMSlot *mem;
int ret = 0;
hwaddr start_addr = section->offset_within_address_space;
@ -1276,7 +1277,7 @@ static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
{
struct kvm_irq_routing_entry kroute;
struct kvm_irq_routing_entry kroute = {};
int virq;
if (!kvm_gsi_routing_enabled()) {
@ -1584,6 +1585,12 @@ static int kvm_init(MachineState *ms)
kvm_eventfds_allowed =
(kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
kvm_irqfds_allowed =
(kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
kvm_resamplefds_allowed =
(kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
ret = kvm_arch_init(s);
if (ret < 0) {
goto err;

Binary file not shown.

View file

@ -76,7 +76,31 @@ boot_kernel:
copy_kernel:
/* Compute initrd address */
/* Read info block in low memory (0x10000 or 0x90000) */
read_fw FW_CFG_SETUP_ADDR
shr $4, %eax
mov %eax, %es
xor %edi, %edi
read_fw_blob_addr32_edi(FW_CFG_SETUP)
cmpw $0x203, %es:0x206 // if protocol >= 0x203
jae 1f // have initrd_max
movl $0x37ffffff, %es:0x22c // else assume 0x37ffffff
1:
/* Check if using kernel-specified initrd address */
read_fw FW_CFG_INITRD_ADDR
mov %eax, %edi // (load_kernel wants it in %edi)
read_fw FW_CFG_INITRD_SIZE // find end of initrd
add %edi, %eax
xor %es:0x22c, %eax // if it matches es:0x22c
and $-4096, %eax // (apart from padding for page)
jz load_kernel // then initrd is not at top
// of memory
/* pc.c placed the initrd at end of memory. Compute a better
* initrd address based on e801 data.
*/
mov $0xe801, %ax
xor %cx, %cx
xor %dx, %dx
@ -107,7 +131,9 @@ copy_kernel:
read_fw FW_CFG_INITRD_SIZE
subl %eax, %edi
andl $-4096, %edi /* EDI = start of initrd */
movl %edi, %es:0x218 /* put it in the header */
load_kernel:
/* We need to load the kernel into memory we can't access in 16 bit
mode, so let's get into 32 bit mode, write the kernel and jump
back again. */
@ -139,19 +165,10 @@ copy_kernel:
/* We're now running in 16-bit CS, but 32-bit ES! */
/* Load kernel and initrd */
pushl %edi
read_fw_blob_addr32_edi(FW_CFG_INITRD)
read_fw_blob_addr32(FW_CFG_KERNEL)
read_fw_blob_addr32(FW_CFG_CMDLINE)
read_fw FW_CFG_SETUP_ADDR
mov %eax, %edi
mov %eax, %ebx
read_fw_blob_addr32_edi(FW_CFG_SETUP)
/* Update the header with the initrd address we chose above */
popl %es:0x218(%ebx)
/* And now jump into Linux! */
mov $0, %eax
mov %eax, %cr0

View file

@ -573,6 +573,8 @@ int64_t qemu_clock_get_ns(QEMUClockType type)
notifier_list_notify(&clock->reset_notifiers, &now);
}
return now;
case QEMU_CLOCK_VIRTUAL_RT:
return cpu_get_clock();
}
}

View file

@ -78,9 +78,7 @@ static int x86_64_write_elf64_note(WriteCoreDumpFunction f,
descsz = sizeof(x86_64_elf_prstatus);
note_size = ((sizeof(Elf64_Nhdr) + 3) / 4 + (name_size + 3) / 4 +
(descsz + 3) / 4) * 4;
note = g_malloc(note_size);
memset(note, 0, note_size);
note = g_malloc0(note_size);
note->n_namesz = cpu_to_le32(name_size);
note->n_descsz = cpu_to_le32(descsz);
note->n_type = cpu_to_le32(NT_PRSTATUS);
@ -159,9 +157,7 @@ static int x86_write_elf64_note(WriteCoreDumpFunction f, CPUX86State *env,
descsz = sizeof(x86_elf_prstatus);
note_size = ((sizeof(Elf64_Nhdr) + 3) / 4 + (name_size + 3) / 4 +
(descsz + 3) / 4) * 4;
note = g_malloc(note_size);
memset(note, 0, note_size);
note = g_malloc0(note_size);
note->n_namesz = cpu_to_le32(name_size);
note->n_descsz = cpu_to_le32(descsz);
note->n_type = cpu_to_le32(NT_PRSTATUS);
@ -216,9 +212,7 @@ int x86_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
descsz = sizeof(x86_elf_prstatus);
note_size = ((sizeof(Elf32_Nhdr) + 3) / 4 + (name_size + 3) / 4 +
(descsz + 3) / 4) * 4;
note = g_malloc(note_size);
memset(note, 0, note_size);
note = g_malloc0(note_size);
note->n_namesz = cpu_to_le32(name_size);
note->n_descsz = cpu_to_le32(descsz);
note->n_type = cpu_to_le32(NT_PRSTATUS);
@ -345,9 +339,7 @@ static inline int cpu_write_qemu_note(WriteCoreDumpFunction f,
}
note_size = ((note_head_size + 3) / 4 + (name_size + 3) / 4 +
(descsz + 3) / 4) * 4;
note = g_malloc(note_size);
memset(note, 0, note_size);
note = g_malloc0(note_size);
if (type == 0) {
note32 = note;
note32->n_namesz = cpu_to_le32(name_size);

View file

@ -274,6 +274,17 @@ static const char *cpuid_apm_edx_feature_name[] = {
NULL, NULL, NULL, NULL,
};
static const char *cpuid_xsave_feature_name[] = {
"xsaveopt", "xsavec", "xgetbv1", "xsaves",
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
};
#define I486_FEATURES (CPUID_FP87 | CPUID_VME | CPUID_PSE)
#define PENTIUM_FEATURES (I486_FEATURES | CPUID_DE | CPUID_TSC | \
CPUID_MSR | CPUID_MCE | CPUID_CX8 | CPUID_MMX | CPUID_APIC)
@ -391,6 +402,13 @@ static FeatureWordInfo feature_word_info[FEATURE_WORDS] = {
.tcg_features = TCG_APM_FEATURES,
.unmigratable_flags = CPUID_APM_INVTSC,
},
[FEAT_XSAVE] = {
.feat_names = cpuid_xsave_feature_name,
.cpuid_eax = 0xd,
.cpuid_needs_ecx = true, .cpuid_ecx = 1,
.cpuid_reg = R_EAX,
.tcg_features = 0,
},
};
typedef struct X86RegisterInfo32 {
@ -742,9 +760,9 @@ static X86CPUDefinition builtin_x86_defs[] = {
.family = 15,
.model = 6,
.stepping = 1,
/* Missing: CPUID_VME, CPUID_HT */
/* Missing: CPUID_HT */
.features[FEAT_1_EDX] =
PPRO_FEATURES |
PPRO_FEATURES | CPUID_VME |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA |
CPUID_PSE36,
/* Missing: CPUID_EXT_POPCNT, CPUID_EXT_MONITOR */
@ -784,7 +802,7 @@ static X86CPUDefinition builtin_x86_defs[] = {
.model = 6,
.stepping = 1,
.features[FEAT_1_EDX] =
PPRO_FEATURES |
PPRO_FEATURES | CPUID_VME |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_PSE36,
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3,
@ -910,7 +928,7 @@ static X86CPUDefinition builtin_x86_defs[] = {
.model = 15,
.stepping = 3,
.features[FEAT_1_EDX] =
CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
@ -932,7 +950,7 @@ static X86CPUDefinition builtin_x86_defs[] = {
.model = 23,
.stepping = 3,
.features[FEAT_1_EDX] =
CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
@ -955,7 +973,7 @@ static X86CPUDefinition builtin_x86_defs[] = {
.model = 26,
.stepping = 3,
.features[FEAT_1_EDX] =
CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
@ -978,7 +996,7 @@ static X86CPUDefinition builtin_x86_defs[] = {
.model = 44,
.stepping = 1,
.features[FEAT_1_EDX] =
CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
@ -1002,7 +1020,7 @@ static X86CPUDefinition builtin_x86_defs[] = {
.model = 42,
.stepping = 1,
.features[FEAT_1_EDX] =
CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
@ -1018,9 +1036,43 @@ static X86CPUDefinition builtin_x86_defs[] = {
CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT,
.xlevel = 0x8000000A,
.model_id = "Intel Xeon E312xx (Sandy Bridge)",
},
{
.name = "IvyBridge",
.level = 0xd,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 58,
.stepping = 9,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_POPCNT |
CPUID_EXT_X2APIC | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ |
CPUID_EXT_SSE3 | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
.features[FEAT_7_0_EBX] =
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_ERMS,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT,
.xlevel = 0x8000000A,
.model_id = "Intel Xeon E3-12xx v2 (Ivy Bridge)",
},
{
.name = "Haswell",
.level = 0xd,
@ -1029,7 +1081,7 @@ static X86CPUDefinition builtin_x86_defs[] = {
.model = 60,
.stepping = 1,
.features[FEAT_1_EDX] =
CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
@ -1040,7 +1092,7 @@ static X86CPUDefinition builtin_x86_defs[] = {
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
CPUID_EXT_PCID,
CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
@ -1051,6 +1103,8 @@ static X86CPUDefinition builtin_x86_defs[] = {
CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
CPUID_7_0_EBX_RTM,
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT,
.xlevel = 0x8000000A,
.model_id = "Intel Core Processor (Haswell)",
},
@ -1062,7 +1116,7 @@ static X86CPUDefinition builtin_x86_defs[] = {
.model = 61,
.stepping = 2,
.features[FEAT_1_EDX] =
CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
@ -1073,7 +1127,7 @@ static X86CPUDefinition builtin_x86_defs[] = {
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
CPUID_EXT_PCID,
CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
@ -1085,6 +1139,8 @@ static X86CPUDefinition builtin_x86_defs[] = {
CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
CPUID_7_0_EBX_SMAP,
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT,
.xlevel = 0x8000000A,
.model_id = "Intel Core Processor (Broadwell)",
},
@ -1096,7 +1152,7 @@ static X86CPUDefinition builtin_x86_defs[] = {
.model = 6,
.stepping = 1,
.features[FEAT_1_EDX] =
CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
@ -1121,7 +1177,7 @@ static X86CPUDefinition builtin_x86_defs[] = {
.model = 6,
.stepping = 1,
.features[FEAT_1_EDX] =
CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
@ -1149,7 +1205,7 @@ static X86CPUDefinition builtin_x86_defs[] = {
.model = 6,
.stepping = 1,
.features[FEAT_1_EDX] =
CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
@ -1179,7 +1235,7 @@ static X86CPUDefinition builtin_x86_defs[] = {
.model = 1,
.stepping = 2,
.features[FEAT_1_EDX] =
CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
@ -1202,6 +1258,7 @@ static X86CPUDefinition builtin_x86_defs[] = {
CPUID_EXT3_3DNOWPREFETCH | CPUID_EXT3_MISALIGNSSE |
CPUID_EXT3_SSE4A | CPUID_EXT3_ABM | CPUID_EXT3_SVM |
CPUID_EXT3_LAHF_LM,
/* no xsaveopt! */
.xlevel = 0x8000001A,
.model_id = "AMD Opteron 62xx class CPU",
},
@ -1213,7 +1270,7 @@ static X86CPUDefinition builtin_x86_defs[] = {
.model = 2,
.stepping = 0,
.features[FEAT_1_EDX] =
CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
@ -1236,6 +1293,7 @@ static X86CPUDefinition builtin_x86_defs[] = {
CPUID_EXT3_3DNOWPREFETCH | CPUID_EXT3_MISALIGNSSE |
CPUID_EXT3_SSE4A | CPUID_EXT3_ABM | CPUID_EXT3_SVM |
CPUID_EXT3_LAHF_LM,
/* no xsaveopt! */
.xlevel = 0x8000001A,
.model_id = "AMD Opteron 63xx class CPU",
},
@ -1530,7 +1588,7 @@ static char *x86_cpuid_get_vendor(Object *obj, Error **errp)
CPUX86State *env = &cpu->env;
char *value;
value = (char *)g_malloc(CPUID_VENDOR_SZ + 1);
value = g_malloc(CPUID_VENDOR_SZ + 1);
x86_cpu_vendor_words2str(value, env->cpuid_vendor1, env->cpuid_vendor2,
env->cpuid_vendor3);
return value;
@ -2377,7 +2435,7 @@ void cpu_x86_cpuid(CPUX86State *env, uint32_t index, uint32_t count,
*eax |= kvm_mask & (XSTATE_FP | XSTATE_SSE);
*ebx = *ecx;
} else if (count == 1) {
*eax = kvm_arch_get_supported_cpuid(s, 0xd, 1, R_EAX);
*eax = env->features[FEAT_XSAVE];
} else if (count < ARRAY_SIZE(ext_save_areas)) {
const ExtSaveArea *esa = &ext_save_areas[count];
if ((env->features[esa->feature] & esa->bits) == esa->bits &&

View file

@ -28,6 +28,9 @@
#define TARGET_LONG_BITS 32
#endif
/* Maximum instruction code size */
#define TARGET_MAX_INSN_SIZE 16
/* target supports implicit self modifying code */
#define TARGET_HAS_SMC
/* support for self modifying code even if the modified instruction is
@ -389,6 +392,7 @@
#define MSR_VM_HSAVE_PA 0xc0010117
#define MSR_IA32_BNDCFGS 0x00000d90
#define MSR_IA32_XSS 0x00000da0
#define XSTATE_FP (1ULL << 0)
#define XSTATE_SSE (1ULL << 1)
@ -411,6 +415,7 @@ typedef enum FeatureWord {
FEAT_C000_0001_EDX, /* CPUID[C000_0001].EDX */
FEAT_KVM, /* CPUID[4000_0001].EAX (KVM_CPUID_FEATURES) */
FEAT_SVM, /* CPUID[8000_000A].EDX */
FEAT_XSAVE, /* CPUID[EAX=0xd,ECX=1].EAX */
FEATURE_WORDS,
} FeatureWord;
@ -571,6 +576,11 @@ typedef uint32_t FeatureWordArray[FEATURE_WORDS];
#define CPUID_7_0_EBX_AVX512ER (1U << 27) /* AVX-512 Exponential and Reciprocal */
#define CPUID_7_0_EBX_AVX512CD (1U << 28) /* AVX-512 Conflict Detection */
#define CPUID_XSAVE_XSAVEOPT (1U << 0)
#define CPUID_XSAVE_XSAVEC (1U << 1)
#define CPUID_XSAVE_XGETBV1 (1U << 2)
#define CPUID_XSAVE_XSAVES (1U << 3)
/* CPUID[0x80000007].EDX flags: */
#define CPUID_APM_INVTSC (1U << 8)
@ -1019,6 +1029,7 @@ typedef struct CPUX86State {
uint64_t xstate_bv;
uint64_t xcr0;
uint64_t xss;
TPRAccess tpr_access_type;
} CPUX86State;

View file

@ -80,6 +80,7 @@ static bool has_msr_hv_hypercall;
static bool has_msr_hv_vapic;
static bool has_msr_hv_tsc;
static bool has_msr_mtrr;
static bool has_msr_xss;
static bool has_msr_architectural_pmu;
static uint32_t num_architectural_pmu_counters;
@ -95,7 +96,7 @@ static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
int r, size;
size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
cpuid = g_malloc0(size);
cpuid->nent = max;
r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
if (r == 0 && cpuid->nent >= max) {
@ -277,7 +278,7 @@ static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
return;
}
}
page = g_malloc(sizeof(HWPoisonPage));
page = g_new(HWPoisonPage, 1);
page->ram_addr = ram_addr;
QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
}
@ -826,6 +827,10 @@ static int kvm_get_supported_msrs(KVMState *s)
has_msr_bndcfgs = true;
continue;
}
if (kvm_msr_list->indices[i] == MSR_IA32_XSS) {
has_msr_xss = true;
continue;
}
}
}
@ -1085,7 +1090,7 @@ static int kvm_put_xsave(X86CPU *cpu)
static int kvm_put_xcrs(X86CPU *cpu)
{
CPUX86State *env = &cpu->env;
struct kvm_xcrs xcrs;
struct kvm_xcrs xcrs = {};
if (!kvm_has_xcrs()) {
return 0;
@ -1152,6 +1157,7 @@ static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
uint32_t index, uint64_t value)
{
entry->index = index;
entry->reserved = 0;
entry->data = value;
}
@ -1170,7 +1176,9 @@ static int kvm_put_tscdeadline_msr(X86CPU *cpu)
kvm_msr_entry_set(&msrs[0], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
msr_data.info.nmsrs = 1;
msr_data.info = (struct kvm_msrs) {
.nmsrs = 1,
};
return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
}
@ -1190,7 +1198,11 @@ static int kvm_put_msr_feature_control(X86CPU *cpu)
kvm_msr_entry_set(&msr_data.entry, MSR_IA32_FEATURE_CONTROL,
cpu->env.msr_ia32_feature_control);
msr_data.info.nmsrs = 1;
msr_data.info = (struct kvm_msrs) {
.nmsrs = 1,
};
return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
}
@ -1224,6 +1236,9 @@ static int kvm_put_msrs(X86CPU *cpu, int level)
if (has_msr_bndcfgs) {
kvm_msr_entry_set(&msrs[n++], MSR_IA32_BNDCFGS, env->msr_bndcfgs);
}
if (has_msr_xss) {
kvm_msr_entry_set(&msrs[n++], MSR_IA32_XSS, env->xss);
}
#ifdef TARGET_X86_64
if (lm_capable_kernel) {
kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
@ -1339,7 +1354,9 @@ static int kvm_put_msrs(X86CPU *cpu, int level)
}
}
msr_data.info.nmsrs = n;
msr_data.info = (struct kvm_msrs) {
.nmsrs = n,
};
return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
@ -1570,6 +1587,10 @@ static int kvm_get_msrs(X86CPU *cpu)
if (has_msr_bndcfgs) {
msrs[n++].index = MSR_IA32_BNDCFGS;
}
if (has_msr_xss) {
msrs[n++].index = MSR_IA32_XSS;
}
if (!env->tsc_valid) {
msrs[n++].index = MSR_IA32_TSC;
@ -1646,7 +1667,10 @@ static int kvm_get_msrs(X86CPU *cpu)
}
}
msr_data.info.nmsrs = n;
msr_data.info = (struct kvm_msrs) {
.nmsrs = n,
};
ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
if (ret < 0) {
return ret;
@ -1717,6 +1741,9 @@ static int kvm_get_msrs(X86CPU *cpu)
case MSR_IA32_BNDCFGS:
env->msr_bndcfgs = msrs[i].data;
break;
case MSR_IA32_XSS:
env->xss = msrs[i].data;
break;
default:
if (msrs[i].index >= MSR_MC0_CTL &&
msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
@ -1872,7 +1899,7 @@ static int kvm_put_apic(X86CPU *cpu)
static int kvm_put_vcpu_events(X86CPU *cpu, int level)
{
CPUX86State *env = &cpu->env;
struct kvm_vcpu_events events;
struct kvm_vcpu_events events = {};
if (!kvm_has_vcpu_events()) {
return 0;
@ -2563,7 +2590,6 @@ void kvm_arch_init_irq_routing(KVMState *s)
* irqchip, so we can use irqfds, and on x86 we know
* we can use msi via irqfd and GSI routing.
*/
kvm_irqfds_allowed = true;
kvm_msi_via_irqfd_allowed = true;
kvm_gsi_routing_allowed = true;
}

View file

@ -687,6 +687,24 @@ static const VMStateDescription vmstate_avx512 = {
}
};
static bool xss_needed(void *opaque)
{
X86CPU *cpu = opaque;
CPUX86State *env = &cpu->env;
return env->xss != 0;
}
static const VMStateDescription vmstate_xss = {
.name = "cpu/xss",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT64(env.xss, X86CPU),
VMSTATE_END_OF_LIST()
}
};
VMStateDescription vmstate_x86_cpu = {
.name = "cpu",
.version_id = 12,
@ -832,6 +850,9 @@ VMStateDescription vmstate_x86_cpu = {
}, {
.vmsd = &vmstate_avx512,
.needed = avx512_needed,
}, {
.vmsd = &vmstate_xss,
.needed = xss_needed,
} , {
/* empty */
}

View file

@ -2228,7 +2228,7 @@ void glue(helper_aesdeclast, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
Reg rk = *s;
for (i = 0; i < 16; i++) {
d->B(i) = rk.B(i) ^ (AES_Td4[st.B(AES_ishifts[i])] & 0xff);
d->B(i) = rk.B(i) ^ (AES_isbox[st.B(AES_ishifts[i])]);
}
}
@ -2253,7 +2253,7 @@ void glue(helper_aesenclast, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
Reg rk = *s;
for (i = 0; i < 16; i++) {
d->B(i) = rk.B(i) ^ (AES_Te4[st.B(AES_shifts[i])] & 0xff);
d->B(i) = rk.B(i) ^ (AES_sbox[st.B(AES_shifts[i])]);
}
}
@ -2264,10 +2264,10 @@ void glue(helper_aesimc, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
Reg tmp = *s;
for (i = 0 ; i < 4 ; i++) {
d->L(i) = bswap32(AES_Td0[AES_Te4[tmp.B(4*i+0)] & 0xff] ^
AES_Td1[AES_Te4[tmp.B(4*i+1)] & 0xff] ^
AES_Td2[AES_Te4[tmp.B(4*i+2)] & 0xff] ^
AES_Td3[AES_Te4[tmp.B(4*i+3)] & 0xff]);
d->L(i) = bswap32(AES_imc[tmp.B(4*i+0)][0] ^
AES_imc[tmp.B(4*i+1)][1] ^
AES_imc[tmp.B(4*i+2)][2] ^
AES_imc[tmp.B(4*i+3)][3]);
}
}
@ -2278,8 +2278,8 @@ void glue(helper_aeskeygenassist, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
Reg tmp = *s;
for (i = 0 ; i < 4 ; i++) {
d->B(i) = AES_Te4[tmp.B(i + 4)] & 0xff;
d->B(i + 8) = AES_Te4[tmp.B(i + 12)] & 0xff;
d->B(i) = AES_sbox[tmp.B(i + 4)];
d->B(i + 8) = AES_sbox[tmp.B(i + 12)];
}
d->L(1) = (d->L(0) << 24 | d->L(0) >> 8) ^ ctrl;
d->L(3) = (d->L(2) << 24 | d->L(2) >> 8) ^ ctrl;

View file

@ -8034,6 +8034,20 @@ static inline void gen_intermediate_code_internal(X86CPU *cpu,
gen_eob(dc);
break;
}
/* Do not cross the boundary of the pages in icount mode,
it can cause an exception. Do it only when boundary is
crossed by the first instruction in the block.
If current instruction already crossed the bound - it's ok,
because an exception hasn't stopped this code.
*/
if (use_icount
&& ((pc_ptr & TARGET_PAGE_MASK)
!= ((pc_ptr + TARGET_MAX_INSN_SIZE - 1) & TARGET_PAGE_MASK)
|| (pc_ptr & ~TARGET_PAGE_MASK) == 0)) {
gen_jmp_im(pc_ptr - dc->cs_base);
gen_eob(dc);
break;
}
/* if too long translation, stop generation too */
if (tcg_ctx.gen_opc_ptr >= gen_opc_end ||
(pc_ptr - pc_start) >= (TARGET_PAGE_SIZE - 32) ||

View file

@ -439,7 +439,7 @@ static void kvm_mips_update_state(void *opaque, int running, RunState state)
}
} else {
/* Set clock restore time to now */
count_resume = get_clock();
count_resume = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
ret = kvm_mips_put_one_reg64(cs, KVM_REG_MIPS_COUNT_RESUME,
&count_resume);
if (ret < 0) {

View file

@ -208,7 +208,7 @@ int kvm_arch_put_registers(CPUState *cs, int level)
CPUS390XState *env = &cpu->env;
struct kvm_sregs sregs;
struct kvm_regs regs;
struct kvm_fpu fpu;
struct kvm_fpu fpu = {};
int r;
int i;
@ -1294,7 +1294,6 @@ void kvm_arch_init_irq_routing(KVMState *s)
* have to override the common code kvm_halt_in_kernel_allowed setting.
*/
if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
kvm_irqfds_allowed = true;
kvm_gsi_routing_allowed = true;
kvm_halt_in_kernel_allowed = false;
}

View file

@ -264,6 +264,12 @@ bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
tb = tb_find_pc(retaddr);
if (tb) {
cpu_restore_state_from_tb(cpu, tb, retaddr);
if (tb->cflags & CF_NOCACHE) {
/* one-shot translation, invalidate it immediately */
cpu->current_tb = NULL;
tb_phys_invalidate(tb, -1);
tb_free(tb);
}
return true;
}
return false;