SPARC merge

git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@1179 c046a42c-6fe2-441c-8c8c-71466251a162
This commit is contained in:
bellard 2004-12-19 23:18:01 +00:00
parent 9772c73bbc
commit e80cfcfc88
37 changed files with 4507 additions and 1155 deletions

View file

@ -50,7 +50,7 @@ install: all
install -m 644 pc-bios/bios.bin pc-bios/vgabios.bin \ install -m 644 pc-bios/bios.bin pc-bios/vgabios.bin \
pc-bios/vgabios-cirrus.bin \ pc-bios/vgabios-cirrus.bin \
pc-bios/ppc_rom.bin \ pc-bios/ppc_rom.bin \
pc-bios/proll.bin \ pc-bios/proll.elf \
pc-bios/linux_boot.bin "$(datadir)" pc-bios/linux_boot.bin "$(datadir)"
mkdir -p "$(docdir)" mkdir -p "$(docdir)"
install -m 644 qemu-doc.html qemu-tech.html "$(docdir)" install -m 644 qemu-doc.html qemu-tech.html "$(docdir)"
@ -107,7 +107,7 @@ tarbin:
$(datadir)/vgabios.bin \ $(datadir)/vgabios.bin \
$(datadir)/vgabios-cirrus.bin \ $(datadir)/vgabios-cirrus.bin \
$(datadir)/ppc_rom.bin \ $(datadir)/ppc_rom.bin \
$(datadir)/proll.bin \ $(datadir)/proll.elf \
$(datadir)/linux_boot.bin \ $(datadir)/linux_boot.bin \
$(docdir)/qemu-doc.html \ $(docdir)/qemu-doc.html \
$(docdir)/qemu-tech.html \ $(docdir)/qemu-tech.html \

View file

@ -175,6 +175,7 @@ endif
ifeq ($(CONFIG_DARWIN),yes) ifeq ($(CONFIG_DARWIN),yes)
OP_CFLAGS+= -mdynamic-no-pic OP_CFLAGS+= -mdynamic-no-pic
LIBS+=-lmx
endif endif
######################################################### #########################################################
@ -300,7 +301,7 @@ VL_OBJS+= mc146818rtc.o serial.o i8259.o i8254.o fdc.o m48t59.o
VL_OBJS+= ppc_prep.o ppc_chrp.o cuda.o adb.o openpic.o mixeng.o VL_OBJS+= ppc_prep.o ppc_chrp.o cuda.o adb.o openpic.o mixeng.o
endif endif
ifeq ($(TARGET_ARCH), sparc) ifeq ($(TARGET_ARCH), sparc)
VL_OBJS+= sun4m.o tcx.o lance.o iommu.o sched.o m48t08.o magic-load.o timer.o VL_OBJS+= sun4m.o tcx.o lance.o iommu.o m48t08.o magic-load.o slavio_intctl.o slavio_timer.o slavio_serial.o fdc.o
endif endif
ifdef CONFIG_GDBSTUB ifdef CONFIG_GDBSTUB
VL_OBJS+=gdbstub.o VL_OBJS+=gdbstub.o

View file

@ -261,7 +261,7 @@ int cpu_exec(CPUState *env1)
} }
#elif defined(TARGET_SPARC) #elif defined(TARGET_SPARC)
if (interrupt_request & CPU_INTERRUPT_HARD) { if (interrupt_request & CPU_INTERRUPT_HARD) {
do_interrupt(0, 0, 0, 0, 0); do_interrupt(env->interrupt_index, 0, 0, 0, 0);
env->interrupt_request &= ~CPU_INTERRUPT_HARD; env->interrupt_request &= ~CPU_INTERRUPT_HARD;
} else if (interrupt_request & CPU_INTERRUPT_TIMER) { } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
//do_interrupt(0, 0, 0, 0, 0); //do_interrupt(0, 0, 0, 0, 0);

30
disas.c
View file

@ -9,9 +9,7 @@
#include "disas.h" #include "disas.h"
/* Filled in by elfload.c. Simplistic, but will do for now. */ /* Filled in by elfload.c. Simplistic, but will do for now. */
unsigned int disas_num_syms; struct syminfo *syminfos = NULL;
void *disas_symtab;
const char *disas_strtab;
/* Get LENGTH bytes from info's buffer, at target address memaddr. /* Get LENGTH bytes from info's buffer, at target address memaddr.
Transfer them to myaddr. */ Transfer them to myaddr. */
@ -203,19 +201,23 @@ const char *lookup_symbol(void *orig_addr)
{ {
unsigned int i; unsigned int i;
/* Hack, because we know this is x86. */ /* Hack, because we know this is x86. */
Elf32_Sym *sym = disas_symtab; Elf32_Sym *sym;
struct syminfo *s;
for (s = syminfos; s; s = s->next) {
sym = s->disas_symtab;
for (i = 0; i < s->disas_num_syms; i++) {
if (sym[i].st_shndx == SHN_UNDEF
|| sym[i].st_shndx >= SHN_LORESERVE)
continue;
for (i = 0; i < disas_num_syms; i++) { if (ELF_ST_TYPE(sym[i].st_info) != STT_FUNC)
if (sym[i].st_shndx == SHN_UNDEF continue;
|| sym[i].st_shndx >= SHN_LORESERVE)
continue;
if (ELF_ST_TYPE(sym[i].st_info) != STT_FUNC) if ((long)orig_addr >= sym[i].st_value
continue; && (long)orig_addr < sym[i].st_value + sym[i].st_size)
return s->disas_strtab + sym[i].st_name;
if ((long)orig_addr >= sym[i].st_value }
&& (long)orig_addr < sym[i].st_value + sym[i].st_size)
return disas_strtab + sym[i].st_name;
} }
return ""; return "";
} }

10
disas.h
View file

@ -9,7 +9,11 @@ void monitor_disas(target_ulong pc, int nb_insn, int is_physical, int flags);
const char *lookup_symbol(void *orig_addr); const char *lookup_symbol(void *orig_addr);
/* Filled in by elfload.c. Simplistic, but will do for now. */ /* Filled in by elfload.c. Simplistic, but will do for now. */
extern unsigned int disas_num_syms; extern struct syminfo {
extern void *disas_symtab; /* FIXME: includes are a mess --RR */ unsigned int disas_num_syms;
extern const char *disas_strtab; void *disas_symtab;
const char *disas_strtab;
struct syminfo *next;
} *syminfos;
#endif /* _QEMU_DISAS_H */ #endif /* _QEMU_DISAS_H */

View file

@ -298,11 +298,7 @@ static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
} }
/* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */ /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
registers[64] = tswapl(env->y); registers[64] = tswapl(env->y);
tmp = (0<<28) | (4<<24) | env->psr \ tmp = GET_PSR(env);
| (env->psrs? PSR_S : 0) \
| (env->psrs? PSR_PS : 0) \
| (env->psret? PSR_ET : 0) \
| env->cwp;
registers[65] = tswapl(tmp); registers[65] = tswapl(tmp);
registers[66] = tswapl(env->wim); registers[66] = tswapl(env->wim);
registers[67] = tswapl(env->tbr); registers[67] = tswapl(env->tbr);
@ -317,7 +313,7 @@ static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size) static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
{ {
uint32_t *registers = (uint32_t *)mem_buf, tmp; uint32_t *registers = (uint32_t *)mem_buf;
int i; int i;
/* fill in g0..g7 */ /* fill in g0..g7 */
@ -334,12 +330,7 @@ static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
} }
/* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */ /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
env->y = tswapl(registers[64]); env->y = tswapl(registers[64]);
tmp = tswapl(registers[65]); PUT_PSR(env, tswapl(registers[65]));
env->psr = tmp & ~PSR_ICC;
env->psrs = (tmp & PSR_S)? 1 : 0;
env->psrps = (tmp & PSR_PS)? 1 : 0;
env->psret = (tmp & PSR_ET)? 1 : 0;
env->cwp = (tmp & PSR_CWP);
env->wim = tswapl(registers[66]); env->wim = tswapl(registers[66]);
env->tbr = tswapl(registers[67]); env->tbr = tswapl(registers[67]);
env->pc = tswapl(registers[68]); env->pc = tswapl(registers[68]);
@ -495,8 +486,10 @@ static void gdb_vm_stopped(void *opaque, int reason)
/* disable single step if it was enable */ /* disable single step if it was enable */
cpu_single_step(cpu_single_env, 0); cpu_single_step(cpu_single_env, 0);
if (reason == EXCP_DEBUG) if (reason == EXCP_DEBUG) {
tb_flush(cpu_single_env);
ret = SIGTRAP; ret = SIGTRAP;
}
else else
ret = 0; ret = 0;
snprintf(buf, sizeof(buf), "S%02x", ret); snprintf(buf, sizeof(buf), "S%02x", ret);

View file

@ -21,6 +21,10 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE. * THE SOFTWARE.
*/ */
/*
* The controller is used in Sun4m systems in a slightly different
* way. There are changes in DOR register and DMA is not available.
*/
#include "vl.h" #include "vl.h"
/********************************************************/ /********************************************************/
@ -90,6 +94,16 @@ typedef struct fdrive_t {
uint8_t ro; /* Is read-only */ uint8_t ro; /* Is read-only */
} fdrive_t; } fdrive_t;
#ifdef TARGET_SPARC
#define DMA_read_memory(a,b,c,d)
#define DMA_write_memory(a,b,c,d)
#define DMA_register_channel(a,b,c)
#define DMA_hold_DREQ(a)
#define DMA_release_DREQ(a)
#define DMA_get_channel_mode(a) (0)
#define DMA_schedule(a)
#endif
static void fd_init (fdrive_t *drv, BlockDriverState *bs) static void fd_init (fdrive_t *drv, BlockDriverState *bs)
{ {
/* Drive */ /* Drive */
@ -455,6 +469,18 @@ static void fdctrl_write (void *opaque, uint32_t reg, uint32_t value)
} }
} }
static CPUReadMemoryFunc *fdctrl_mem_read[3] = {
fdctrl_read,
fdctrl_read,
fdctrl_read,
};
static CPUWriteMemoryFunc *fdctrl_mem_write[3] = {
fdctrl_write,
fdctrl_write,
fdctrl_write,
};
static void fd_change_cb (void *opaque) static void fd_change_cb (void *opaque)
{ {
fdrive_t *drv = opaque; fdrive_t *drv = opaque;
@ -473,7 +499,7 @@ fdctrl_t *fdctrl_init (int irq_lvl, int dma_chann, int mem_mapped,
BlockDriverState **fds) BlockDriverState **fds)
{ {
fdctrl_t *fdctrl; fdctrl_t *fdctrl;
// int io_mem; int io_mem;
int i; int i;
FLOPPY_DPRINTF("init controller\n"); FLOPPY_DPRINTF("init controller\n");
@ -504,11 +530,8 @@ fdctrl_t *fdctrl_init (int irq_lvl, int dma_chann, int mem_mapped,
fdctrl_reset(fdctrl, 0); fdctrl_reset(fdctrl, 0);
fdctrl->state = FD_CTRL_ACTIVE; fdctrl->state = FD_CTRL_ACTIVE;
if (mem_mapped) { if (mem_mapped) {
FLOPPY_ERROR("memory mapped floppy not supported by now !\n"); io_mem = cpu_register_io_memory(0, fdctrl_mem_read, fdctrl_mem_write, fdctrl);
#if 0 cpu_register_physical_memory(io_base, 0x08, io_mem);
io_mem = cpu_register_io_memory(0, fdctrl_mem_read, fdctrl_mem_write);
cpu_register_physical_memory(base, 0x08, io_mem);
#endif
} else { } else {
register_ioport_read(io_base + 0x01, 5, 1, &fdctrl_read, fdctrl); register_ioport_read(io_base + 0x01, 5, 1, &fdctrl_read, fdctrl);
register_ioport_read(io_base + 0x07, 1, 1, &fdctrl_read, fdctrl); register_ioport_read(io_base + 0x07, 1, 1, &fdctrl_read, fdctrl);

View file

@ -117,8 +117,6 @@ typedef struct IOMMUState {
uint32_t iostart; uint32_t iostart;
} IOMMUState; } IOMMUState;
static IOMMUState *ps;
static uint32_t iommu_mem_readw(void *opaque, target_phys_addr_t addr) static uint32_t iommu_mem_readw(void *opaque, target_phys_addr_t addr)
{ {
IOMMUState *s = opaque; IOMMUState *s = opaque;
@ -187,25 +185,61 @@ static CPUWriteMemoryFunc *iommu_mem_write[3] = {
iommu_mem_writew, iommu_mem_writew,
}; };
uint32_t iommu_translate(uint32_t addr) uint32_t iommu_translate_local(void *opaque, uint32_t addr)
{ {
uint32_t *iopte = (void *)(ps->regs[1] << 4), pa; IOMMUState *s = opaque;
uint32_t *iopte = (void *)(s->regs[1] << 4), pa;
iopte += ((addr - ps->iostart) >> PAGE_SHIFT); iopte += ((addr - s->iostart) >> PAGE_SHIFT);
cpu_physical_memory_rw((uint32_t)iopte, (void *) &pa, 4, 0); cpu_physical_memory_read((uint32_t)iopte, (void *) &pa, 4);
bswap32s(&pa); bswap32s(&pa);
pa = (pa & IOPTE_PAGE) << 4; /* Loose higher bits of 36 */ pa = (pa & IOPTE_PAGE) << 4; /* Loose higher bits of 36 */
return pa + (addr & PAGE_MASK); return pa + (addr & PAGE_MASK);
} }
void iommu_init(uint32_t addr) static void iommu_save(QEMUFile *f, void *opaque)
{
IOMMUState *s = opaque;
int i;
qemu_put_be32s(f, &s->addr);
for (i = 0; i < sizeof(struct iommu_regs); i += 4)
qemu_put_be32s(f, &s->regs[i]);
qemu_put_be32s(f, &s->iostart);
}
static int iommu_load(QEMUFile *f, void *opaque, int version_id)
{
IOMMUState *s = opaque;
int i;
if (version_id != 1)
return -EINVAL;
qemu_get_be32s(f, &s->addr);
for (i = 0; i < sizeof(struct iommu_regs); i += 4)
qemu_put_be32s(f, &s->regs[i]);
qemu_get_be32s(f, &s->iostart);
return 0;
}
static void iommu_reset(void *opaque)
{
IOMMUState *s = opaque;
memset(s->regs, 0, sizeof(struct iommu_regs));
s->iostart = 0;
}
void *iommu_init(uint32_t addr)
{ {
IOMMUState *s; IOMMUState *s;
int iommu_io_memory; int iommu_io_memory;
s = qemu_mallocz(sizeof(IOMMUState)); s = qemu_mallocz(sizeof(IOMMUState));
if (!s) if (!s)
return; return NULL;
s->addr = addr; s->addr = addr;
@ -213,6 +247,8 @@ void iommu_init(uint32_t addr)
cpu_register_physical_memory(addr, sizeof(struct iommu_regs), cpu_register_physical_memory(addr, sizeof(struct iommu_regs),
iommu_io_memory); iommu_io_memory);
ps = s; register_savevm("iommu", addr, 1, iommu_save, iommu_load, s);
qemu_register_reset(iommu_reset, s);
return s;
} }

View file

@ -147,6 +147,7 @@ struct lance_init_block {
}; };
#define LEDMA_REGS 4 #define LEDMA_REGS 4
#define LEDMA_MAXADDR (LEDMA_REGS * 4 - 1)
#if 0 #if 0
/* Structure to describe the current status of DMA registers on the Sparc */ /* Structure to describe the current status of DMA registers on the Sparc */
struct sparc_dma_registers { struct sparc_dma_registers {
@ -157,32 +158,28 @@ struct sparc_dma_registers {
}; };
#endif #endif
typedef struct LEDMAState {
uint32_t addr;
uint32_t regs[LEDMA_REGS];
} LEDMAState;
typedef struct LANCEState { typedef struct LANCEState {
uint32_t paddr;
NetDriverState *nd; NetDriverState *nd;
uint32_t leptr; uint32_t leptr;
uint16_t addr; uint16_t addr;
uint16_t regs[LE_MAXREG]; uint16_t regs[LE_MAXREG];
uint8_t phys[6]; /* mac address */ uint8_t phys[6]; /* mac address */
int irq; int irq;
LEDMAState *ledma; unsigned int rxptr, txptr;
uint32_t ledmaregs[LEDMA_REGS];
} LANCEState; } LANCEState;
static unsigned int rxptr, txptr;
static void lance_send(void *opaque); static void lance_send(void *opaque);
static void lance_reset(LANCEState *s) static void lance_reset(void *opaque)
{ {
LANCEState *s = opaque;
memcpy(s->phys, s->nd->macaddr, 6); memcpy(s->phys, s->nd->macaddr, 6);
rxptr = 0; s->rxptr = 0;
txptr = 0; s->txptr = 0;
memset(s->regs, 0, LE_MAXREG * 2);
s->regs[LE_CSR0] = LE_C0_STOP; s->regs[LE_CSR0] = LE_C0_STOP;
memset(s->ledmaregs, 0, LEDMA_REGS * 4);
} }
static uint32_t lance_mem_readw(void *opaque, target_phys_addr_t addr) static uint32_t lance_mem_readw(void *opaque, target_phys_addr_t addr)
@ -190,7 +187,7 @@ static uint32_t lance_mem_readw(void *opaque, target_phys_addr_t addr)
LANCEState *s = opaque; LANCEState *s = opaque;
uint32_t saddr; uint32_t saddr;
saddr = addr - s->paddr; saddr = addr & LE_MAXREG;
switch (saddr >> 1) { switch (saddr >> 1) {
case LE_RDP: case LE_RDP:
return s->regs[s->addr]; return s->regs[s->addr];
@ -208,7 +205,7 @@ static void lance_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val
uint32_t saddr; uint32_t saddr;
uint16_t reg; uint16_t reg;
saddr = addr - s->paddr; saddr = addr & LE_MAXREG;
switch (saddr >> 1) { switch (saddr >> 1) {
case LE_RDP: case LE_RDP:
switch(s->addr) { switch(s->addr) {
@ -292,7 +289,7 @@ static CPUWriteMemoryFunc *lance_mem_write[3] = {
static int lance_can_receive(void *opaque) static int lance_can_receive(void *opaque)
{ {
LANCEState *s = opaque; LANCEState *s = opaque;
void *dmaptr = (void *) (s->leptr + s->ledma->regs[3]); uint32_t dmaptr = s->leptr + s->ledmaregs[3];
struct lance_init_block *ib; struct lance_init_block *ib;
int i; int i;
uint16_t temp; uint16_t temp;
@ -303,7 +300,7 @@ static int lance_can_receive(void *opaque)
ib = (void *) iommu_translate(dmaptr); ib = (void *) iommu_translate(dmaptr);
for (i = 0; i < RX_RING_SIZE; i++) { for (i = 0; i < RX_RING_SIZE; i++) {
cpu_physical_memory_read(&ib->brx_ring[i].rmd1_bits, (void *) &temp, 1); cpu_physical_memory_read((uint32_t)&ib->brx_ring[i].rmd1_bits, (void *) &temp, 1);
temp &= 0xff; temp &= 0xff;
if (temp == (LE_R1_OWN)) { if (temp == (LE_R1_OWN)) {
#ifdef DEBUG_LANCE #ifdef DEBUG_LANCE
@ -323,7 +320,7 @@ static int lance_can_receive(void *opaque)
static void lance_receive(void *opaque, const uint8_t *buf, int size) static void lance_receive(void *opaque, const uint8_t *buf, int size)
{ {
LANCEState *s = opaque; LANCEState *s = opaque;
void *dmaptr = (void *) (s->leptr + s->ledma->regs[3]); uint32_t dmaptr = s->leptr + s->ledmaregs[3];
struct lance_init_block *ib; struct lance_init_block *ib;
unsigned int i, old_rxptr, j; unsigned int i, old_rxptr, j;
uint16_t temp; uint16_t temp;
@ -333,23 +330,23 @@ static void lance_receive(void *opaque, const uint8_t *buf, int size)
ib = (void *) iommu_translate(dmaptr); ib = (void *) iommu_translate(dmaptr);
old_rxptr = rxptr; old_rxptr = s->rxptr;
for (i = rxptr; i != ((old_rxptr - 1) & RX_RING_MOD_MASK); i = (i + 1) & RX_RING_MOD_MASK) { for (i = s->rxptr; i != ((old_rxptr - 1) & RX_RING_MOD_MASK); i = (i + 1) & RX_RING_MOD_MASK) {
cpu_physical_memory_read(&ib->brx_ring[i].rmd1_bits, (void *) &temp, 1); cpu_physical_memory_read((uint32_t)&ib->brx_ring[i].rmd1_bits, (void *) &temp, 1);
if (temp == (LE_R1_OWN)) { if (temp == (LE_R1_OWN)) {
rxptr = (rxptr + 1) & RX_RING_MOD_MASK; s->rxptr = (s->rxptr + 1) & RX_RING_MOD_MASK;
temp = size; temp = size;
bswap16s(&temp); bswap16s(&temp);
cpu_physical_memory_write(&ib->brx_ring[i].mblength, (void *) &temp, 2); cpu_physical_memory_write((uint32_t)&ib->brx_ring[i].mblength, (void *) &temp, 2);
#if 0 #if 0
cpu_physical_memory_write(&ib->rx_buf[i], buf, size); cpu_physical_memory_write((uint32_t)&ib->rx_buf[i], buf, size);
#else #else
for (j = 0; j < size; j++) { for (j = 0; j < size; j++) {
cpu_physical_memory_write(((void *)&ib->rx_buf[i]) + j, &buf[j], 1); cpu_physical_memory_write(((uint32_t)&ib->rx_buf[i]) + j, &buf[j], 1);
} }
#endif #endif
temp = LE_R1_POK; temp = LE_R1_POK;
cpu_physical_memory_write(&ib->brx_ring[i].rmd1_bits, (void *) &temp, 1); cpu_physical_memory_write((uint32_t)&ib->brx_ring[i].rmd1_bits, (void *) &temp, 1);
s->regs[LE_CSR0] |= LE_C0_RINT | LE_C0_INTR; s->regs[LE_CSR0] |= LE_C0_RINT | LE_C0_INTR;
if ((s->regs[LE_CSR0] & LE_C0_INTR) && (s->regs[LE_CSR0] & LE_C0_INEA)) if ((s->regs[LE_CSR0] & LE_C0_INTR) && (s->regs[LE_CSR0] & LE_C0_INEA))
pic_set_irq(s->irq, 1); pic_set_irq(s->irq, 1);
@ -364,7 +361,7 @@ static void lance_receive(void *opaque, const uint8_t *buf, int size)
static void lance_send(void *opaque) static void lance_send(void *opaque)
{ {
LANCEState *s = opaque; LANCEState *s = opaque;
void *dmaptr = (void *) (s->leptr + s->ledma->regs[3]); uint32_t dmaptr = s->leptr + s->ledmaregs[3];
struct lance_init_block *ib; struct lance_init_block *ib;
unsigned int i, old_txptr, j; unsigned int i, old_txptr, j;
uint16_t temp; uint16_t temp;
@ -375,18 +372,18 @@ static void lance_send(void *opaque)
ib = (void *) iommu_translate(dmaptr); ib = (void *) iommu_translate(dmaptr);
old_txptr = txptr; old_txptr = s->txptr;
for (i = txptr; i != ((old_txptr - 1) & TX_RING_MOD_MASK); i = (i + 1) & TX_RING_MOD_MASK) { for (i = s->txptr; i != ((old_txptr - 1) & TX_RING_MOD_MASK); i = (i + 1) & TX_RING_MOD_MASK) {
cpu_physical_memory_read(&ib->btx_ring[i].tmd1_bits, (void *) &temp, 1); cpu_physical_memory_read((uint32_t)&ib->btx_ring[i].tmd1_bits, (void *) &temp, 1);
if (temp == (LE_T1_POK|LE_T1_OWN)) { if (temp == (LE_T1_POK|LE_T1_OWN)) {
cpu_physical_memory_read(&ib->btx_ring[i].length, (void *) &temp, 2); cpu_physical_memory_read((uint32_t)&ib->btx_ring[i].length, (void *) &temp, 2);
bswap16s(&temp); bswap16s(&temp);
temp = (~temp) + 1; temp = (~temp) + 1;
#if 0 #if 0
cpu_physical_memory_read(&ib->tx_buf[i], pkt_buf, temp); cpu_physical_memory_read((uint32_t)&ib->tx_buf[i], pkt_buf, temp);
#else #else
for (j = 0; j < temp; j++) { for (j = 0; j < temp; j++) {
cpu_physical_memory_read(((void *)&ib->tx_buf[i]) + j, &pkt_buf[j], 1); cpu_physical_memory_read((uint32_t)&ib->tx_buf[i] + j, &pkt_buf[j], 1);
} }
#endif #endif
@ -395,8 +392,8 @@ static void lance_send(void *opaque)
#endif #endif
qemu_send_packet(s->nd, pkt_buf, temp); qemu_send_packet(s->nd, pkt_buf, temp);
temp = LE_T1_POK; temp = LE_T1_POK;
cpu_physical_memory_write(&ib->btx_ring[i].tmd1_bits, (void *) &temp, 1); cpu_physical_memory_write((uint32_t)&ib->btx_ring[i].tmd1_bits, (void *) &temp, 1);
txptr = (txptr + 1) & TX_RING_MOD_MASK; s->txptr = (s->txptr + 1) & TX_RING_MOD_MASK;
s->regs[LE_CSR0] |= LE_C0_TINT | LE_C0_INTR; s->regs[LE_CSR0] |= LE_C0_TINT | LE_C0_INTR;
} }
} }
@ -404,24 +401,20 @@ static void lance_send(void *opaque)
static uint32_t ledma_mem_readl(void *opaque, target_phys_addr_t addr) static uint32_t ledma_mem_readl(void *opaque, target_phys_addr_t addr)
{ {
LEDMAState *s = opaque; LANCEState *s = opaque;
uint32_t saddr; uint32_t saddr;
saddr = (addr - s->addr) >> 2; saddr = (addr & LEDMA_MAXADDR) >> 2;
if (saddr < LEDMA_REGS) return s->ledmaregs[saddr];
return s->regs[saddr];
else
return 0;
} }
static void ledma_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) static void ledma_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{ {
LEDMAState *s = opaque; LANCEState *s = opaque;
uint32_t saddr; uint32_t saddr;
saddr = (addr - s->addr) >> 2; saddr = (addr & LEDMA_MAXADDR) >> 2;
if (saddr < LEDMA_REGS) s->ledmaregs[saddr] = val;
s->regs[saddr] = val;
} }
static CPUReadMemoryFunc *ledma_mem_read[3] = { static CPUReadMemoryFunc *ledma_mem_read[3] = {
@ -436,33 +429,61 @@ static CPUWriteMemoryFunc *ledma_mem_write[3] = {
ledma_mem_writel, ledma_mem_writel,
}; };
static void lance_save(QEMUFile *f, void *opaque)
{
LANCEState *s = opaque;
int i;
qemu_put_be32s(f, &s->leptr);
qemu_put_be16s(f, &s->addr);
for (i = 0; i < LE_MAXREG; i ++)
qemu_put_be16s(f, &s->regs[i]);
qemu_put_buffer(f, s->phys, 6);
qemu_put_be32s(f, &s->irq);
for (i = 0; i < LEDMA_REGS; i ++)
qemu_put_be32s(f, &s->ledmaregs[i]);
}
static int lance_load(QEMUFile *f, void *opaque, int version_id)
{
LANCEState *s = opaque;
int i;
if (version_id != 1)
return -EINVAL;
qemu_get_be32s(f, &s->leptr);
qemu_get_be16s(f, &s->addr);
for (i = 0; i < LE_MAXREG; i ++)
qemu_get_be16s(f, &s->regs[i]);
qemu_get_buffer(f, s->phys, 6);
qemu_get_be32s(f, &s->irq);
for (i = 0; i < LEDMA_REGS; i ++)
qemu_get_be32s(f, &s->ledmaregs[i]);
return 0;
}
void lance_init(NetDriverState *nd, int irq, uint32_t leaddr, uint32_t ledaddr) void lance_init(NetDriverState *nd, int irq, uint32_t leaddr, uint32_t ledaddr)
{ {
LANCEState *s; LANCEState *s;
LEDMAState *led;
int lance_io_memory, ledma_io_memory; int lance_io_memory, ledma_io_memory;
s = qemu_mallocz(sizeof(LANCEState)); s = qemu_mallocz(sizeof(LANCEState));
if (!s) if (!s)
return; return;
s->paddr = leaddr;
s->nd = nd; s->nd = nd;
s->irq = irq; s->irq = irq;
lance_io_memory = cpu_register_io_memory(0, lance_mem_read, lance_mem_write, s); lance_io_memory = cpu_register_io_memory(0, lance_mem_read, lance_mem_write, s);
cpu_register_physical_memory(leaddr, 8, lance_io_memory); cpu_register_physical_memory(leaddr, 8, lance_io_memory);
led = qemu_mallocz(sizeof(LEDMAState)); ledma_io_memory = cpu_register_io_memory(0, ledma_mem_read, ledma_mem_write, s);
if (!led)
return;
s->ledma = led;
led->addr = ledaddr;
ledma_io_memory = cpu_register_io_memory(0, ledma_mem_read, ledma_mem_write, led);
cpu_register_physical_memory(ledaddr, 16, ledma_io_memory); cpu_register_physical_memory(ledaddr, 16, ledma_io_memory);
lance_reset(s); lance_reset(s);
qemu_add_read_packet(nd, lance_can_receive, lance_receive, s); qemu_add_read_packet(nd, lance_can_receive, lance_receive, s);
register_savevm("lance", leaddr, 1, lance_save, lance_load, s);
qemu_register_reset(lance_reset, s);
} }

View file

@ -32,19 +32,14 @@
#define NVRAM_PRINTF(fmt, args...) do { } while (0) #define NVRAM_PRINTF(fmt, args...) do { } while (0)
#endif #endif
#define NVRAM_MAX_MEM 0xfff0 #define NVRAM_MAX_MEM 0x1ff0
#define NVRAM_MAXADDR 0x1fff
struct m48t08_t { struct m48t08_t {
/* Hardware parameters */
int mem_index;
uint32_t mem_base;
uint16_t size;
/* RTC management */ /* RTC management */
time_t time_offset; time_t time_offset;
time_t stop_time; time_t stop_time;
/* NVRAM storage */ /* NVRAM storage */
uint8_t lock;
uint16_t addr;
uint8_t *buffer; uint8_t *buffer;
}; };
@ -83,14 +78,13 @@ static void set_time (m48t08_t *NVRAM, struct tm *tm)
} }
/* Direct access to NVRAM */ /* Direct access to NVRAM */
void m48t08_write (m48t08_t *NVRAM, uint32_t val) void m48t08_write (m48t08_t *NVRAM, uint32_t addr, uint8_t val)
{ {
struct tm tm; struct tm tm;
int tmp; int tmp;
if (NVRAM->addr > NVRAM_MAX_MEM && NVRAM->addr < 0x2000) addr &= NVRAM_MAXADDR;
NVRAM_PRINTF("%s: 0x%08x => 0x%08x\n", __func__, NVRAM->addr, val); switch (addr) {
switch (NVRAM->addr) {
case 0x1FF8: case 0x1FF8:
/* control */ /* control */
NVRAM->buffer[0x1FF8] = (val & ~0xA0) | 0x90; NVRAM->buffer[0x1FF8] = (val & ~0xA0) | 0x90;
@ -167,25 +161,18 @@ void m48t08_write (m48t08_t *NVRAM, uint32_t val)
} }
break; break;
default: default:
/* Check lock registers state */ NVRAM->buffer[addr] = val & 0xFF;
if (NVRAM->addr >= 0x20 && NVRAM->addr <= 0x2F && (NVRAM->lock & 1))
break;
if (NVRAM->addr >= 0x30 && NVRAM->addr <= 0x3F && (NVRAM->lock & 2))
break;
if (NVRAM->addr < NVRAM_MAX_MEM ||
(NVRAM->addr > 0x1FFF && NVRAM->addr < NVRAM->size)) {
NVRAM->buffer[NVRAM->addr] = val & 0xFF;
}
break; break;
} }
} }
uint32_t m48t08_read (m48t08_t *NVRAM) uint8_t m48t08_read (m48t08_t *NVRAM, uint32_t addr)
{ {
struct tm tm; struct tm tm;
uint32_t retval = 0xFF; uint8_t retval = 0xFF;
switch (NVRAM->addr) { addr &= NVRAM_MAXADDR;
switch (addr) {
case 0x1FF8: case 0x1FF8:
/* control */ /* control */
goto do_read; goto do_read;
@ -225,65 +212,36 @@ uint32_t m48t08_read (m48t08_t *NVRAM)
retval = toBCD(tm.tm_year); retval = toBCD(tm.tm_year);
break; break;
default: default:
/* Check lock registers state */ do_read:
if (NVRAM->addr >= 0x20 && NVRAM->addr <= 0x2F && (NVRAM->lock & 1)) retval = NVRAM->buffer[addr];
break;
if (NVRAM->addr >= 0x30 && NVRAM->addr <= 0x3F && (NVRAM->lock & 2))
break;
if (NVRAM->addr < NVRAM_MAX_MEM ||
(NVRAM->addr > 0x1FFF && NVRAM->addr < NVRAM->size)) {
do_read:
retval = NVRAM->buffer[NVRAM->addr];
}
break; break;
} }
if (NVRAM->addr > NVRAM_MAX_MEM + 1 && NVRAM->addr < 0x2000)
NVRAM_PRINTF("0x%08x <= 0x%08x\n", NVRAM->addr, retval);
return retval; return retval;
} }
void m48t08_set_addr (m48t08_t *NVRAM, uint32_t addr)
{
NVRAM->addr = addr;
}
void m48t08_toggle_lock (m48t08_t *NVRAM, int lock)
{
NVRAM->lock ^= 1 << lock;
}
static void nvram_writeb (void *opaque, target_phys_addr_t addr, uint32_t value) static void nvram_writeb (void *opaque, target_phys_addr_t addr, uint32_t value)
{ {
m48t08_t *NVRAM = opaque; m48t08_t *NVRAM = opaque;
addr -= NVRAM->mem_base; m48t08_write(NVRAM, addr, value);
if (addr < NVRAM_MAX_MEM)
NVRAM->buffer[addr] = value;
} }
static void nvram_writew (void *opaque, target_phys_addr_t addr, uint32_t value) static void nvram_writew (void *opaque, target_phys_addr_t addr, uint32_t value)
{ {
m48t08_t *NVRAM = opaque; m48t08_t *NVRAM = opaque;
addr -= NVRAM->mem_base; m48t08_write(NVRAM, addr, value);
if (addr < NVRAM_MAX_MEM) { m48t08_write(NVRAM, addr + 1, value >> 8);
NVRAM->buffer[addr] = value >> 8;
NVRAM->buffer[addr + 1] = value;
}
} }
static void nvram_writel (void *opaque, target_phys_addr_t addr, uint32_t value) static void nvram_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
{ {
m48t08_t *NVRAM = opaque; m48t08_t *NVRAM = opaque;
addr -= NVRAM->mem_base; m48t08_write(NVRAM, addr, value);
if (addr < NVRAM_MAX_MEM) { m48t08_write(NVRAM, addr + 1, value >> 8);
NVRAM->buffer[addr] = value >> 24; m48t08_write(NVRAM, addr + 2, value >> 16);
NVRAM->buffer[addr + 1] = value >> 16; m48t08_write(NVRAM, addr + 3, value >> 24);
NVRAM->buffer[addr + 2] = value >> 8;
NVRAM->buffer[addr + 3] = value;
}
} }
static uint32_t nvram_readb (void *opaque, target_phys_addr_t addr) static uint32_t nvram_readb (void *opaque, target_phys_addr_t addr)
@ -291,10 +249,7 @@ static uint32_t nvram_readb (void *opaque, target_phys_addr_t addr)
m48t08_t *NVRAM = opaque; m48t08_t *NVRAM = opaque;
uint32_t retval = 0; uint32_t retval = 0;
addr -= NVRAM->mem_base; retval = m48t08_read(NVRAM, addr);
if (addr < NVRAM_MAX_MEM)
retval = NVRAM->buffer[addr];
return retval; return retval;
} }
@ -303,12 +258,8 @@ static uint32_t nvram_readw (void *opaque, target_phys_addr_t addr)
m48t08_t *NVRAM = opaque; m48t08_t *NVRAM = opaque;
uint32_t retval = 0; uint32_t retval = 0;
addr -= NVRAM->mem_base; retval = m48t08_read(NVRAM, addr) << 8;
if (addr < NVRAM_MAX_MEM) { retval |= m48t08_read(NVRAM, addr + 1);
retval = NVRAM->buffer[addr] << 8;
retval |= NVRAM->buffer[addr + 1];
}
return retval; return retval;
} }
@ -317,14 +268,10 @@ static uint32_t nvram_readl (void *opaque, target_phys_addr_t addr)
m48t08_t *NVRAM = opaque; m48t08_t *NVRAM = opaque;
uint32_t retval = 0; uint32_t retval = 0;
addr -= NVRAM->mem_base; retval = m48t08_read(NVRAM, addr) << 24;
if (addr < NVRAM_MAX_MEM) { retval |= m48t08_read(NVRAM, addr + 1) << 16;
retval = NVRAM->buffer[addr] << 24; retval |= m48t08_read(NVRAM, addr + 2) << 8;
retval |= NVRAM->buffer[addr + 1] << 16; retval |= m48t08_read(NVRAM, addr + 3);
retval |= NVRAM->buffer[addr + 2] << 8;
retval |= NVRAM->buffer[addr + 3];
}
return retval; return retval;
} }
@ -340,12 +287,42 @@ static CPUReadMemoryFunc *nvram_read[] = {
&nvram_readl, &nvram_readl,
}; };
static void nvram_save(QEMUFile *f, void *opaque)
{
m48t08_t *s = opaque;
qemu_put_be32s(f, (uint32_t *)&s->time_offset);
qemu_put_be32s(f, (uint32_t *)&s->stop_time);
qemu_put_buffer(f, s->buffer, 0x2000);
}
static int nvram_load(QEMUFile *f, void *opaque, int version_id)
{
m48t08_t *s = opaque;
if (version_id != 1)
return -EINVAL;
qemu_get_be32s(f, (uint32_t *)&s->time_offset);
qemu_get_be32s(f, (uint32_t *)&s->stop_time);
qemu_get_buffer(f, s->buffer, 0x2000);
return 0;
}
static void m48t08_reset(void *opaque)
{
m48t08_t *s = opaque;
s->time_offset = 0;
s->stop_time = 0;
}
/* Initialisation routine */ /* Initialisation routine */
m48t08_t *m48t08_init(uint32_t mem_base, uint16_t size, uint8_t *macaddr) m48t08_t *m48t08_init(uint32_t mem_base, uint16_t size)
{ {
m48t08_t *s; m48t08_t *s;
int i; int mem_index;
unsigned char tmp = 0;
s = qemu_mallocz(sizeof(m48t08_t)); s = qemu_mallocz(sizeof(m48t08_t));
if (!s) if (!s)
@ -355,25 +332,13 @@ m48t08_t *m48t08_init(uint32_t mem_base, uint16_t size, uint8_t *macaddr)
qemu_free(s); qemu_free(s);
return NULL; return NULL;
} }
s->size = size;
s->mem_base = mem_base;
s->addr = 0;
if (mem_base != 0) { if (mem_base != 0) {
s->mem_index = cpu_register_io_memory(0, nvram_read, nvram_write, s); mem_index = cpu_register_io_memory(0, nvram_read, nvram_write, s);
cpu_register_physical_memory(mem_base, 0x4000, s->mem_index); cpu_register_physical_memory(mem_base, 0x2000, mem_index);
} }
s->lock = 0;
i = 0x1fd8; register_savevm("nvram", mem_base, 1, nvram_save, nvram_load, s);
s->buffer[i++] = 0x01; qemu_register_reset(m48t08_reset, s);
s->buffer[i++] = 0x80; /* Sun4m OBP */
memcpy(&s->buffer[i], macaddr, 6);
/* Calculate checksum */
for (i = 0x1fd8; i < 0x1fe7; i++) {
tmp ^= s->buffer[i];
}
s->buffer[0x1fe7] = tmp;
return s; return s;
} }

View file

@ -3,10 +3,8 @@
typedef struct m48t08_t m48t08_t; typedef struct m48t08_t m48t08_t;
void m48t08_write (m48t08_t *NVRAM, uint32_t val); void m48t08_write (m48t08_t *NVRAM, uint32_t addr, uint8_t val);
uint32_t m48t08_read (m48t08_t *NVRAM); uint8_t m48t08_read (m48t08_t *NVRAM, uint32_t addr);
void m48t08_set_addr (m48t08_t *NVRAM, uint32_t addr); m48t08_t *m48t08_init(uint32_t mem_base, uint16_t size);
void m48t08_toggle_lock (m48t08_t *NVRAM, int lock);
m48t08_t *m48t08_init(uint32_t mem_base, uint16_t size, uint8_t *macaddr);
#endif /* !defined (__M48T08_H__) */ #endif /* !defined (__M48T08_H__) */

View file

@ -1,5 +1,54 @@
#include "vl.h" #include "vl.h"
#include "disas.h" #include "disas.h"
#include "exec-all.h"
struct exec
{
uint32_t a_info; /* Use macros N_MAGIC, etc for access */
uint32_t a_text; /* length of text, in bytes */
uint32_t a_data; /* length of data, in bytes */
uint32_t a_bss; /* length of uninitialized data area, in bytes */
uint32_t a_syms; /* length of symbol table data in file, in bytes */
uint32_t a_entry; /* start address */
uint32_t a_trsize; /* length of relocation info for text, in bytes */
uint32_t a_drsize; /* length of relocation info for data, in bytes */
};
#ifdef BSWAP_NEEDED
static void bswap_ahdr(struct exec *e)
{
bswap32s(&e->a_info);
bswap32s(&e->a_text);
bswap32s(&e->a_data);
bswap32s(&e->a_bss);
bswap32s(&e->a_syms);
bswap32s(&e->a_entry);
bswap32s(&e->a_trsize);
bswap32s(&e->a_drsize);
}
#else
#define bswap_ahdr(x) do { } while (0)
#endif
#define N_MAGIC(exec) ((exec).a_info & 0xffff)
#define OMAGIC 0407
#define NMAGIC 0410
#define ZMAGIC 0413
#define QMAGIC 0314
#define _N_HDROFF(x) (1024 - sizeof (struct exec))
#define N_TXTOFF(x) \
(N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \
(N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec)))
#define N_TXTADDR(x) (N_MAGIC(x) == QMAGIC ? TARGET_PAGE_SIZE : 0)
#define N_DATOFF(x) (N_TXTOFF(x) + (x).a_text)
#define _N_SEGMENT_ROUND(x) (((x) + TARGET_PAGE_SIZE - 1) & ~(TARGET_PAGE_SIZE - 1))
#define _N_TXTENDADDR(x) (N_TXTADDR(x)+(x).a_text)
#define N_DATADDR(x) \
(N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x)) \
: (_N_SEGMENT_ROUND (_N_TXTENDADDR(x))))
#define ELF_CLASS ELFCLASS32 #define ELF_CLASS ELFCLASS32
#define ELF_DATA ELFDATA2MSB #define ELF_DATA ELFDATA2MSB
@ -103,27 +152,27 @@ static void *find_shdr(struct elfhdr *ehdr, int fd, struct elf_shdr *shdr, uint3
return NULL; return NULL;
} }
static int find_strtab(struct elfhdr *ehdr, int fd, struct elf_shdr *shdr, struct elf_shdr *symtab) static void *find_strtab(struct elfhdr *ehdr, int fd, struct elf_shdr *shdr, struct elf_shdr *symtab)
{ {
int retval; int retval;
retval = lseek(fd, ehdr->e_shoff + sizeof(struct elf_shdr) * symtab->sh_link, SEEK_SET); retval = lseek(fd, ehdr->e_shoff + sizeof(struct elf_shdr) * symtab->sh_link, SEEK_SET);
if (retval < 0) if (retval < 0)
return -1; return NULL;
retval = read(fd, shdr, sizeof(*shdr)); retval = read(fd, shdr, sizeof(*shdr));
if (retval < 0) if (retval < 0)
return -1; return NULL;
bswap_shdr(shdr); bswap_shdr(shdr);
if (shdr->sh_type == SHT_STRTAB) if (shdr->sh_type == SHT_STRTAB)
return qemu_malloc(shdr->sh_size);; return qemu_malloc(shdr->sh_size);;
return 0; return NULL;
} }
static int read_program(int fd, struct elf_phdr *phdr, void *dst) static int read_program(int fd, struct elf_phdr *phdr, void *dst, uint32_t entry)
{ {
int retval; int retval;
retval = lseek(fd, 0x4000, SEEK_SET); retval = lseek(fd, phdr->p_offset + entry - phdr->p_vaddr, SEEK_SET);
if (retval < 0) if (retval < 0)
return -1; return -1;
return read(fd, dst, phdr->p_filesz); return read(fd, dst, phdr->p_filesz);
@ -178,6 +227,7 @@ static void load_symbols(struct elfhdr *ehdr, int fd)
{ {
struct elf_shdr symtab, strtab; struct elf_shdr symtab, strtab;
struct elf_sym *syms; struct elf_sym *syms;
struct syminfo *s;
int nsyms, i; int nsyms, i;
char *str; char *str;
@ -196,20 +246,19 @@ static void load_symbols(struct elfhdr *ehdr, int fd)
goto error_freesyms; goto error_freesyms;
/* Commit */ /* Commit */
if (disas_symtab) s = qemu_mallocz(sizeof(*s));
qemu_free(disas_symtab); /* XXX Merge with old symbols? */ s->disas_symtab = syms;
if (disas_strtab) s->disas_num_syms = nsyms;
qemu_free(disas_strtab); s->disas_strtab = str;
disas_symtab = syms; s->next = syminfos;
disas_num_syms = nsyms; syminfos = s;
disas_strtab = str;
return; return;
error_freesyms: error_freesyms:
qemu_free(syms); qemu_free(syms);
return; return;
} }
int load_elf(const char * filename, uint8_t *addr) int load_elf(const char *filename, uint8_t *addr)
{ {
struct elfhdr ehdr; struct elfhdr ehdr;
struct elf_phdr phdr; struct elf_phdr phdr;
@ -227,12 +276,13 @@ int load_elf(const char * filename, uint8_t *addr)
if (ehdr.e_ident[0] != 0x7f || ehdr.e_ident[1] != 'E' if (ehdr.e_ident[0] != 0x7f || ehdr.e_ident[1] != 'E'
|| ehdr.e_ident[2] != 'L' || ehdr.e_ident[3] != 'F' || ehdr.e_ident[2] != 'L' || ehdr.e_ident[3] != 'F'
|| ehdr.e_machine != EM_SPARC) || (ehdr.e_machine != EM_SPARC
&& ehdr.e_machine != EM_SPARC32PLUS))
goto error; goto error;
if (find_phdr(&ehdr, fd, &phdr, PT_LOAD)) if (find_phdr(&ehdr, fd, &phdr, PT_LOAD))
goto error; goto error;
retval = read_program(fd, &phdr, addr); retval = read_program(fd, &phdr, addr, ehdr.e_entry);
if (retval < 0) if (retval < 0)
goto error; goto error;
@ -245,17 +295,45 @@ int load_elf(const char * filename, uint8_t *addr)
return -1; return -1;
} }
int load_kernel(const char *filename, uint8_t *addr) int load_aout(const char *filename, uint8_t *addr)
{ {
int fd, size; int fd, size, ret;
struct exec e;
uint32_t magic;
fd = open(filename, O_RDONLY | O_BINARY); fd = open(filename, O_RDONLY | O_BINARY);
if (fd < 0) if (fd < 0)
return -1; return -1;
/* load 32 bit code */
size = read(fd, addr, 16 * 1024 * 1024); size = read(fd, &e, sizeof(e));
if (size < 0) if (size < 0)
goto fail; goto fail;
bswap_ahdr(&e);
magic = N_MAGIC(e);
switch (magic) {
case ZMAGIC:
case QMAGIC:
case OMAGIC:
lseek(fd, N_TXTOFF(e), SEEK_SET);
size = read(fd, addr, e.a_text + e.a_data);
if (size < 0)
goto fail;
break;
case NMAGIC:
lseek(fd, N_TXTOFF(e), SEEK_SET);
size = read(fd, addr, e.a_text);
if (size < 0)
goto fail;
ret = read(fd, addr + N_DATADDR(e), e.a_data);
if (ret < 0)
goto fail;
size += ret;
break;
default:
goto fail;
}
close(fd); close(fd);
return size; return size;
fail: fail:
@ -263,64 +341,3 @@ int load_kernel(const char *filename, uint8_t *addr)
return -1; return -1;
} }
typedef struct MAGICState {
uint32_t addr;
uint32_t saved_addr;
int magic_state;
char saved_kfn[1024];
} MAGICState;
static uint32_t magic_mem_readl(void *opaque, target_phys_addr_t addr)
{
int ret;
MAGICState *s = opaque;
if (s->magic_state == 0) {
ret = load_elf(s->saved_kfn, (uint8_t *)s->saved_addr);
if (ret < 0)
ret = load_kernel(s->saved_kfn, (uint8_t *)s->saved_addr);
if (ret < 0) {
fprintf(stderr, "qemu: could not load kernel '%s'\n",
s->saved_kfn);
}
s->magic_state = 1; /* No more magic */
tb_flush();
return bswap32(ret);
}
return 0;
}
static void magic_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
}
static CPUReadMemoryFunc *magic_mem_read[3] = {
magic_mem_readl,
magic_mem_readl,
magic_mem_readl,
};
static CPUWriteMemoryFunc *magic_mem_write[3] = {
magic_mem_writel,
magic_mem_writel,
magic_mem_writel,
};
void magic_init(const char *kfn, int kloadaddr, uint32_t addr)
{
int magic_io_memory;
MAGICState *s;
s = qemu_mallocz(sizeof(MAGICState));
if (!s)
return;
strcpy(s->saved_kfn, kfn);
s->saved_addr = kloadaddr;
s->magic_state = 0;
s->addr = addr;
magic_io_memory = cpu_register_io_memory(0, magic_mem_read, magic_mem_write, s);
cpu_register_physical_memory(addr, 4, magic_io_memory);
}

View file

@ -1,268 +0,0 @@
/*
* QEMU interrupt controller emulation
*
* Copyright (c) 2003-2004 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "vl.h"
//#define DEBUG_IRQ_COUNT
/* These registers are used for sending/receiving irqs from/to
* different cpu's.
*/
struct sun4m_intreg_percpu {
unsigned int tbt; /* Intrs pending for this cpu, by PIL. */
/* These next two registers are WRITE-ONLY and are only
* "on bit" sensitive, "off bits" written have NO affect.
*/
unsigned int clear; /* Clear this cpus irqs here. */
unsigned int set; /* Set this cpus irqs here. */
};
/*
* djhr
* Actually the clear and set fields in this struct are misleading..
* according to the SLAVIO manual (and the same applies for the SEC)
* the clear field clears bits in the mask which will ENABLE that IRQ
* the set field sets bits in the mask to DISABLE the IRQ.
*
* Also the undirected_xx address in the SLAVIO is defined as
* RESERVED and write only..
*
* DAVEM_NOTE: The SLAVIO only specifies behavior on uniprocessor
* sun4m machines, for MP the layout makes more sense.
*/
struct sun4m_intreg_master {
unsigned int tbt; /* IRQ's that are pending, see sun4m masks. */
unsigned int irqs; /* Master IRQ bits. */
/* Again, like the above, two these registers are WRITE-ONLY. */
unsigned int clear; /* Clear master IRQ's by setting bits here. */
unsigned int set; /* Set master IRQ's by setting bits here. */
/* This register is both READ and WRITE. */
unsigned int undirected_target; /* Which cpu gets undirected irqs. */
};
#define SUN4M_INT_ENABLE 0x80000000
#define SUN4M_INT_E14 0x00000080
#define SUN4M_INT_E10 0x00080000
#define SUN4M_HARD_INT(x) (0x000000001 << (x))
#define SUN4M_SOFT_INT(x) (0x000010000 << (x))
#define SUN4M_INT_MASKALL 0x80000000 /* mask all interrupts */
#define SUN4M_INT_MODULE_ERR 0x40000000 /* module error */
#define SUN4M_INT_M2S_WRITE 0x20000000 /* write buffer error */
#define SUN4M_INT_ECC 0x10000000 /* ecc memory error */
#define SUN4M_INT_FLOPPY 0x00400000 /* floppy disk */
#define SUN4M_INT_MODULE 0x00200000 /* module interrupt */
#define SUN4M_INT_VIDEO 0x00100000 /* onboard video */
#define SUN4M_INT_REALTIME 0x00080000 /* system timer */
#define SUN4M_INT_SCSI 0x00040000 /* onboard scsi */
#define SUN4M_INT_AUDIO 0x00020000 /* audio/isdn */
#define SUN4M_INT_ETHERNET 0x00010000 /* onboard ethernet */
#define SUN4M_INT_SERIAL 0x00008000 /* serial ports */
#define SUN4M_INT_SBUSBITS 0x00003F80 /* sbus int bits */
#define SUN4M_INT_SBUS(x) (1 << (x+7))
#define SUN4M_INT_VME(x) (1 << (x))
typedef struct SCHEDState {
uint32_t addr, addrg;
uint32_t intreg_pending;
uint32_t intreg_enabled;
uint32_t intregm_pending;
uint32_t intregm_enabled;
} SCHEDState;
static SCHEDState *ps;
#ifdef DEBUG_IRQ_COUNT
static uint64_t irq_count[32];
#endif
static uint32_t intreg_mem_readl(void *opaque, target_phys_addr_t addr)
{
SCHEDState *s = opaque;
uint32_t saddr;
saddr = (addr - s->addr) >> 2;
switch (saddr) {
case 0:
return s->intreg_pending;
break;
default:
break;
}
return 0;
}
static void intreg_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
SCHEDState *s = opaque;
uint32_t saddr;
saddr = (addr - s->addr) >> 2;
switch (saddr) {
case 0:
s->intreg_pending = val;
break;
case 1: // clear
s->intreg_enabled &= ~val;
break;
case 2: // set
s->intreg_enabled |= val;
break;
default:
break;
}
}
static CPUReadMemoryFunc *intreg_mem_read[3] = {
intreg_mem_readl,
intreg_mem_readl,
intreg_mem_readl,
};
static CPUWriteMemoryFunc *intreg_mem_write[3] = {
intreg_mem_writel,
intreg_mem_writel,
intreg_mem_writel,
};
static uint32_t intregm_mem_readl(void *opaque, target_phys_addr_t addr)
{
SCHEDState *s = opaque;
uint32_t saddr;
saddr = (addr - s->addrg) >> 2;
switch (saddr) {
case 0:
return s->intregm_pending;
break;
case 1:
return s->intregm_enabled;
break;
default:
break;
}
return 0;
}
static void intregm_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
SCHEDState *s = opaque;
uint32_t saddr;
saddr = (addr - s->addrg) >> 2;
switch (saddr) {
case 0:
s->intregm_pending = val;
break;
case 1:
s->intregm_enabled = val;
break;
case 2: // clear
s->intregm_enabled &= ~val;
break;
case 3: // set
s->intregm_enabled |= val;
break;
default:
break;
}
}
static CPUReadMemoryFunc *intregm_mem_read[3] = {
intregm_mem_readl,
intregm_mem_readl,
intregm_mem_readl,
};
static CPUWriteMemoryFunc *intregm_mem_write[3] = {
intregm_mem_writel,
intregm_mem_writel,
intregm_mem_writel,
};
void pic_info(void)
{
term_printf("per-cpu: pending 0x%08x, enabled 0x%08x\n", ps->intreg_pending, ps->intreg_enabled);
term_printf("master: pending 0x%08x, enabled 0x%08x\n", ps->intregm_pending, ps->intregm_enabled);
}
void irq_info(void)
{
#ifndef DEBUG_IRQ_COUNT
term_printf("irq statistic code not compiled.\n");
#else
int i;
int64_t count;
term_printf("IRQ statistics:\n");
for (i = 0; i < 32; i++) {
count = irq_count[i];
if (count > 0)
term_printf("%2d: %lld\n", i, count);
}
#endif
}
static const unsigned int intr_to_mask[16] = {
0, 0, 0, 0, 0, 0, SUN4M_INT_ETHERNET, 0,
0, 0, 0, 0, 0, 0, 0, 0,
};
void pic_set_irq(int irq, int level)
{
if (irq < 16) {
unsigned int mask = intr_to_mask[irq];
ps->intreg_pending |= 1 << irq;
if (ps->intregm_enabled & mask) {
cpu_single_env->interrupt_index = irq;
cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
}
}
#ifdef DEBUG_IRQ_COUNT
if (level == 1)
irq_count[irq]++;
#endif
}
void sched_init(uint32_t addr, uint32_t addrg)
{
int intreg_io_memory, intregm_io_memory;
SCHEDState *s;
s = qemu_mallocz(sizeof(SCHEDState));
if (!s)
return;
s->addr = addr;
s->addrg = addrg;
intreg_io_memory = cpu_register_io_memory(0, intreg_mem_read, intreg_mem_write, s);
cpu_register_physical_memory(addr, 3, intreg_io_memory);
intregm_io_memory = cpu_register_io_memory(0, intregm_mem_read, intregm_mem_write, s);
cpu_register_physical_memory(addrg, 5, intregm_io_memory);
ps = s;
}

299
hw/slavio_intctl.c Normal file
View file

@ -0,0 +1,299 @@
/*
* QEMU Sparc SLAVIO interrupt controller emulation
*
* Copyright (c) 2003-2004 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "vl.h"
//#define DEBUG_IRQ_COUNT
/*
* Registers of interrupt controller in sun4m.
*
* This is the interrupt controller part of chip STP2001 (Slave I/O), also
* produced as NCR89C105. See
* http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
*
* There is a system master controller and one for each cpu.
*
*/
#define MAX_CPUS 16
typedef struct SLAVIO_INTCTLState {
uint32_t intreg_pending[MAX_CPUS];
uint32_t intregm_pending;
uint32_t intregm_disabled;
uint32_t target_cpu;
#ifdef DEBUG_IRQ_COUNT
uint64_t irq_count[32];
#endif
} SLAVIO_INTCTLState;
#define INTCTL_MAXADDR 0xf
#define INTCTLM_MAXADDR 0xf
// per-cpu interrupt controller
static uint32_t slavio_intctl_mem_readl(void *opaque, target_phys_addr_t addr)
{
SLAVIO_INTCTLState *s = opaque;
uint32_t saddr;
int cpu;
cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12;
saddr = (addr & INTCTL_MAXADDR) >> 2;
switch (saddr) {
case 0:
return s->intreg_pending[cpu];
default:
break;
}
return 0;
}
static void slavio_intctl_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
SLAVIO_INTCTLState *s = opaque;
uint32_t saddr;
int cpu;
cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12;
saddr = (addr & INTCTL_MAXADDR) >> 2;
switch (saddr) {
case 1: // clear pending softints
if (val & 0x4000)
val |= 80000000;
val &= 0xfffe0000;
s->intreg_pending[cpu] &= ~val;
break;
case 2: // set softint
val &= 0xfffe0000;
s->intreg_pending[cpu] |= val;
break;
default:
break;
}
}
static CPUReadMemoryFunc *slavio_intctl_mem_read[3] = {
slavio_intctl_mem_readl,
slavio_intctl_mem_readl,
slavio_intctl_mem_readl,
};
static CPUWriteMemoryFunc *slavio_intctl_mem_write[3] = {
slavio_intctl_mem_writel,
slavio_intctl_mem_writel,
slavio_intctl_mem_writel,
};
// master system interrupt controller
static uint32_t slavio_intctlm_mem_readl(void *opaque, target_phys_addr_t addr)
{
SLAVIO_INTCTLState *s = opaque;
uint32_t saddr;
saddr = (addr & INTCTLM_MAXADDR) >> 2;
switch (saddr) {
case 0:
return s->intregm_pending;
case 1:
return s->intregm_disabled;
case 4:
return s->target_cpu;
default:
break;
}
return 0;
}
static void slavio_intctlm_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
SLAVIO_INTCTLState *s = opaque;
uint32_t saddr;
saddr = (addr & INTCTLM_MAXADDR) >> 2;
switch (saddr) {
case 2: // clear (enable)
// Force unused bits
val |= 0x7fb2007f;
s->intregm_disabled &= ~val;
break;
case 3: // set (disable, clear pending)
// Force unused bits
val &= ~0x7fb2007f;
s->intregm_disabled |= val;
s->intregm_pending &= ~val;
break;
case 4:
s->target_cpu = val & (MAX_CPUS - 1);
break;
default:
break;
}
}
static CPUReadMemoryFunc *slavio_intctlm_mem_read[3] = {
slavio_intctlm_mem_readl,
slavio_intctlm_mem_readl,
slavio_intctlm_mem_readl,
};
static CPUWriteMemoryFunc *slavio_intctlm_mem_write[3] = {
slavio_intctlm_mem_writel,
slavio_intctlm_mem_writel,
slavio_intctlm_mem_writel,
};
void slavio_pic_info(void *opaque)
{
SLAVIO_INTCTLState *s = opaque;
int i;
for (i = 0; i < MAX_CPUS; i++) {
term_printf("per-cpu %d: pending 0x%08x\n", i, s->intreg_pending[i]);
}
term_printf("master: pending 0x%08x, disabled 0x%08x\n", s->intregm_pending, s->intregm_disabled);
}
void slavio_irq_info(void *opaque)
{
#ifndef DEBUG_IRQ_COUNT
term_printf("irq statistic code not compiled.\n");
#else
SLAVIO_INTCTLState *s = opaque;
int i;
int64_t count;
term_printf("IRQ statistics:\n");
for (i = 0; i < 32; i++) {
count = s->irq_count[i];
if (count > 0)
term_printf("%2d: %lld\n", i, count);
}
#endif
}
static const uint32_t intbit_to_level[32] = {
2, 3, 5, 7, 9, 11, 0, 14, 3, 5, 7, 9, 11, 13, 12, 12,
6, 0, 4, 10, 8, 0, 11, 0, 0, 0, 0, 0, 15, 0, 0, 0,
};
/*
* "irq" here is the bit number in the system interrupt register to
* separate serial and keyboard interrupts sharing a level.
*/
void slavio_pic_set_irq(void *opaque, int irq, int level)
{
SLAVIO_INTCTLState *s = opaque;
if (irq < 32) {
uint32_t mask = 1 << irq;
uint32_t pil = intbit_to_level[irq];
if (pil > 0) {
if (level) {
s->intregm_pending |= mask;
s->intreg_pending[s->target_cpu] |= 1 << pil;
}
else {
s->intregm_pending &= ~mask;
s->intreg_pending[s->target_cpu] &= ~(1 << pil);
}
if (level &&
!(s->intregm_disabled & mask) &&
!(s->intregm_disabled & 0x80000000) &&
(pil == 15 || (pil > cpu_single_env->psrpil && cpu_single_env->psret == 1))) {
#ifdef DEBUG_IRQ_COUNT
if (level == 1)
s->irq_count[pil]++;
#endif
cpu_single_env->interrupt_index = TT_EXTINT | pil;
cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
}
}
}
}
static void slavio_intctl_save(QEMUFile *f, void *opaque)
{
SLAVIO_INTCTLState *s = opaque;
int i;
for (i = 0; i < MAX_CPUS; i++) {
qemu_put_be32s(f, &s->intreg_pending[i]);
}
qemu_put_be32s(f, &s->intregm_pending);
qemu_put_be32s(f, &s->intregm_disabled);
qemu_put_be32s(f, &s->target_cpu);
}
static int slavio_intctl_load(QEMUFile *f, void *opaque, int version_id)
{
SLAVIO_INTCTLState *s = opaque;
int i;
if (version_id != 1)
return -EINVAL;
for (i = 0; i < MAX_CPUS; i++) {
qemu_get_be32s(f, &s->intreg_pending[i]);
}
qemu_get_be32s(f, &s->intregm_pending);
qemu_get_be32s(f, &s->intregm_disabled);
qemu_get_be32s(f, &s->target_cpu);
return 0;
}
static void slavio_intctl_reset(void *opaque)
{
SLAVIO_INTCTLState *s = opaque;
int i;
for (i = 0; i < MAX_CPUS; i++) {
s->intreg_pending[i] = 0;
}
s->intregm_disabled = 0xffffffff;
s->intregm_pending = 0;
s->target_cpu = 0;
}
void *slavio_intctl_init(uint32_t addr, uint32_t addrg)
{
int slavio_intctl_io_memory, slavio_intctlm_io_memory, i;
SLAVIO_INTCTLState *s;
s = qemu_mallocz(sizeof(SLAVIO_INTCTLState));
if (!s)
return NULL;
for (i = 0; i < MAX_CPUS; i++) {
slavio_intctl_io_memory = cpu_register_io_memory(0, slavio_intctl_mem_read, slavio_intctl_mem_write, s);
cpu_register_physical_memory(addr + i * TARGET_PAGE_SIZE, INTCTL_MAXADDR, slavio_intctl_io_memory);
}
slavio_intctlm_io_memory = cpu_register_io_memory(0, slavio_intctlm_mem_read, slavio_intctlm_mem_write, s);
cpu_register_physical_memory(addrg, INTCTLM_MAXADDR, slavio_intctlm_io_memory);
register_savevm("slavio_intctl", addr, 1, slavio_intctl_save, slavio_intctl_load, s);
qemu_register_reset(slavio_intctl_reset, s);
slavio_intctl_reset(s);
return s;
}

364
hw/slavio_serial.c Normal file
View file

@ -0,0 +1,364 @@
/*
* QEMU Sparc SLAVIO serial port emulation
*
* Copyright (c) 2003-2004 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "vl.h"
//#define DEBUG_SERIAL
/* debug keyboard */
//#define DEBUG_KBD
/* debug keyboard : only mouse */
//#define DEBUG_MOUSE
/*
* This is the serial port, mouse and keyboard part of chip STP2001
* (Slave I/O), also produced as NCR89C105. See
* http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
*
* The serial ports implement full AMD AM8530 or Zilog Z8530 chips,
* mouse and keyboard ports don't implement all functions and they are
* only asynchronous. There is no DMA.
*
*/
typedef struct ChannelState {
int irq;
int reg;
int rxint, txint;
uint8_t rx, tx, wregs[16], rregs[16];
CharDriverState *chr;
} ChannelState;
struct SerialState {
struct ChannelState chn[2];
};
#define SERIAL_MAXADDR 7
static void slavio_serial_update_irq(ChannelState *s)
{
if ((s->wregs[1] & 1) && // interrupts enabled
(((s->wregs[1] & 2) && s->txint == 1) || // tx ints enabled, pending
((((s->wregs[1] & 0x18) == 8) || ((s->wregs[1] & 0x18) == 0x10)) &&
s->rxint == 1) || // rx ints enabled, pending
((s->wregs[15] & 0x80) && (s->rregs[0] & 0x80)))) { // break int e&p
pic_set_irq(s->irq, 1);
} else {
pic_set_irq(s->irq, 0);
}
}
static void slavio_serial_reset_chn(ChannelState *s)
{
int i;
s->reg = 0;
for (i = 0; i < SERIAL_MAXADDR; i++) {
s->rregs[i] = 0;
s->wregs[i] = 0;
}
s->wregs[4] = 4;
s->wregs[9] = 0xc0;
s->wregs[11] = 8;
s->wregs[14] = 0x30;
s->wregs[15] = 0xf8;
s->rregs[0] = 0x44;
s->rregs[1] = 6;
s->rx = s->tx = 0;
s->rxint = s->txint = 0;
}
static void slavio_serial_reset(void *opaque)
{
SerialState *s = opaque;
slavio_serial_reset_chn(&s->chn[0]);
slavio_serial_reset_chn(&s->chn[1]);
}
static void slavio_serial_mem_writeb(void *opaque, uint32_t addr, uint32_t val)
{
SerialState *ser = opaque;
ChannelState *s;
uint32_t saddr;
int newreg, channel;
val &= 0xff;
saddr = (addr & 3) >> 1;
channel = (addr & SERIAL_MAXADDR) >> 2;
s = &ser->chn[channel];
switch (saddr) {
case 0:
newreg = 0;
switch (s->reg) {
case 0:
newreg = val & 7;
val &= 0x38;
switch (val) {
case 8:
s->reg |= 0x8;
break;
case 0x20:
s->rxint = 0;
break;
case 0x28:
s->txint = 0;
break;
default:
break;
}
break;
case 1 ... 8:
case 10 ... 15:
s->wregs[s->reg] = val;
break;
case 9:
switch (val & 0xc0) {
case 0:
default:
break;
case 0x40:
slavio_serial_reset_chn(&ser->chn[1]);
return;
case 0x80:
slavio_serial_reset_chn(&ser->chn[0]);
return;
case 0xc0:
slavio_serial_reset(ser);
return;
}
break;
default:
break;
}
if (s->reg == 0)
s->reg = newreg;
else
s->reg = 0;
break;
case 1:
if (s->wregs[5] & 8) { // tx enabled
s->tx = val;
if (s->chr)
qemu_chr_write(s->chr, &s->tx, 1);
s->txint = 1;
}
break;
default:
break;
}
}
static uint32_t slavio_serial_mem_readb(void *opaque, uint32_t addr)
{
SerialState *ser = opaque;
ChannelState *s;
uint32_t saddr;
uint32_t ret;
int channel;
saddr = (addr & 3) >> 1;
channel = (addr & SERIAL_MAXADDR) >> 2;
s = &ser->chn[channel];
switch (saddr) {
case 0:
ret = s->rregs[s->reg];
s->reg = 0;
return ret;
case 1:
s->rregs[0] &= ~1;
return s->rx;
default:
break;
}
return 0;
}
static int serial_can_receive(void *opaque)
{
ChannelState *s = opaque;
if (((s->wregs[3] & 1) == 0) // Rx not enabled
|| ((s->rregs[0] & 1) == 1)) // char already available
return 0;
else
return 1;
}
static void serial_receive_byte(ChannelState *s, int ch)
{
s->rregs[0] |= 1;
s->rx = ch;
s->rxint = 1;
slavio_serial_update_irq(s);
}
static void serial_receive_break(ChannelState *s)
{
s->rregs[0] |= 0x80;
slavio_serial_update_irq(s);
}
static void serial_receive1(void *opaque, const uint8_t *buf, int size)
{
ChannelState *s = opaque;
serial_receive_byte(s, buf[0]);
}
static void serial_event(void *opaque, int event)
{
ChannelState *s = opaque;
if (event == CHR_EVENT_BREAK)
serial_receive_break(s);
}
static CPUReadMemoryFunc *slavio_serial_mem_read[3] = {
slavio_serial_mem_readb,
slavio_serial_mem_readb,
slavio_serial_mem_readb,
};
static CPUWriteMemoryFunc *slavio_serial_mem_write[3] = {
slavio_serial_mem_writeb,
slavio_serial_mem_writeb,
slavio_serial_mem_writeb,
};
static void slavio_serial_save_chn(QEMUFile *f, ChannelState *s)
{
qemu_put_be32s(f, &s->irq);
qemu_put_be32s(f, &s->reg);
qemu_put_be32s(f, &s->rxint);
qemu_put_be32s(f, &s->txint);
qemu_put_8s(f, &s->rx);
qemu_put_8s(f, &s->tx);
qemu_put_buffer(f, s->wregs, 16);
qemu_put_buffer(f, s->rregs, 16);
}
static void slavio_serial_save(QEMUFile *f, void *opaque)
{
SerialState *s = opaque;
slavio_serial_save_chn(f, &s->chn[0]);
slavio_serial_save_chn(f, &s->chn[1]);
}
static int slavio_serial_load_chn(QEMUFile *f, ChannelState *s, int version_id)
{
if (version_id != 1)
return -EINVAL;
qemu_get_be32s(f, &s->irq);
qemu_get_be32s(f, &s->reg);
qemu_get_be32s(f, &s->rxint);
qemu_get_be32s(f, &s->txint);
qemu_get_8s(f, &s->rx);
qemu_get_8s(f, &s->tx);
qemu_get_buffer(f, s->wregs, 16);
qemu_get_buffer(f, s->rregs, 16);
return 0;
}
static int slavio_serial_load(QEMUFile *f, void *opaque, int version_id)
{
SerialState *s = opaque;
int ret;
ret = slavio_serial_load_chn(f, &s->chn[0], version_id);
if (ret != 0)
return ret;
ret = slavio_serial_load_chn(f, &s->chn[1], version_id);
return ret;
}
SerialState *slavio_serial_init(int base, int irq, CharDriverState *chr1, CharDriverState *chr2)
{
int slavio_serial_io_memory;
SerialState *s;
s = qemu_mallocz(sizeof(SerialState));
if (!s)
return NULL;
s->chn[0].irq = irq;
s->chn[1].irq = irq;
s->chn[0].chr = chr1;
s->chn[1].chr = chr2;
slavio_serial_io_memory = cpu_register_io_memory(0, slavio_serial_mem_read, slavio_serial_mem_write, s);
cpu_register_physical_memory(base, SERIAL_MAXADDR, slavio_serial_io_memory);
if (chr1) {
qemu_chr_add_read_handler(chr1, serial_can_receive, serial_receive1, &s->chn[0]);
qemu_chr_add_event_handler(chr1, serial_event);
}
if (chr2) {
qemu_chr_add_read_handler(chr2, serial_can_receive, serial_receive1, &s->chn[1]);
qemu_chr_add_event_handler(chr2, serial_event);
}
register_savevm("slavio_serial", base, 1, slavio_serial_save, slavio_serial_load, s);
qemu_register_reset(slavio_serial_reset, s);
slavio_serial_reset(s);
return s;
}
static void sunkbd_event(void *opaque, int ch)
{
ChannelState *s = opaque;
// XXX: PC -> Sun Type 5 translation?
serial_receive_byte(s, ch);
}
static void sunmouse_event(void *opaque,
int dx, int dy, int dz, int buttons_state)
{
ChannelState *s = opaque;
int ch;
// XXX
ch = 0x42;
serial_receive_byte(s, ch);
}
void slavio_serial_ms_kbd_init(int base, int irq)
{
int slavio_serial_io_memory;
SerialState *s;
s = qemu_mallocz(sizeof(SerialState));
if (!s)
return;
s->chn[0].irq = irq;
s->chn[1].irq = irq;
s->chn[0].chr = NULL;
s->chn[1].chr = NULL;
slavio_serial_io_memory = cpu_register_io_memory(0, slavio_serial_mem_read, slavio_serial_mem_write, s);
cpu_register_physical_memory(base, SERIAL_MAXADDR, slavio_serial_io_memory);
qemu_add_kbd_event_handler(sunkbd_event, &s->chn[0]);
qemu_add_mouse_event_handler(sunmouse_event, &s->chn[1]);
qemu_register_reset(slavio_serial_reset, s);
slavio_serial_reset(s);
}

289
hw/slavio_timer.c Normal file
View file

@ -0,0 +1,289 @@
/*
* QEMU Sparc SLAVIO timer controller emulation
*
* Copyright (c) 2003-2004 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "vl.h"
//#define DEBUG_TIMER
/*
* Registers of hardware timer in sun4m.
*
* This is the timer/counter part of chip STP2001 (Slave I/O), also
* produced as NCR89C105. See
* http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
*
* The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
* are zero. Bit 31 is 1 when count has been reached.
*
*/
typedef struct SLAVIO_TIMERState {
uint32_t limit, count, counthigh;
int64_t count_load_time;
int64_t expire_time;
int64_t stop_time, tick_offset;
QEMUTimer *irq_timer;
int irq;
int reached, stopped;
int mode; // 0 = processor, 1 = user, 2 = system
} SLAVIO_TIMERState;
#define TIMER_MAXADDR 0x1f
#define CNT_FREQ 2000000
#define MAX_CPUS 16
// Update count, set irq, update expire_time
static void slavio_timer_get_out(SLAVIO_TIMERState *s)
{
int out;
int64_t diff, ticks, count;
uint32_t limit;
// There are three clock tick units: CPU ticks, register units
// (nanoseconds), and counter ticks (500 ns).
if (s->mode == 1 && s->stopped)
ticks = s->stop_time;
else
ticks = qemu_get_clock(vm_clock) - s->tick_offset;
out = (ticks >= s->expire_time);
if (out)
s->reached = 0x80000000;
if (!s->limit)
limit = 0x7fffffff;
else
limit = s->limit;
// Convert register units to counter ticks
limit = limit >> 9;
// Convert cpu ticks to counter ticks
diff = muldiv64(ticks - s->count_load_time, CNT_FREQ, ticks_per_sec);
// Calculate what the counter should be, convert to register
// units
count = diff % limit;
s->count = count << 9;
s->counthigh = count >> 22;
// Expire time: CPU ticks left to next interrupt
// Convert remaining counter ticks to CPU ticks
s->expire_time = ticks + muldiv64(limit - count, ticks_per_sec, CNT_FREQ);
#ifdef DEBUG_TIMER
term_printf("timer: irq %d limit %d reached %d d %lld count %d s->c %x diff %lld stopped %d mode %d\n", s->irq, limit, s->reached?1:0, (ticks-s->count_load_time), count, s->count, s->expire_time - ticks, s->stopped, s->mode);
#endif
if (s->mode != 1)
pic_set_irq(s->irq, out);
}
// timer callback
static void slavio_timer_irq(void *opaque)
{
SLAVIO_TIMERState *s = opaque;
if (!s->irq_timer)
return;
slavio_timer_get_out(s);
if (s->mode != 1)
qemu_mod_timer(s->irq_timer, s->expire_time);
}
static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
{
SLAVIO_TIMERState *s = opaque;
uint32_t saddr;
saddr = (addr & TIMER_MAXADDR) >> 2;
switch (saddr) {
case 0:
// read limit (system counter mode) or read most signifying
// part of counter (user mode)
if (s->mode != 1) {
// clear irq
pic_set_irq(s->irq, 0);
s->count_load_time = qemu_get_clock(vm_clock);
s->reached = 0;
return s->limit;
}
else {
slavio_timer_get_out(s);
return s->counthigh & 0x7fffffff;
}
case 1:
// read counter and reached bit (system mode) or read lsbits
// of counter (user mode)
slavio_timer_get_out(s);
if (s->mode != 1)
return (s->count & 0x7fffffff) | s->reached;
else
return s->count;
case 3:
// read start/stop status
return s->stopped;
case 4:
// read user/system mode
return s->mode & 1;
default:
return 0;
}
}
static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
SLAVIO_TIMERState *s = opaque;
uint32_t saddr;
saddr = (addr & TIMER_MAXADDR) >> 2;
switch (saddr) {
case 0:
// set limit, reset counter
s->count_load_time = qemu_get_clock(vm_clock);
// fall through
case 2:
// set limit without resetting counter
if (!val)
s->limit = 0x7fffffff;
else
s->limit = val & 0x7fffffff;
slavio_timer_irq(s);
break;
case 3:
// start/stop user counter
if (s->mode == 1) {
if (val & 1) {
s->stop_time = qemu_get_clock(vm_clock);
s->stopped = 1;
}
else {
if (s->stopped)
s->tick_offset += qemu_get_clock(vm_clock) - s->stop_time;
s->stopped = 0;
}
}
break;
case 4:
// bit 0: user (1) or system (0) counter mode
if (s->mode == 0 || s->mode == 1)
s->mode = val & 1;
break;
default:
break;
}
}
static CPUReadMemoryFunc *slavio_timer_mem_read[3] = {
slavio_timer_mem_readl,
slavio_timer_mem_readl,
slavio_timer_mem_readl,
};
static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = {
slavio_timer_mem_writel,
slavio_timer_mem_writel,
slavio_timer_mem_writel,
};
static void slavio_timer_save(QEMUFile *f, void *opaque)
{
SLAVIO_TIMERState *s = opaque;
qemu_put_be32s(f, &s->limit);
qemu_put_be32s(f, &s->count);
qemu_put_be32s(f, &s->counthigh);
qemu_put_be64s(f, &s->count_load_time);
qemu_put_be64s(f, &s->expire_time);
qemu_put_be64s(f, &s->stop_time);
qemu_put_be64s(f, &s->tick_offset);
qemu_put_be32s(f, &s->irq);
qemu_put_be32s(f, &s->reached);
qemu_put_be32s(f, &s->stopped);
qemu_put_be32s(f, &s->mode);
}
static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id)
{
SLAVIO_TIMERState *s = opaque;
if (version_id != 1)
return -EINVAL;
qemu_get_be32s(f, &s->limit);
qemu_get_be32s(f, &s->count);
qemu_get_be32s(f, &s->counthigh);
qemu_get_be64s(f, &s->count_load_time);
qemu_get_be64s(f, &s->expire_time);
qemu_get_be64s(f, &s->stop_time);
qemu_get_be64s(f, &s->tick_offset);
qemu_get_be32s(f, &s->irq);
qemu_get_be32s(f, &s->reached);
qemu_get_be32s(f, &s->stopped);
qemu_get_be32s(f, &s->mode);
return 0;
}
static void slavio_timer_reset(void *opaque)
{
SLAVIO_TIMERState *s = opaque;
s->limit = 0;
s->count = 0;
s->count_load_time = qemu_get_clock(vm_clock);;
s->stop_time = s->count_load_time;
s->tick_offset = 0;
s->reached = 0;
s->mode &= 2;
s->stopped = 1;
slavio_timer_get_out(s);
}
static void slavio_timer_init_internal(uint32_t addr, int irq, int mode)
{
int slavio_timer_io_memory;
SLAVIO_TIMERState *s;
s = qemu_mallocz(sizeof(SLAVIO_TIMERState));
if (!s)
return;
s->irq = irq;
s->mode = mode;
s->irq_timer = qemu_new_timer(vm_clock, slavio_timer_irq, s);
slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read,
slavio_timer_mem_write, s);
cpu_register_physical_memory(addr, TIMER_MAXADDR, slavio_timer_io_memory);
register_savevm("slavio_timer", addr, 1, slavio_timer_save, slavio_timer_load, s);
qemu_register_reset(slavio_timer_reset, s);
slavio_timer_reset(s);
}
void slavio_timer_init(uint32_t addr1, int irq1, uint32_t addr2, int irq2)
{
int i;
for (i = 0; i < MAX_CPUS; i++) {
slavio_timer_init_internal(addr1 + i * TARGET_PAGE_SIZE, irq1, 0);
}
slavio_timer_init_internal(addr2, irq2, 2);
}

View file

@ -25,29 +25,32 @@
#include "m48t08.h" #include "m48t08.h"
#define KERNEL_LOAD_ADDR 0x00004000 #define KERNEL_LOAD_ADDR 0x00004000
#define MMU_CONTEXT_TBL 0x00003000 #define PROM_ADDR 0xffd00000
#define MMU_L1PTP (MMU_CONTEXT_TBL + 0x0400)
#define MMU_L2PTP (MMU_CONTEXT_TBL + 0x0800)
#define PROM_ADDR 0xffd04000
#define PROM_FILENAMEB "proll.bin" #define PROM_FILENAMEB "proll.bin"
#define PROM_FILENAMEE "proll.elf" #define PROM_FILENAMEE "proll.elf"
#define PROLL_MAGIC_ADDR 0x20000000 #define PHYS_JJ_EEPROM 0x71200000 /* m48t08 */
#define PHYS_JJ_EEPROM 0x71200000 /* [2000] MK48T08 */
#define PHYS_JJ_IDPROM_OFF 0x1FD8 #define PHYS_JJ_IDPROM_OFF 0x1FD8
#define PHYS_JJ_EEPROM_SIZE 0x2000 #define PHYS_JJ_EEPROM_SIZE 0x2000
#define PHYS_JJ_IOMMU 0x10000000 /* First page of sun4m IOMMU */ // IRQs are not PIL ones, but master interrupt controller register
// bits
#define PHYS_JJ_IOMMU 0x10000000 /* I/O MMU */
#define PHYS_JJ_TCX_FB 0x50800000 /* Start address, frame buffer body */ #define PHYS_JJ_TCX_FB 0x50800000 /* Start address, frame buffer body */
#define PHYS_JJ_TCX_0E 0x5E000000 /* Top address, one byte used. */ #define PHYS_JJ_LEDMA 0x78400010 /* Lance DMA controller */
#define PHYS_JJ_IOMMU 0x10000000 /* First page of sun4m IOMMU */ #define PHYS_JJ_LE 0x78C00000 /* Lance ethernet */
#define PHYS_JJ_LEDMA 0x78400010 /* ledma, off by 10 from unused SCSI */ #define PHYS_JJ_LE_IRQ 16
#define PHYS_JJ_LE 0x78C00000 /* LANCE, typical sun4m */ #define PHYS_JJ_CLOCK 0x71D00000 /* Per-CPU timer/counter, L14 */
#define PHYS_JJ_LE_IRQ 6 #define PHYS_JJ_CLOCK_IRQ 7
#define PHYS_JJ_CLOCK 0x71D00000 #define PHYS_JJ_CLOCK1 0x71D10000 /* System timer/counter, L10 */
#define PHYS_JJ_CLOCK_IRQ 10 #define PHYS_JJ_CLOCK1_IRQ 19
#define PHYS_JJ_CLOCK1 0x71D10000 #define PHYS_JJ_INTR0 0x71E00000 /* Per-CPU interrupt control registers */
#define PHYS_JJ_CLOCK1_IRQ 14
#define PHYS_JJ_INTR0 0x71E00000 /* CPU0 interrupt control registers */
#define PHYS_JJ_INTR_G 0x71E10000 /* Master interrupt control registers */ #define PHYS_JJ_INTR_G 0x71E10000 /* Master interrupt control registers */
#define PHYS_JJ_MS_KBD 0x71000000 /* Mouse and keyboard */
#define PHYS_JJ_MS_KBD_IRQ 14
#define PHYS_JJ_SER 0x71100000 /* Serial */
#define PHYS_JJ_SER_IRQ 15
#define PHYS_JJ_SCSI_IRQ 18
#define PHYS_JJ_FDC 0x71400000 /* Floppy */
#define PHYS_JJ_FLOPPY_IRQ 22
/* TSC handling */ /* TSC handling */
@ -57,13 +60,73 @@ uint64_t cpu_get_tsc()
} }
void DMA_run() {} void DMA_run() {}
void SB16_run() {}
int serial_can_receive(SerialState *s) { return 0; }
void serial_receive_byte(SerialState *s, int ch) {}
void serial_receive_break(SerialState *s) {}
static m48t08_t *nvram; static m48t08_t *nvram;
static void nvram_init(m48t08_t *nvram, uint8_t *macaddr)
{
unsigned char tmp = 0;
int i, j;
i = 0x1fd8;
m48t08_write(nvram, i++, 0x01);
m48t08_write(nvram, i++, 0x80); /* Sun4m OBP */
j = 0;
m48t08_write(nvram, i++, macaddr[j++]);
m48t08_write(nvram, i++, macaddr[j++]);
m48t08_write(nvram, i++, macaddr[j++]);
m48t08_write(nvram, i++, macaddr[j++]);
m48t08_write(nvram, i++, macaddr[j++]);
m48t08_write(nvram, i, macaddr[j]);
/* Calculate checksum */
for (i = 0x1fd8; i < 0x1fe7; i++) {
tmp ^= m48t08_read(nvram, i);
}
m48t08_write(nvram, 0x1fe7, tmp);
}
static void *slavio_intctl;
void pic_info()
{
slavio_pic_info(slavio_intctl);
}
void irq_info()
{
slavio_irq_info(slavio_intctl);
}
void pic_set_irq(int irq, int level)
{
slavio_pic_set_irq(slavio_intctl, irq, level);
}
static void *tcx;
void vga_update_display()
{
tcx_update_display(tcx);
}
void vga_invalidate_display()
{
tcx_invalidate_display(tcx);
}
void vga_screen_dump(const char *filename)
{
tcx_screen_dump(tcx, filename);
}
static void *iommu;
uint32_t iommu_translate(uint32_t addr)
{
return iommu_translate_local(iommu, addr);
}
/* Sun4m hardware initialisation */ /* Sun4m hardware initialisation */
void sun4m_init(int ram_size, int vga_ram_size, int boot_device, void sun4m_init(int ram_size, int vga_ram_size, int boot_device,
DisplayState *ds, const char **fd_filename, int snapshot, DisplayState *ds, const char **fd_filename, int snapshot,
@ -72,42 +135,50 @@ void sun4m_init(int ram_size, int vga_ram_size, int boot_device,
{ {
char buf[1024]; char buf[1024];
int ret, linux_boot; int ret, linux_boot;
unsigned long bios_offset; unsigned long vram_size = 0x100000, prom_offset;
linux_boot = (kernel_filename != NULL); linux_boot = (kernel_filename != NULL);
/* allocate RAM */ /* allocate RAM */
cpu_register_physical_memory(0, ram_size, 0); cpu_register_physical_memory(0, ram_size, 0);
bios_offset = ram_size;
iommu_init(PHYS_JJ_IOMMU); iommu = iommu_init(PHYS_JJ_IOMMU);
sched_init(PHYS_JJ_INTR0, PHYS_JJ_INTR_G); slavio_intctl = slavio_intctl_init(PHYS_JJ_INTR0, PHYS_JJ_INTR_G);
tcx_init(ds, PHYS_JJ_TCX_FB); tcx = tcx_init(ds, PHYS_JJ_TCX_FB, phys_ram_base + ram_size, ram_size, vram_size);
lance_init(&nd_table[0], PHYS_JJ_LE_IRQ, PHYS_JJ_LE, PHYS_JJ_LEDMA); lance_init(&nd_table[0], PHYS_JJ_LE_IRQ, PHYS_JJ_LE, PHYS_JJ_LEDMA);
nvram = m48t08_init(PHYS_JJ_EEPROM, PHYS_JJ_EEPROM_SIZE, &nd_table[0].macaddr); nvram = m48t08_init(PHYS_JJ_EEPROM, PHYS_JJ_EEPROM_SIZE);
timer_init(PHYS_JJ_CLOCK, PHYS_JJ_CLOCK_IRQ); nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr);
timer_init(PHYS_JJ_CLOCK1, PHYS_JJ_CLOCK1_IRQ); slavio_timer_init(PHYS_JJ_CLOCK, PHYS_JJ_CLOCK_IRQ, PHYS_JJ_CLOCK1, PHYS_JJ_CLOCK1_IRQ);
magic_init(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR, PROLL_MAGIC_ADDR); slavio_serial_ms_kbd_init(PHYS_JJ_MS_KBD, PHYS_JJ_MS_KBD_IRQ);
slavio_serial_init(PHYS_JJ_SER, PHYS_JJ_SER_IRQ, serial_hds[0], serial_hds[1]);
fdctrl_init(PHYS_JJ_FLOPPY_IRQ, 0, 1, PHYS_JJ_FDC, fd_table);
/* We load Proll as the kernel and start it. It will issue a magic prom_offset = ram_size + vram_size;
IO to load the real kernel */
if (linux_boot) { snprintf(buf, sizeof(buf), "%s/%s", bios_dir, PROM_FILENAMEE);
ret = load_elf(buf, phys_ram_base + prom_offset);
if (ret < 0) {
snprintf(buf, sizeof(buf), "%s/%s", bios_dir, PROM_FILENAMEB); snprintf(buf, sizeof(buf), "%s/%s", bios_dir, PROM_FILENAMEB);
ret = load_kernel(buf, ret = load_image(buf, phys_ram_base + prom_offset);
phys_ram_base + KERNEL_LOAD_ADDR); }
if (ret < 0) {
fprintf(stderr, "qemu: could not load prom '%s'\n",
buf);
exit(1);
}
cpu_register_physical_memory(PROM_ADDR, (ret + TARGET_PAGE_SIZE) & TARGET_PAGE_MASK,
prom_offset | IO_MEM_ROM);
if (linux_boot) {
ret = load_elf(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
if (ret < 0)
ret = load_aout(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
if (ret < 0)
ret = load_image(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
if (ret < 0) { if (ret < 0) {
fprintf(stderr, "qemu: could not load kernel '%s'\n", fprintf(stderr, "qemu: could not load kernel '%s'\n",
buf); kernel_filename);
exit(1); exit(1);
} }
} }
/* Setup a MMU entry for entire address space */
stl_raw(phys_ram_base + MMU_CONTEXT_TBL, (MMU_L1PTP >> 4) | 1);
stl_raw(phys_ram_base + MMU_L1PTP, (MMU_L2PTP >> 4) | 1);
stl_raw(phys_ram_base + MMU_L1PTP + (0x01 << 2), (MMU_L2PTP >> 4) | 1); // 01.. == 00..
stl_raw(phys_ram_base + MMU_L1PTP + (0xff << 2), (MMU_L2PTP >> 4) | 1); // ff.. == 00..
stl_raw(phys_ram_base + MMU_L1PTP + (0xf0 << 2), (MMU_L2PTP >> 4) | 1); // f0.. == 00..
/* 3 = U:RWX S:RWX */
stl_raw(phys_ram_base + MMU_L2PTP, (3 << PTE_ACCESS_SHIFT) | 2);
stl_raw(phys_ram_base + MMU_L2PTP, ((0x01 << PTE_PPN_SHIFT) >> 4 ) | (3 << PTE_ACCESS_SHIFT) | 2);
} }

321
hw/tcx.c
View file

@ -25,179 +25,254 @@
#define MAXX 1024 #define MAXX 1024
#define MAXY 768 #define MAXY 768
/*
* Proll uses only small part of display, we need to switch to full
* display when we get linux framebuffer console or X11 running. For
* now it's just slower and awkward.
*/
#if 1
#define XSZ (8*80) #define XSZ (8*80)
#define YSZ (24*11) #define YSZ (24*11)
#define XOFF (MAXX-XSZ) #define XOFF (MAXX-XSZ)
#define YOFF (MAXY-YSZ) #define YOFF (MAXY-YSZ)
#else
#define XSZ MAXX
#define YSZ MAXY
#define XOFF 0
#define YOFF 0
#endif
typedef struct TCXState { typedef struct TCXState {
uint32_t addr; uint32_t addr;
DisplayState *ds; DisplayState *ds;
uint8_t *vram; uint8_t *vram;
unsigned long vram_offset;
uint8_t r[256], g[256], b[256];
} TCXState; } TCXState;
static TCXState *ts; static void tcx_draw_line32(TCXState *s1, uint8_t *d,
const uint8_t *s, int width)
void vga_update_display()
{ {
dpy_update(ts->ds, 0, 0, XSZ, YSZ); int x;
uint8_t val;
for(x = 0; x < width; x++) {
val = *s++;
*d++ = s1->r[val];
*d++ = s1->g[val];
*d++ = s1->b[val];
d++;
}
} }
void vga_invalidate_display() {} static void tcx_draw_line24(TCXState *s1, uint8_t *d,
const uint8_t *s, int width)
{
int x;
uint8_t val;
static uint32_t tcx_mem_readb(void *opaque, target_phys_addr_t addr) for(x = 0; x < width; x++) {
val = *s++;
*d++ = s1->r[val];
*d++ = s1->g[val];
*d++ = s1->b[val];
}
}
static void tcx_draw_line8(TCXState *s1, uint8_t *d,
const uint8_t *s, int width)
{
int x;
uint8_t val;
for(x = 0; x < width; x++) {
val = *s++;
/* XXX translate between palettes? */
*d++ = val;
}
}
/* Fixed line length 1024 allows us to do nice tricks not possible on
VGA... */
void tcx_update_display(void *opaque)
{
TCXState *ts = opaque;
uint32_t page;
int y, page_min, page_max, y_start, dd, ds;
uint8_t *d, *s;
void (*f)(TCXState *s1, uint8_t *d, const uint8_t *s, int width);
if (ts->ds->depth == 0)
return;
#ifdef LD_BYPASS_OK
page = ts->vram_offset + YOFF*MAXX;
#else
page = ts->addr + YOFF*MAXX;
#endif
y_start = -1;
page_min = 0x7fffffff;
page_max = -1;
d = ts->ds->data;
s = ts->vram + YOFF*MAXX + XOFF;
dd = ts->ds->linesize;
ds = 1024;
switch (ts->ds->depth) {
case 32:
f = tcx_draw_line32;
break;
case 24:
f = tcx_draw_line24;
break;
default:
case 8:
f = tcx_draw_line8;
break;
case 0:
return;
}
for(y = 0; y < YSZ; y += 4, page += TARGET_PAGE_SIZE) {
if (cpu_physical_memory_is_dirty(page)) {
if (y_start < 0)
y_start = y;
if (page < page_min)
page_min = page;
if (page > page_max)
page_max = page;
f(ts, d, s, XSZ);
d += dd;
s += ds;
f(ts, d, s, XSZ);
d += dd;
s += ds;
f(ts, d, s, XSZ);
d += dd;
s += ds;
f(ts, d, s, XSZ);
d += dd;
s += ds;
} else {
if (y_start >= 0) {
/* flush to display */
dpy_update(ts->ds, 0, y_start,
XSZ, y - y_start);
y_start = -1;
}
d += dd * 4;
s += ds * 4;
}
}
if (y_start >= 0) {
/* flush to display */
dpy_update(ts->ds, 0, y_start,
XSZ, y - y_start);
}
/* reset modified pages */
if (page_max != -1) {
cpu_physical_memory_reset_dirty(page_min, page_max + TARGET_PAGE_SIZE);
}
}
void tcx_invalidate_display(void *opaque)
{ {
TCXState *s = opaque; TCXState *s = opaque;
uint32_t saddr; int i;
unsigned int x, y;
saddr = addr - s->addr - YOFF*MAXX - XOFF; for (i = 0; i < MAXX*MAXY; i += TARGET_PAGE_SIZE) {
y = saddr / MAXX; #ifdef LD_BYPASS_OK
x = saddr - y * MAXX; cpu_physical_memory_set_dirty(s->vram_offset + i);
if (x < XSZ && y < YSZ) { #else
return s->vram[y * XSZ + x]; cpu_physical_memory_set_dirty(s->addr + i);
#endif
} }
}
static void tcx_save(QEMUFile *f, void *opaque)
{
TCXState *s = opaque;
qemu_put_be32s(f, (uint32_t *)&s->addr);
qemu_put_be32s(f, (uint32_t *)&s->vram);
qemu_put_buffer(f, s->r, 256);
qemu_put_buffer(f, s->g, 256);
qemu_put_buffer(f, s->b, 256);
}
static int tcx_load(QEMUFile *f, void *opaque, int version_id)
{
TCXState *s = opaque;
if (version_id != 1)
return -EINVAL;
qemu_get_be32s(f, (uint32_t *)&s->addr);
qemu_get_be32s(f, (uint32_t *)&s->vram);
qemu_get_buffer(f, s->r, 256);
qemu_get_buffer(f, s->g, 256);
qemu_get_buffer(f, s->b, 256);
return 0; return 0;
} }
static uint32_t tcx_mem_readw(void *opaque, target_phys_addr_t addr) static void tcx_reset(void *opaque)
{
uint32_t v;
#ifdef TARGET_WORDS_BIGENDIAN
v = tcx_mem_readb(opaque, addr) << 8;
v |= tcx_mem_readb(opaque, addr + 1);
#else
v = tcx_mem_readb(opaque, addr);
v |= tcx_mem_readb(opaque, addr + 1) << 8;
#endif
return v;
}
static uint32_t tcx_mem_readl(void *opaque, target_phys_addr_t addr)
{
uint32_t v;
#ifdef TARGET_WORDS_BIGENDIAN
v = tcx_mem_readb(opaque, addr) << 24;
v |= tcx_mem_readb(opaque, addr + 1) << 16;
v |= tcx_mem_readb(opaque, addr + 2) << 8;
v |= tcx_mem_readb(opaque, addr + 3);
#else
v = tcx_mem_readb(opaque, addr);
v |= tcx_mem_readb(opaque, addr + 1) << 8;
v |= tcx_mem_readb(opaque, addr + 2) << 16;
v |= tcx_mem_readb(opaque, addr + 3) << 24;
#endif
return v;
}
static void tcx_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
{ {
TCXState *s = opaque; TCXState *s = opaque;
uint32_t saddr;
unsigned int x, y;
char *sptr;
saddr = addr - s->addr - YOFF*MAXX - XOFF; /* Initialize palette */
y = saddr / MAXX; memset(s->r, 0, 256);
x = saddr - y * MAXX; memset(s->g, 0, 256);
if (x < XSZ && y < YSZ) { memset(s->b, 0, 256);
sptr = s->ds->data; s->r[255] = s->g[255] = s->b[255] = 255;
if (sptr) { memset(s->vram, 0, MAXX*MAXY);
if (s->ds->depth == 24 || s->ds->depth == 32) { #ifdef LD_BYPASS_OK
/* XXX need to do CLUT translation */ cpu_physical_memory_reset_dirty(s->vram_offset, s->vram_offset + MAXX*MAXY - 1);
sptr[y * s->ds->linesize + x*4] = val & 0xff;
sptr[y * s->ds->linesize + x*4+1] = val & 0xff;
sptr[y * s->ds->linesize + x*4+2] = val & 0xff;
}
else if (s->ds->depth == 8) {
sptr[y * s->ds->linesize + x] = val & 0xff;
}
}
cpu_physical_memory_set_dirty(addr);
s->vram[y * XSZ + x] = val & 0xff;
}
}
static void tcx_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
{
#ifdef TARGET_WORDS_BIGENDIAN
tcx_mem_writeb(opaque, addr, (val >> 8) & 0xff);
tcx_mem_writeb(opaque, addr + 1, val & 0xff);
#else
tcx_mem_writeb(opaque, addr, val & 0xff);
tcx_mem_writeb(opaque, addr + 1, (val >> 8) & 0xff);
#endif #endif
} }
static void tcx_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) void *tcx_init(DisplayState *ds, uint32_t addr, uint8_t *vram_base,
{ unsigned long vram_offset, int vram_size)
#ifdef TARGET_WORDS_BIGENDIAN
tcx_mem_writeb(opaque, addr, (val >> 24) & 0xff);
tcx_mem_writeb(opaque, addr + 1, (val >> 16) & 0xff);
tcx_mem_writeb(opaque, addr + 2, (val >> 8) & 0xff);
tcx_mem_writeb(opaque, addr + 3, val & 0xff);
#else
tcx_mem_writeb(opaque, addr, val & 0xff);
tcx_mem_writeb(opaque, addr + 1, (val >> 8) & 0xff);
tcx_mem_writeb(opaque, addr + 2, (val >> 16) & 0xff);
tcx_mem_writeb(opaque, addr + 3, (val >> 24) & 0xff);
#endif
}
static CPUReadMemoryFunc *tcx_mem_read[3] = {
tcx_mem_readb,
tcx_mem_readw,
tcx_mem_readl,
};
static CPUWriteMemoryFunc *tcx_mem_write[3] = {
tcx_mem_writeb,
tcx_mem_writew,
tcx_mem_writel,
};
void tcx_init(DisplayState *ds, uint32_t addr)
{ {
TCXState *s; TCXState *s;
int tcx_io_memory;
s = qemu_mallocz(sizeof(TCXState)); s = qemu_mallocz(sizeof(TCXState));
if (!s) if (!s)
return; return NULL;
s->ds = ds; s->ds = ds;
s->addr = addr; s->addr = addr;
ts = s; s->vram = vram_base;
tcx_io_memory = cpu_register_io_memory(0, tcx_mem_read, tcx_mem_write, s); s->vram_offset = vram_offset;
cpu_register_physical_memory(addr, 0x100000,
tcx_io_memory); cpu_register_physical_memory(addr, vram_size, vram_offset);
s->vram = qemu_mallocz(XSZ*YSZ);
register_savevm("tcx", addr, 1, tcx_save, tcx_load, s);
qemu_register_reset(tcx_reset, s);
tcx_reset(s);
dpy_resize(s->ds, XSZ, YSZ); dpy_resize(s->ds, XSZ, YSZ);
return s;
} }
void vga_screen_dump(const char *filename) void tcx_screen_dump(void *opaque, const char *filename)
{ {
TCXState *s = ts; TCXState *s = opaque;
FILE *f; FILE *f;
uint8_t *d, *d1; uint8_t *d, *d1, v;
unsigned int v;
int y, x; int y, x;
f = fopen(filename, "wb"); f = fopen(filename, "wb");
if (!f) if (!f)
return -1; return;
fprintf(f, "P6\n%d %d\n%d\n", fprintf(f, "P6\n%d %d\n%d\n", XSZ, YSZ, 255);
XSZ, YSZ, 255); d1 = s->vram + YOFF*MAXX + XOFF;
d1 = s->vram;
for(y = 0; y < YSZ; y++) { for(y = 0; y < YSZ; y++) {
d = d1; d = d1;
for(x = 0; x < XSZ; x++) { for(x = 0; x < XSZ; x++) {
v = *d; v = *d;
fputc((v) & 0xff, f); fputc(s->r[v], f);
fputc((v) & 0xff, f); fputc(s->g[v], f);
fputc((v) & 0xff, f); fputc(s->b[v], f);
d++; d++;
} }
d1 += XSZ; d1 += MAXX;
} }
fclose(f); fclose(f);
return; return;

View file

@ -1,97 +0,0 @@
/*
* QEMU Sparc timer controller emulation
*
* Copyright (c) 2003-2004 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "vl.h"
/*
* Registers of hardware timer in sun4m.
*/
struct sun4m_timer_percpu {
volatile unsigned int l14_timer_limit; /* Initial value is 0x009c4000 */
volatile unsigned int l14_cur_count;
};
struct sun4m_timer_global {
volatile unsigned int l10_timer_limit;
volatile unsigned int l10_cur_count;
};
typedef struct TIMERState {
uint32_t addr;
uint32_t timer_regs[2];
int irq;
} TIMERState;
static uint32_t timer_mem_readl(void *opaque, target_phys_addr_t addr)
{
TIMERState *s = opaque;
uint32_t saddr;
saddr = (addr - s->addr) >> 2;
switch (saddr) {
default:
return s->timer_regs[saddr];
break;
}
return 0;
}
static void timer_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
TIMERState *s = opaque;
uint32_t saddr;
saddr = (addr - s->addr) >> 2;
switch (saddr) {
default:
s->timer_regs[saddr] = val;
break;
}
}
static CPUReadMemoryFunc *timer_mem_read[3] = {
timer_mem_readl,
timer_mem_readl,
timer_mem_readl,
};
static CPUWriteMemoryFunc *timer_mem_write[3] = {
timer_mem_writel,
timer_mem_writel,
timer_mem_writel,
};
void timer_init(uint32_t addr, int irq)
{
int timer_io_memory;
TIMERState *s;
s = qemu_mallocz(sizeof(TIMERState));
if (!s)
return;
s->addr = addr;
s->irq = irq;
timer_io_memory = cpu_register_io_memory(0, timer_mem_read, timer_mem_write, s);
cpu_register_physical_memory(addr, 2, timer_io_memory);
}

View file

@ -841,6 +841,7 @@ static void load_symbols(struct elfhdr *hdr, int fd)
unsigned int i; unsigned int i;
struct elf_shdr sechdr, symtab, strtab; struct elf_shdr sechdr, symtab, strtab;
char *strings; char *strings;
struct syminfo *s;
lseek(fd, hdr->e_shoff, SEEK_SET); lseek(fd, hdr->e_shoff, SEEK_SET);
for (i = 0; i < hdr->e_shnum; i++) { for (i = 0; i < hdr->e_shnum; i++) {
@ -866,24 +867,27 @@ static void load_symbols(struct elfhdr *hdr, int fd)
found: found:
/* Now know where the strtab and symtab are. Snarf them. */ /* Now know where the strtab and symtab are. Snarf them. */
disas_symtab = malloc(symtab.sh_size); s = malloc(sizeof(*s));
disas_strtab = strings = malloc(strtab.sh_size); s->disas_symtab = malloc(symtab.sh_size);
if (!disas_symtab || !disas_strtab) s->disas_strtab = strings = malloc(strtab.sh_size);
if (!s->disas_symtab || !s->disas_strtab)
return; return;
lseek(fd, symtab.sh_offset, SEEK_SET); lseek(fd, symtab.sh_offset, SEEK_SET);
if (read(fd, disas_symtab, symtab.sh_size) != symtab.sh_size) if (read(fd, s->disas_symtab, symtab.sh_size) != symtab.sh_size)
return; return;
#ifdef BSWAP_NEEDED #ifdef BSWAP_NEEDED
for (i = 0; i < symtab.sh_size / sizeof(struct elf_sym); i++) for (i = 0; i < symtab.sh_size / sizeof(struct elf_sym); i++)
bswap_sym(disas_symtab + sizeof(struct elf_sym)*i); bswap_sym(s->disas_symtab + sizeof(struct elf_sym)*i);
#endif #endif
lseek(fd, strtab.sh_offset, SEEK_SET); lseek(fd, strtab.sh_offset, SEEK_SET);
if (read(fd, strings, strtab.sh_size) != strtab.sh_size) if (read(fd, strings, strtab.sh_size) != strtab.sh_size)
return; return;
disas_num_syms = symtab.sh_size / sizeof(struct elf_sym); s->disas_num_syms = symtab.sh_size / sizeof(struct elf_sym);
s->next = syminfos;
syminfos = s;
} }
static int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, static int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,

View file

@ -497,6 +497,8 @@ void cpu_loop (CPUSPARCState *env)
case TT_WIN_UNF: /* window underflow */ case TT_WIN_UNF: /* window underflow */
restore_window(env); restore_window(env);
break; break;
case 0x100: // XXX, why do we get these?
break;
default: default:
printf ("Unhandled trap: 0x%x\n", trapnr); printf ("Unhandled trap: 0x%x\n", trapnr);
cpu_dump_state(env, stderr, fprintf, 0); cpu_dump_state(env, stderr, fprintf, 0);

View file

@ -1354,13 +1354,14 @@ struct target_rt_signal_frame {
__siginfo_fpu_t fpu_state; __siginfo_fpu_t fpu_state;
}; };
#define UREG_O0 0 #define UREG_O0 16
#define UREG_O6 6 #define UREG_O6 22
#define UREG_I0 16 #define UREG_I0 0
#define UREG_I1 17 #define UREG_I1 1
#define UREG_I2 18 #define UREG_I2 2
#define UREG_I6 22 #define UREG_I6 6
#define UREG_I7 23 #define UREG_I7 7
#define UREG_L0 8
#define UREG_FP UREG_I6 #define UREG_FP UREG_I6
#define UREG_SP UREG_O6 #define UREG_SP UREG_O6
@ -1385,23 +1386,20 @@ setup___siginfo(__siginfo_t *si, CPUState *env, target_ulong mask)
{ {
int err = 0, i; int err = 0, i;
fprintf(stderr, "2.a %lx psr: %lx regs: %lx\n", si, env->psr, si->si_regs.psr);
err |= __put_user(env->psr, &si->si_regs.psr); err |= __put_user(env->psr, &si->si_regs.psr);
fprintf(stderr, "2.a1 pc:%lx\n", si->si_regs.pc);
err |= __put_user(env->pc, &si->si_regs.pc); err |= __put_user(env->pc, &si->si_regs.pc);
err |= __put_user(env->npc, &si->si_regs.npc); err |= __put_user(env->npc, &si->si_regs.npc);
err |= __put_user(env->y, &si->si_regs.y); err |= __put_user(env->y, &si->si_regs.y);
fprintf(stderr, "2.b\n");
for (i=0; i < 7; i++) { for (i=0; i < 7; i++) {
err |= __put_user(env->gregs[i], &si->si_regs.u_regs[i]); err |= __put_user(env->gregs[i], &si->si_regs.u_regs[i]);
} }
for (i=0; i < 7; i++) { for (i=0; i < 7; i++) {
err |= __put_user(env->regwptr[i+16], &si->si_regs.u_regs[i+8]); err |= __put_user(env->regwptr[UREG_I0 + i], &si->si_regs.u_regs[i+8]);
} }
fprintf(stderr, "2.c\n");
err |= __put_user(mask, &si->si_mask); err |= __put_user(mask, &si->si_mask);
return err; return err;
} }
static int static int
setup_sigcontext(struct target_sigcontext *sc, /*struct _fpstate *fpstate,*/ setup_sigcontext(struct target_sigcontext *sc, /*struct _fpstate *fpstate,*/
CPUState *env, unsigned long mask) CPUState *env, unsigned long mask)
@ -1434,6 +1432,7 @@ static void setup_frame(int sig, struct emulated_sigaction *ka,
sf = (struct target_signal_frame *) sf = (struct target_signal_frame *)
get_sigframe(ka, env, sigframe_size); get_sigframe(ka, env, sigframe_size);
//fprintf(stderr, "sf: %x pc %x fp %x sp %x\n", sf, env->pc, env->regwptr[UREG_FP], env->regwptr[UREG_SP]);
#if 0 #if 0
if (invalid_frame_pointer(sf, sigframe_size)) if (invalid_frame_pointer(sf, sigframe_size))
goto sigill_and_return; goto sigill_and_return;
@ -1451,13 +1450,11 @@ static void setup_frame(int sig, struct emulated_sigaction *ka,
} }
for (i = 0; i < 7; i++) { for (i = 0; i < 7; i++) {
err |= __put_user(env->regwptr[i + 8], &sf->ss.locals[i]); err |= __put_user(env->regwptr[i + UREG_L0], &sf->ss.locals[i]);
} }
for (i = 0; i < 7; i++) { for (i = 0; i < 7; i++) {
err |= __put_user(env->regwptr[i + 16], &sf->ss.ins[i]); err |= __put_user(env->regwptr[i + UREG_I0], &sf->ss.ins[i]);
} }
//err |= __copy_to_user(sf, (char *) regs->u_regs[UREG_FP],
// sizeof(struct reg_window));
if (err) if (err)
goto sigsegv; goto sigsegv;
@ -1486,13 +1483,15 @@ static void setup_frame(int sig, struct emulated_sigaction *ka,
/* Flush instruction space. */ /* Flush instruction space. */
//flush_sig_insns(current->mm, (unsigned long) &(sf->insns[0])); //flush_sig_insns(current->mm, (unsigned long) &(sf->insns[0]));
//tb_flush(env); tb_flush(env);
} }
//cpu_dump_state(env, stderr, fprintf, 0);
return; return;
sigill_and_return: sigill_and_return:
force_sig(TARGET_SIGILL); force_sig(TARGET_SIGILL);
sigsegv: sigsegv:
//fprintf(stderr, "force_sig\n");
force_sig(TARGET_SIGSEGV); force_sig(TARGET_SIGSEGV);
} }
static inline int static inline int
@ -1542,13 +1541,16 @@ static void setup_rt_frame(int sig, struct emulated_sigaction *ka,
long do_sigreturn(CPUState *env) long do_sigreturn(CPUState *env)
{ {
struct target_signal_frame *sf; struct target_signal_frame *sf;
unsigned long up_psr, pc, npc; uint32_t up_psr, pc, npc;
target_sigset_t set; target_sigset_t set;
sigset_t host_set;
__siginfo_fpu_t *fpu_save; __siginfo_fpu_t *fpu_save;
int err; int err, i;
sf = (struct new_signal_frame *) env->regwptr[UREG_FP]; sf = (struct target_signal_frame *) env->regwptr[UREG_FP];
fprintf(stderr, "sigreturn sf: %lx\n", &sf); fprintf(stderr, "sigreturn\n");
fprintf(stderr, "sf: %x pc %x fp %x sp %x\n", sf, env->pc, env->regwptr[UREG_FP], env->regwptr[UREG_SP]);
//cpu_dump_state(env, stderr, fprintf, 0);
/* 1. Make sure we are not getting garbage from the user */ /* 1. Make sure we are not getting garbage from the user */
#if 0 #if 0
@ -1567,36 +1569,41 @@ long do_sigreturn(CPUState *env)
goto segv_and_exit; goto segv_and_exit;
/* 2. Restore the state */ /* 2. Restore the state */
up_psr = env->psr; err |= __get_user(up_psr, &sf->info.si_regs.psr);
//err |= __copy_from_user(regs, &sf->info.si_regs, sizeof (struct pt_regs)
//);
/* User can only change condition codes and FPU enabling in %psr. */ /* User can only change condition codes and FPU enabling in %psr. */
env->psr = (up_psr & ~(PSR_ICC /* | PSR_EF */)) env->psr = (up_psr & ~(PSR_ICC /* | PSR_EF */))
| (env->psr & (PSR_ICC /* | PSR_EF */)); | (env->psr & (PSR_ICC /* | PSR_EF */));
fprintf(stderr, "psr: %lx\n", env->psr); fprintf(stderr, "psr: %x\n", env->psr);
env->pc = pc-4;
env->npc = pc;
err |= __get_user(env->y, &sf->info.si_regs.y);
for (i=0; i < 7; i++) {
err |= __get_user(env->gregs[i], &sf->info.si_regs.u_regs[i]);
}
for (i=0; i < 7; i++) {
err |= __get_user(env->regwptr[i + UREG_I0], &sf->info.si_regs.u_regs[i+8]);
}
err |= __get_user(fpu_save, &sf->fpu_save); err |= __get_user(fpu_save, &sf->fpu_save);
if (fpu_save) //if (fpu_save)
err |= restore_fpu_state(env, fpu_save); // err |= restore_fpu_state(env, fpu_save);
/* This is pretty much atomic, no amount locking would prevent /* This is pretty much atomic, no amount locking would prevent
* the races which exist anyways. * the races which exist anyways.
*/ */
err |= __get_user(set.sig[0], &sf->info.si_mask); err |= __get_user(set.sig[0], &sf->info.si_mask);
//err |= __copy_from_user(&set.sig[1], &sf->extramask, for(i = 1; i < TARGET_NSIG_WORDS; i++) {
// (_NSIG_WORDS-1) * sizeof(unsigned int)); err |= (__get_user(set.sig[i], &sf->extramask[i - 1]));
}
target_to_host_sigset_internal(&host_set, &set);
sigprocmask(SIG_SETMASK, &host_set, NULL);
if (err) if (err)
goto segv_and_exit; goto segv_and_exit;
#if 0
sigdelsetmask(&set, ~_BLOCKABLE);
spin_lock_irq(&current->sigmask_lock);
current->blocked = set;
recalc_sigpending(current);
spin_unlock_irq(&current->sigmask_lock);
#endif
fprintf(stderr, "returning %lx\n", env->regwptr[0]); fprintf(stderr, "returning %lx\n", env->regwptr[0]);
return env->regwptr[0]; return env->regwptr[0];

Binary file not shown.

BIN
pc-bios/proll.elf Normal file

Binary file not shown.

File diff suppressed because it is too large Load diff

View file

@ -1099,6 +1099,29 @@ Set the initial VGA graphic mode. The default is 800x600x15.
More information is available at More information is available at
@url{http://jocelyn.mayer.free.fr/qemu-ppc/}. @url{http://jocelyn.mayer.free.fr/qemu-ppc/}.
@chapter Sparc System emulator invocation
Use the executable @file{qemu-system-sparc} to simulate a JavaStation
(sun4m architecture). The emulation is far from complete.
QEMU emulates the following sun4m peripherials:
@itemize @minus
@item
IOMMU
@item
TCX Frame buffer
@item
Lance (Am7990) Ethernet
@item
Non Volatile RAM M48T08
@item
Slave I/O: timers, interrupt controllers, Zilog serial ports
@end itemize
QEMU uses the Proll, a PROM replacement available at
@url{http://people.redhat.com/zaitcev/linux/}.
@chapter QEMU User space emulator invocation @chapter QEMU User space emulator invocation
@section Quick Start @section Quick Start

View file

@ -126,7 +126,7 @@ maximum performances.
@itemize @itemize
@item Full PowerPC 32 bit emulation, including priviledged instructions, @item Full PowerPC 32 bit emulation, including privileged instructions,
FPU and MMU. FPU and MMU.
@item Can run most PowerPC Linux binaries. @item Can run most PowerPC Linux binaries.
@ -137,7 +137,8 @@ FPU and MMU.
@itemize @itemize
@item SPARC V8 user support, except FPU instructions. @item Somewhat complete SPARC V8 emulation, including privileged
instructions, FPU and MMU.
@item Can run some SPARC Linux binaries. @item Can run some SPARC Linux binaries.

View file

@ -10,23 +10,42 @@
/* trap definitions */ /* trap definitions */
#define TT_ILL_INSN 0x02 #define TT_ILL_INSN 0x02
#define TT_PRIV_INSN 0x03 #define TT_PRIV_INSN 0x03
#define TT_NFPU_INSN 0x04
#define TT_WIN_OVF 0x05 #define TT_WIN_OVF 0x05
#define TT_WIN_UNF 0x06 #define TT_WIN_UNF 0x06
#define TT_FP_EXCP 0x08 #define TT_FP_EXCP 0x08
#define TT_DIV_ZERO 0x2a #define TT_DIV_ZERO 0x2a
#define TT_TRAP 0x80 #define TT_TRAP 0x80
#define TT_EXTINT 0x10
#define PSR_NEG (1<<23) #define PSR_NEG (1<<23)
#define PSR_ZERO (1<<22) #define PSR_ZERO (1<<22)
#define PSR_OVF (1<<21) #define PSR_OVF (1<<21)
#define PSR_CARRY (1<<20) #define PSR_CARRY (1<<20)
#define PSR_ICC (PSR_NEG|PSR_ZERO|PSR_OVF|PSR_CARRY) #define PSR_ICC (PSR_NEG|PSR_ZERO|PSR_OVF|PSR_CARRY)
#define PSR_EF (1<<12)
#define PSR_PIL 0xf00
#define PSR_S (1<<7) #define PSR_S (1<<7)
#define PSR_PS (1<<6) #define PSR_PS (1<<6)
#define PSR_ET (1<<5) #define PSR_ET (1<<5)
#define PSR_CWP 0x1f #define PSR_CWP 0x1f
/* Fake impl 0, version 4 */ /* Fake impl 0, version 4 */
#define GET_PSR(env) ((0<<28) | (4<<24) | env->psr | (env->psrs? PSR_S : 0) | (env->psrs? PSR_PS : 0) |(env->psret? PSR_ET : 0) | env->cwp) #define GET_PSR(env) ((0 << 28) | (4 << 24) | env->psr | \
(env->psref? PSR_EF : 0) | \
(env->psrpil << 8) | \
(env->psrs? PSR_S : 0) | \
(env->psrs? PSR_PS : 0) | \
(env->psret? PSR_ET : 0) | env->cwp)
#define PUT_PSR(env, val) do { int _tmp = val; \
env->psr = _tmp & ~PSR_ICC; \
env->psref = (_tmp & PSR_EF)? 1 : 0; \
env->psrpil = (_tmp & PSR_PIL) >> 8; \
env->psrs = (_tmp & PSR_S)? 1 : 0; \
env->psrps = (_tmp & PSR_PS)? 1 : 0; \
env->psret = (_tmp & PSR_ET)? 1 : 0; \
set_cwp(_tmp & PSR_CWP & (NWINDOWS - 1)); \
} while (0)
/* Trap base register */ /* Trap base register */
#define TBR_BASE_MASK 0xfffff000 #define TBR_BASE_MASK 0xfffff000
@ -65,6 +84,9 @@
#define FSR_FTT1 (1<<15) #define FSR_FTT1 (1<<15)
#define FSR_FTT0 (1<<14) #define FSR_FTT0 (1<<14)
#define FSR_FTT_MASK (FSR_FTT2 | FSR_FTT1 | FSR_FTT0) #define FSR_FTT_MASK (FSR_FTT2 | FSR_FTT1 | FSR_FTT0)
#define FSR_FTT_IEEE_EXCP (1 << 14)
#define FSR_FTT_UNIMPFPOP (3 << 14)
#define FSR_FTT_INVAL_FPR (6 << 14)
#define FSR_FCC1 (1<<11) #define FSR_FCC1 (1<<11)
#define FSR_FCC0 (1<<10) #define FSR_FCC0 (1<<10)
@ -106,6 +128,8 @@ typedef struct CPUSPARCState {
int psrs; /* supervisor mode (extracted from PSR) */ int psrs; /* supervisor mode (extracted from PSR) */
int psrps; /* previous supervisor mode */ int psrps; /* previous supervisor mode */
int psret; /* enable traps */ int psret; /* enable traps */
int psrpil; /* interrupt level */
int psref; /* enable fpu */
jmp_buf jmp_env; jmp_buf jmp_env;
int user_mode_only; int user_mode_only;
int exception_index; int exception_index;
@ -144,6 +168,8 @@ typedef struct CPUSPARCState {
CPUSPARCState *cpu_sparc_init(void); CPUSPARCState *cpu_sparc_init(void);
int cpu_sparc_exec(CPUSPARCState *s); int cpu_sparc_exec(CPUSPARCState *s);
int cpu_sparc_close(CPUSPARCState *s); int cpu_sparc_close(CPUSPARCState *s);
void cpu_get_fp64(uint64_t *pmant, uint16_t *pexp, double f);
double cpu_put_fp64(uint64_t mant, uint16_t exp);
struct siginfo; struct siginfo;
int cpu_sparc_signal_handler(int hostsignum, struct siginfo *info, void *puc); int cpu_sparc_signal_handler(int hostsignum, struct siginfo *info, void *puc);

View file

@ -40,6 +40,9 @@ void do_interrupt(int intno, int is_int, int error_code,
void raise_exception_err(int exception_index, int error_code); void raise_exception_err(int exception_index, int error_code);
void raise_exception(int tt); void raise_exception(int tt);
void memcpy32(uint32_t *dst, const uint32_t *src); void memcpy32(uint32_t *dst, const uint32_t *src);
uint32_t mmu_probe(uint32_t address, int mmulev);
void dump_mmu(void);
void helper_debug();
/* XXX: move that to a generic header */ /* XXX: move that to a generic header */
#if !defined(CONFIG_USER_ONLY) #if !defined(CONFIG_USER_ONLY)

View file

@ -51,18 +51,6 @@ void OPPROTO glue(op_store_FT2_fpr_fpr, REGNAME)(void)
} }
/* double floating point registers moves */ /* double floating point registers moves */
#if 0
#define CPU_DOUBLE_U_DEF
typedef union {
double d;
struct {
uint32_t lower;
uint32_t upper;
} l;
uint64_t ll;
} CPU_DoubleU;
#endif /* CPU_DOUBLE_U_DEF */
void OPPROTO glue(op_load_fpr_DT0_fpr, REGNAME)(void) void OPPROTO glue(op_load_fpr_DT0_fpr, REGNAME)(void)
{ {
CPU_DoubleU u; CPU_DoubleU u;

View file

@ -19,7 +19,8 @@
*/ */
#include "exec.h" #include "exec.h"
#define DEBUG_PCALL //#define DEBUG_PCALL
//#define DEBUG_MMU
/* Sparc MMU emulation */ /* Sparc MMU emulation */
int cpu_sparc_handle_mmu_fault (CPUState *env, uint32_t address, int rw, int cpu_sparc_handle_mmu_fault (CPUState *env, uint32_t address, int rw,
@ -108,80 +109,71 @@ static const int rw_table[2][8] = {
{ 0, 1, 0, 1, 0, 0, 0, 0 } { 0, 1, 0, 1, 0, 0, 0, 0 }
}; };
int get_physical_address (CPUState *env, uint32_t *physical, int *prot,
/* Perform address translation */ int *access_index, uint32_t address, int rw,
int cpu_sparc_handle_mmu_fault (CPUState *env, uint32_t address, int rw, int is_user)
int is_user, int is_softmmu)
{ {
int exception = 0; int access_perms = 0;
int access_perms = 0, access_index = 0; target_phys_addr_t pde_ptr;
uint8_t *pde_ptr;
uint32_t pde, virt_addr; uint32_t pde, virt_addr;
int error_code = 0, is_dirty, prot, ret = 0; int error_code = 0, is_dirty;
unsigned long paddr, vaddr, page_offset; unsigned long page_offset;
if (env->user_mode_only) {
/* user mode only emulation */
ret = -2;
goto do_fault;
}
virt_addr = address & TARGET_PAGE_MASK; virt_addr = address & TARGET_PAGE_MASK;
if ((env->mmuregs[0] & MMU_E) == 0) { /* MMU disabled */ if ((env->mmuregs[0] & MMU_E) == 0) { /* MMU disabled */
paddr = address; *physical = address;
page_offset = address & (TARGET_PAGE_SIZE - 1); *prot = PAGE_READ | PAGE_WRITE;
prot = PAGE_READ | PAGE_WRITE; return 0;
goto do_mapping;
} }
/* SPARC reference MMU table walk: Context table->L1->L2->PTE */ /* SPARC reference MMU table walk: Context table->L1->L2->PTE */
/* Context base + context number */ /* Context base + context number */
pde_ptr = phys_ram_base + (env->mmuregs[1] << 4) + (env->mmuregs[2] << 4); pde_ptr = (env->mmuregs[1] << 4) + (env->mmuregs[2] << 4);
pde = ldl_raw(pde_ptr); cpu_physical_memory_read(pde_ptr, (uint8_t *)&pde, 4);
bswap32s(&pde);
/* Ctx pde */ /* Ctx pde */
switch (pde & PTE_ENTRYTYPE_MASK) { switch (pde & PTE_ENTRYTYPE_MASK) {
default:
case 0: /* Invalid */ case 0: /* Invalid */
error_code = 1; return 1;
goto do_fault; case 2: /* L0 PTE, maybe should not happen? */
case 2: /* PTE, maybe should not happen? */
case 3: /* Reserved */ case 3: /* Reserved */
error_code = 4; return 4;
goto do_fault; case 1: /* L0 PDE */
case 1: /* L1 PDE */ pde_ptr = ((address >> 22) & ~3) + ((pde & ~3) << 4);
pde_ptr = phys_ram_base + ((address >> 22) & ~3) + ((pde & ~3) << 4); cpu_physical_memory_read(pde_ptr, (uint8_t *)&pde, 4);
pde = ldl_raw(pde_ptr); bswap32s(&pde);
switch (pde & PTE_ENTRYTYPE_MASK) { switch (pde & PTE_ENTRYTYPE_MASK) {
default:
case 0: /* Invalid */ case 0: /* Invalid */
error_code = 1; return 1;
goto do_fault;
case 3: /* Reserved */ case 3: /* Reserved */
error_code = 4; return 4;
goto do_fault; case 1: /* L1 PDE */
case 1: /* L2 PDE */ pde_ptr = ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4);
pde_ptr = phys_ram_base + ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4); cpu_physical_memory_read(pde_ptr, (uint8_t *)&pde, 4);
pde = ldl_raw(pde_ptr); bswap32s(&pde);
switch (pde & PTE_ENTRYTYPE_MASK) { switch (pde & PTE_ENTRYTYPE_MASK) {
default:
case 0: /* Invalid */ case 0: /* Invalid */
error_code = 1; return 1;
goto do_fault;
case 3: /* Reserved */ case 3: /* Reserved */
error_code = 4; return 4;
goto do_fault; case 1: /* L2 PDE */
case 1: /* L3 PDE */ pde_ptr = ((address & 0x3f000) >> 10) + ((pde & ~3) << 4);
pde_ptr = phys_ram_base + ((address & 0x3f000) >> 10) + ((pde & ~3) << 4); cpu_physical_memory_read(pde_ptr, (uint8_t *)&pde, 4);
pde = ldl_raw(pde_ptr); bswap32s(&pde);
switch (pde & PTE_ENTRYTYPE_MASK) { switch (pde & PTE_ENTRYTYPE_MASK) {
default:
case 0: /* Invalid */ case 0: /* Invalid */
error_code = 1; return 1;
goto do_fault;
case 1: /* PDE, should not happen */ case 1: /* PDE, should not happen */
case 3: /* Reserved */ case 3: /* Reserved */
error_code = 4; return 4;
goto do_fault;
case 2: /* L3 PTE */ case 2: /* L3 PTE */
virt_addr = address & TARGET_PAGE_MASK; virt_addr = address & TARGET_PAGE_MASK;
page_offset = (address & TARGET_PAGE_MASK) & (TARGET_PAGE_SIZE - 1); page_offset = (address & TARGET_PAGE_MASK) & (TARGET_PAGE_SIZE - 1);
@ -201,40 +193,58 @@ int cpu_sparc_handle_mmu_fault (CPUState *env, uint32_t address, int rw,
/* update page modified and dirty bits */ /* update page modified and dirty bits */
is_dirty = (rw & 1) && !(pde & PG_MODIFIED_MASK); is_dirty = (rw & 1) && !(pde & PG_MODIFIED_MASK);
if (!(pde & PG_ACCESSED_MASK) || is_dirty) { if (!(pde & PG_ACCESSED_MASK) || is_dirty) {
uint32_t tmppde;
pde |= PG_ACCESSED_MASK; pde |= PG_ACCESSED_MASK;
if (is_dirty) if (is_dirty)
pde |= PG_MODIFIED_MASK; pde |= PG_MODIFIED_MASK;
stl_raw(pde_ptr, pde); tmppde = bswap32(pde);
cpu_physical_memory_write(pde_ptr, (uint8_t *)&tmppde, 4);
} }
/* check access */ /* check access */
access_index = ((rw & 1) << 2) | (rw & 2) | (is_user? 0 : 1); *access_index = ((rw & 1) << 2) | (rw & 2) | (is_user? 0 : 1);
access_perms = (pde & PTE_ACCESS_MASK) >> PTE_ACCESS_SHIFT; access_perms = (pde & PTE_ACCESS_MASK) >> PTE_ACCESS_SHIFT;
error_code = access_table[access_index][access_perms]; error_code = access_table[*access_index][access_perms];
if (error_code) if (error_code)
goto do_fault; return error_code;
/* the page can be put in the TLB */ /* the page can be put in the TLB */
prot = PAGE_READ; *prot = PAGE_READ;
if (pde & PG_MODIFIED_MASK) { if (pde & PG_MODIFIED_MASK) {
/* only set write access if already dirty... otherwise wait /* only set write access if already dirty... otherwise wait
for dirty access */ for dirty access */
if (rw_table[is_user][access_perms]) if (rw_table[is_user][access_perms])
prot |= PAGE_WRITE; *prot |= PAGE_WRITE;
} }
/* Even if large ptes, we map only one 4KB page in the cache to /* Even if large ptes, we map only one 4KB page in the cache to
avoid filling it too fast */ avoid filling it too fast */
virt_addr = address & TARGET_PAGE_MASK; *physical = ((pde & PTE_ADDR_MASK) << 4) + page_offset;
paddr = ((pde & PTE_ADDR_MASK) << 4) + page_offset; return 0;
}
do_mapping: /* Perform address translation */
vaddr = virt_addr + ((address & TARGET_PAGE_MASK) & (TARGET_PAGE_SIZE - 1)); int cpu_sparc_handle_mmu_fault (CPUState *env, uint32_t address, int rw,
int is_user, int is_softmmu)
{
int exception = 0;
uint32_t virt_addr, paddr;
unsigned long vaddr;
int error_code = 0, prot, ret = 0, access_index;
ret = tlb_set_page(env, vaddr, paddr, prot, is_user, is_softmmu); if (env->user_mode_only) {
return ret; /* user mode only emulation */
error_code = -2;
goto do_fault_user;
}
error_code = get_physical_address(env, &paddr, &prot, &access_index, address, rw, is_user);
if (error_code == 0) {
virt_addr = address & TARGET_PAGE_MASK;
vaddr = virt_addr + ((address & TARGET_PAGE_MASK) & (TARGET_PAGE_SIZE - 1));
ret = tlb_set_page(env, vaddr, paddr, prot, is_user, is_softmmu);
return ret;
}
do_fault:
if (env->mmuregs[3]) /* Fault status register */ if (env->mmuregs[3]) /* Fault status register */
env->mmuregs[3] = 1; /* overflow (not read before another fault) */ env->mmuregs[3] = 1; /* overflow (not read before another fault) */
env->mmuregs[3] |= (access_index << 5) | (error_code << 2) | 2; env->mmuregs[3] |= (access_index << 5) | (error_code << 2) | 2;
@ -242,7 +252,7 @@ int cpu_sparc_handle_mmu_fault (CPUState *env, uint32_t address, int rw,
if (env->mmuregs[0] & MMU_NF || env->psret == 0) // No fault if (env->mmuregs[0] & MMU_NF || env->psret == 0) // No fault
return 0; return 0;
do_fault_user:
env->exception_index = exception; env->exception_index = exception;
env->error_code = error_code; env->error_code = error_code;
return error_code; return error_code;
@ -289,13 +299,14 @@ void do_interrupt(int intno, int is_int, int error_code,
count, intno, error_code, is_int, count, intno, error_code, is_int,
env->pc, env->pc,
env->npc, env->regwptr[6]); env->npc, env->regwptr[6]);
#if 0 #if 1
cpu_dump_state(env, logfile, fprintf, 0); cpu_dump_state(env, logfile, fprintf, 0);
{ {
int i; int i;
uint8_t *ptr; uint8_t *ptr;
fprintf(logfile, " code="); fprintf(logfile, " code=");
ptr = env->pc; ptr = (uint8_t *)env->pc;
for(i = 0; i < 16; i++) { for(i = 0; i < 16; i++) {
fprintf(logfile, " %02x", ldub(ptr + i)); fprintf(logfile, " %02x", ldub(ptr + i));
} }
@ -304,12 +315,19 @@ void do_interrupt(int intno, int is_int, int error_code,
#endif #endif
count++; count++;
} }
#endif
#if !defined(CONFIG_USER_ONLY)
if (env->psret == 0) {
fprintf(logfile, "Trap while interrupts disabled, Error state!\n");
qemu_system_shutdown_request();
return;
}
#endif #endif
env->psret = 0; env->psret = 0;
cwp = (env->cwp - 1) & (NWINDOWS - 1); cwp = (env->cwp - 1) & (NWINDOWS - 1);
set_cwp(cwp); set_cwp(cwp);
env->regwptr[9] = env->pc; env->regwptr[9] = env->pc - 4; // XXX?
env->regwptr[10] = env->npc; env->regwptr[10] = env->pc;
env->psrps = env->psrs; env->psrps = env->psrs;
env->psrs = 1; env->psrs = 1;
env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4); env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
@ -322,3 +340,106 @@ void raise_exception_err(int exception_index, int error_code)
{ {
raise_exception(exception_index); raise_exception(exception_index);
} }
uint32_t mmu_probe(uint32_t address, int mmulev)
{
target_phys_addr_t pde_ptr;
uint32_t pde;
/* Context base + context number */
pde_ptr = (env->mmuregs[1] << 4) + (env->mmuregs[2] << 4);
cpu_physical_memory_read(pde_ptr, (uint8_t *)&pde, 4);
bswap32s(&pde);
switch (pde & PTE_ENTRYTYPE_MASK) {
default:
case 0: /* Invalid */
case 2: /* PTE, maybe should not happen? */
case 3: /* Reserved */
return 0;
case 1: /* L1 PDE */
if (mmulev == 3)
return pde;
pde_ptr = ((address >> 22) & ~3) + ((pde & ~3) << 4);
cpu_physical_memory_read(pde_ptr, (uint8_t *)&pde, 4);
bswap32s(&pde);
switch (pde & PTE_ENTRYTYPE_MASK) {
default:
case 0: /* Invalid */
case 3: /* Reserved */
return 0;
case 2: /* L1 PTE */
return pde;
case 1: /* L2 PDE */
if (mmulev == 2)
return pde;
pde_ptr = ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4);
cpu_physical_memory_read(pde_ptr, (uint8_t *)&pde, 4);
bswap32s(&pde);
switch (pde & PTE_ENTRYTYPE_MASK) {
default:
case 0: /* Invalid */
case 3: /* Reserved */
return 0;
case 2: /* L2 PTE */
return pde;
case 1: /* L3 PDE */
if (mmulev == 1)
return pde;
pde_ptr = ((address & 0x3f000) >> 10) + ((pde & ~3) << 4);
cpu_physical_memory_read(pde_ptr, (uint8_t *)&pde, 4);
bswap32s(&pde);
switch (pde & PTE_ENTRYTYPE_MASK) {
default:
case 0: /* Invalid */
case 1: /* PDE, should not happen */
case 3: /* Reserved */
return 0;
case 2: /* L3 PTE */
return pde;
}
}
}
}
return 0;
}
void dump_mmu(void)
{
#ifdef DEBUG_MMU
uint32_t pa, va, va1, va2;
int n, m, o;
target_phys_addr_t pde_ptr;
uint32_t pde;
printf("MMU dump:\n");
pde_ptr = (env->mmuregs[1] << 4) + (env->mmuregs[2] << 4);
cpu_physical_memory_read(pde_ptr, (uint8_t *)&pde, 4);
bswap32s(&pde);
printf("Root ptr: 0x%08x, ctx: %d\n", env->mmuregs[1] << 4, env->mmuregs[2]);
for (n = 0, va = 0; n < 256; n++, va += 16 * 1024 * 1024) {
pde_ptr = mmu_probe(va, 2);
if (pde_ptr) {
pa = cpu_get_phys_page_debug(env, va);
printf("VA: 0x%08x, PA: 0x%08x PDE: 0x%08x\n", va, pa, pde_ptr);
for (m = 0, va1 = va; m < 64; m++, va1 += 256 * 1024) {
pde_ptr = mmu_probe(va1, 1);
if (pde_ptr) {
pa = cpu_get_phys_page_debug(env, va1);
printf(" VA: 0x%08x, PA: 0x%08x PDE: 0x%08x\n", va1, pa, pde_ptr);
for (o = 0, va2 = va1; o < 64; o++, va2 += 4 * 1024) {
pde_ptr = mmu_probe(va2, 0);
if (pde_ptr) {
pa = cpu_get_phys_page_debug(env, va2);
printf(" VA: 0x%08x, PA: 0x%08x PTE: 0x%08x\n", va2, pa, pde_ptr);
}
}
}
}
}
}
printf("MMU dump ends\n");
#endif
}

View file

@ -524,13 +524,7 @@ void OPPROTO op_rdpsr(void)
void OPPROTO op_wrpsr(void) void OPPROTO op_wrpsr(void)
{ {
int cwp; PUT_PSR(env,T0);
env->psr = T0 & ~PSR_ICC;
env->psrs = (T0 & PSR_S)? 1 : 0;
env->psrps = (T0 & PSR_PS)? 1 : 0;
env->psret = (T0 & PSR_ET)? 1 : 0;
cwp = (T0 & PSR_CWP) & (NWINDOWS - 1);
set_cwp(cwp);
FORCE_RET(); FORCE_RET();
} }
@ -602,10 +596,27 @@ void OPPROTO op_trapcc_T0(void)
FORCE_RET(); FORCE_RET();
} }
void OPPROTO op_trap_ifnofpu(void)
{
if (!env->psref) {
env->exception_index = TT_NFPU_INSN;
cpu_loop_exit();
}
FORCE_RET();
}
void OPPROTO op_fpexception_im(void)
{
env->exception_index = TT_FP_EXCP;
env->fsr &= ~FSR_FTT_MASK;
env->fsr |= PARAM1;
cpu_loop_exit();
FORCE_RET();
}
void OPPROTO op_debug(void) void OPPROTO op_debug(void)
{ {
env->exception_index = EXCP_DEBUG; helper_debug();
cpu_loop_exit();
} }
void OPPROTO op_exit_tb(void) void OPPROTO op_exit_tb(void)

View file

@ -2,6 +2,8 @@
#include <fenv.h> #include <fenv.h>
#include "exec.h" #include "exec.h"
//#define DEBUG_MMU
#ifdef USE_INT_TO_FLOAT_HELPERS #ifdef USE_INT_TO_FLOAT_HELPERS
void do_fitos(void) void do_fitos(void)
{ {
@ -33,6 +35,13 @@ void do_fcmps (void)
{ {
if (isnan(FT0) || isnan(FT1)) { if (isnan(FT0) || isnan(FT1)) {
T0 = FSR_FCC1 | FSR_FCC0; T0 = FSR_FCC1 | FSR_FCC0;
env->fsr &= ~(FSR_FCC1 | FSR_FCC0);
env->fsr |= T0;
if (env->fsr & FSR_NVM) {
raise_exception(TT_FP_EXCP);
} else {
env->fsr |= FSR_NVA;
}
} else if (FT0 < FT1) { } else if (FT0 < FT1) {
T0 = FSR_FCC0; T0 = FSR_FCC0;
} else if (FT0 > FT1) { } else if (FT0 > FT1) {
@ -47,6 +56,13 @@ void do_fcmpd (void)
{ {
if (isnan(DT0) || isnan(DT1)) { if (isnan(DT0) || isnan(DT1)) {
T0 = FSR_FCC1 | FSR_FCC0; T0 = FSR_FCC1 | FSR_FCC0;
env->fsr &= ~(FSR_FCC1 | FSR_FCC0);
env->fsr |= T0;
if (env->fsr & FSR_NVM) {
raise_exception(TT_FP_EXCP);
} else {
env->fsr |= FSR_NVA;
}
} else if (DT0 < DT1) { } else if (DT0 < DT1) {
T0 = FSR_FCC0; T0 = FSR_FCC0;
} else if (DT0 > DT1) { } else if (DT0 > DT1) {
@ -59,55 +75,131 @@ void do_fcmpd (void)
void helper_ld_asi(int asi, int size, int sign) void helper_ld_asi(int asi, int size, int sign)
{ {
switch(asi) { uint32_t ret;
switch (asi) {
case 3: /* MMU probe */ case 3: /* MMU probe */
T1 = 0; {
return; int mmulev;
mmulev = (T0 >> 8) & 15;
if (mmulev > 4)
ret = 0;
else {
ret = mmu_probe(T0, mmulev);
//bswap32s(&ret);
}
#ifdef DEBUG_MMU
printf("mmu_probe: 0x%08x (lev %d) -> 0x%08x\n", T0, mmulev, ret);
#endif
}
break;
case 4: /* read MMU regs */ case 4: /* read MMU regs */
{ {
int temp, reg = (T0 >> 8) & 0xf; int reg = (T0 >> 8) & 0xf;
temp = env->mmuregs[reg]; ret = env->mmuregs[reg];
if (reg == 3 || reg == 4) /* Fault status, addr cleared on read*/ if (reg == 3 || reg == 4) /* Fault status, addr cleared on read*/
env->mmuregs[reg] = 0; env->mmuregs[4] = 0;
T1 = temp;
} }
return; break;
case 0x20 ... 0x2f: /* MMU passthrough */ case 0x20 ... 0x2f: /* MMU passthrough */
{ cpu_physical_memory_read(T0, (void *) &ret, size);
int temp; if (size == 4)
bswap32s(&ret);
cpu_physical_memory_read(T0, (void *) &temp, size); else if (size == 2)
bswap32s(&temp); bswap16s(&ret);
T1 = temp; break;
}
return;
default: default:
T1 = 0; ret = 0;
return; break;
} }
T1 = ret;
} }
void helper_st_asi(int asi, int size, int sign) void helper_st_asi(int asi, int size, int sign)
{ {
switch(asi) { switch(asi) {
case 3: /* MMU flush */ case 3: /* MMU flush */
return; {
int mmulev;
mmulev = (T0 >> 8) & 15;
switch (mmulev) {
case 0: // flush page
tlb_flush_page(cpu_single_env, T0 & 0xfffff000);
break;
case 1: // flush segment (256k)
case 2: // flush region (16M)
case 3: // flush context (4G)
case 4: // flush entire
tlb_flush(cpu_single_env, 1);
break;
default:
break;
}
dump_mmu();
return;
}
case 4: /* write MMU regs */ case 4: /* write MMU regs */
{ {
int reg = (T0 >> 8) & 0xf; int reg = (T0 >> 8) & 0xf, oldreg;
oldreg = env->mmuregs[reg];
if (reg == 0) { if (reg == 0) {
env->mmuregs[reg] &= ~(MMU_E | MMU_NF); env->mmuregs[reg] &= ~(MMU_E | MMU_NF);
env->mmuregs[reg] |= T1 & (MMU_E | MMU_NF); env->mmuregs[reg] |= T1 & (MMU_E | MMU_NF);
} else } else
env->mmuregs[reg] = T1; env->mmuregs[reg] = T1;
if (oldreg != env->mmuregs[reg]) {
#if 0
// XXX: Only if MMU mapping change, we may need to flush?
tlb_flush(cpu_single_env, 1);
cpu_loop_exit();
FORCE_RET();
#endif
}
dump_mmu();
return; return;
} }
case 0x17: /* Block copy, sta access */
{
// value (T1) = src
// address (T0) = dst
// copy 32 bytes
int src = T1, dst = T0;
uint8_t temp[32];
bswap32s(&src);
cpu_physical_memory_read(src, (void *) &temp, 32);
cpu_physical_memory_write(dst, (void *) &temp, 32);
}
return;
case 0x1f: /* Block fill, stda access */
{
// value (T1, T2)
// address (T0) = dst
// fill 32 bytes
int i, dst = T0;
uint64_t val;
val = (((uint64_t)T1) << 32) | T2;
bswap64s(&val);
for (i = 0; i < 32; i += 8, dst += 8) {
cpu_physical_memory_write(dst, (void *) &val, 8);
}
}
return;
case 0x20 ... 0x2f: /* MMU passthrough */ case 0x20 ... 0x2f: /* MMU passthrough */
{ {
int temp = T1; int temp = T1;
if (size == 4)
bswap32s(&temp); bswap32s(&temp);
else if (size == 2)
bswap16s(&temp);
cpu_physical_memory_write(T0, (void *) &temp, size); cpu_physical_memory_write(T0, (void *) &temp, size);
} }
return; return;
@ -116,27 +208,6 @@ void helper_st_asi(int asi, int size, int sign)
} }
} }
#if 0
void do_ldd_raw(uint32_t addr)
{
T1 = ldl_raw((void *) addr);
T0 = ldl_raw((void *) (addr + 4));
}
#if !defined(CONFIG_USER_ONLY)
void do_ldd_user(uint32_t addr)
{
T1 = ldl_user((void *) addr);
T0 = ldl_user((void *) (addr + 4));
}
void do_ldd_kernel(uint32_t addr)
{
T1 = ldl_kernel((void *) addr);
T0 = ldl_kernel((void *) (addr + 4));
}
#endif
#endif
void helper_rett() void helper_rett()
{ {
int cwp; int cwp;
@ -166,3 +237,22 @@ void helper_ldfsr(void)
break; break;
} }
} }
void cpu_get_fp64(uint64_t *pmant, uint16_t *pexp, double f)
{
int exptemp;
*pmant = ldexp(frexp(f, &exptemp), 53);
*pexp = exptemp;
}
double cpu_put_fp64(uint64_t mant, uint16_t exp)
{
return ldexp((double) mant, exp - 53);
}
void helper_debug()
{
env->exception_index = EXCP_DEBUG;
cpu_loop_exit();
}

View file

@ -43,12 +43,8 @@ void OPPROTO glue(op_swap, MEMSUFFIX)(void)
void OPPROTO glue(op_ldd, MEMSUFFIX)(void) void OPPROTO glue(op_ldd, MEMSUFFIX)(void)
{ {
#if 1
T1 = glue(ldl, MEMSUFFIX)((void *) T0); T1 = glue(ldl, MEMSUFFIX)((void *) T0);
T0 = glue(ldl, MEMSUFFIX)((void *) (T0 + 4)); T0 = glue(ldl, MEMSUFFIX)((void *) (T0 + 4));
#else
glue(do_ldd, MEMSUFFIX)(T0);
#endif
} }
/*** Floating-point store ***/ /*** Floating-point store ***/

View file

@ -646,6 +646,7 @@ static void disas_sparc_insn(DisasContext * dc)
switch (xop) { switch (xop) {
case 0x0: case 0x0:
case 0x1: /* UNIMPL */ case 0x1: /* UNIMPL */
case 0x5: /*CBN+x */
default: default:
goto illegal_insn; goto illegal_insn;
case 0x2: /* BN+x */ case 0x2: /* BN+x */
@ -657,16 +658,24 @@ static void disas_sparc_insn(DisasContext * dc)
} }
case 0x6: /* FBN+x */ case 0x6: /* FBN+x */
{ {
#if !defined(CONFIG_USER_ONLY)
gen_op_trap_ifnofpu();
#endif
target <<= 2; target <<= 2;
target = sign_extend(target, 22); target = sign_extend(target, 22);
do_fbranch(dc, target, insn); do_fbranch(dc, target, insn);
goto jmp_insn; goto jmp_insn;
} }
case 0x4: /* SETHI */ case 0x4: /* SETHI */
gen_movl_imm_T0(target << 10); #define OPTIM
gen_movl_T0_reg(rd); #if defined(OPTIM)
break; if (rd) { // nop
case 0x5: /*CBN+x */ #endif
gen_movl_imm_T0(target << 10);
gen_movl_T0_reg(rd);
#if defined(OPTIM)
}
#endif
break; break;
} }
break; break;
@ -691,14 +700,24 @@ static void disas_sparc_insn(DisasContext * dc)
gen_movl_reg_T0(rs1); gen_movl_reg_T0(rs1);
if (IS_IMM) { if (IS_IMM) {
rs2 = GET_FIELD(insn, 25, 31); rs2 = GET_FIELD(insn, 25, 31);
#if defined(OPTIM)
if (rs2 != 0) { if (rs2 != 0) {
gen_movl_imm_T1(rs2); #endif
gen_op_add_T1_T0(); gen_movl_imm_T1(rs2);
gen_op_add_T1_T0();
#if defined(OPTIM)
} }
#endif
} else { } else {
rs2 = GET_FIELD(insn, 27, 31); rs2 = GET_FIELD(insn, 27, 31);
gen_movl_reg_T1(rs2); #if defined(OPTIM)
gen_op_add_T1_T0(); if (rs2 != 0) {
#endif
gen_movl_reg_T1(rs2);
gen_op_add_T1_T0();
#if defined(OPTIM)
}
#endif
} }
save_state(dc); save_state(dc);
cond = GET_FIELD(insn, 3, 6); cond = GET_FIELD(insn, 3, 6);
@ -707,6 +726,7 @@ static void disas_sparc_insn(DisasContext * dc)
dc->is_br = 1; dc->is_br = 1;
goto jmp_insn; goto jmp_insn;
} else { } else {
gen_cond(cond);
gen_op_trapcc_T0(); gen_op_trapcc_T0();
} }
} else if (xop == 0x28) { } else if (xop == 0x28) {
@ -741,7 +761,10 @@ static void disas_sparc_insn(DisasContext * dc)
gen_movl_T0_reg(rd); gen_movl_T0_reg(rd);
break; break;
#endif #endif
} else if (xop == 0x34 || xop == 0x35) { /* FPU Operations */ } else if (xop == 0x34) { /* FPU Operations */
#if !defined(CONFIG_USER_ONLY)
gen_op_trap_ifnofpu();
#endif
rs1 = GET_FIELD(insn, 13, 17); rs1 = GET_FIELD(insn, 13, 17);
rs2 = GET_FIELD(insn, 27, 31); rs2 = GET_FIELD(insn, 27, 31);
xop = GET_FIELD(insn, 18, 26); xop = GET_FIELD(insn, 18, 26);
@ -770,6 +793,8 @@ static void disas_sparc_insn(DisasContext * dc)
gen_op_fsqrtd(); gen_op_fsqrtd();
gen_op_store_DT0_fpr(rd); gen_op_store_DT0_fpr(rd);
break; break;
case 0x2b: /* fsqrtq */
goto nfpu_insn;
case 0x41: case 0x41:
gen_op_load_fpr_FT0(rs1); gen_op_load_fpr_FT0(rs1);
gen_op_load_fpr_FT1(rs2); gen_op_load_fpr_FT1(rs2);
@ -782,6 +807,8 @@ static void disas_sparc_insn(DisasContext * dc)
gen_op_faddd(); gen_op_faddd();
gen_op_store_DT0_fpr(rd); gen_op_store_DT0_fpr(rd);
break; break;
case 0x43: /* faddq */
goto nfpu_insn;
case 0x45: case 0x45:
gen_op_load_fpr_FT0(rs1); gen_op_load_fpr_FT0(rs1);
gen_op_load_fpr_FT1(rs2); gen_op_load_fpr_FT1(rs2);
@ -794,6 +821,8 @@ static void disas_sparc_insn(DisasContext * dc)
gen_op_fsubd(); gen_op_fsubd();
gen_op_store_DT0_fpr(rd); gen_op_store_DT0_fpr(rd);
break; break;
case 0x47: /* fsubq */
goto nfpu_insn;
case 0x49: case 0x49:
gen_op_load_fpr_FT0(rs1); gen_op_load_fpr_FT0(rs1);
gen_op_load_fpr_FT1(rs2); gen_op_load_fpr_FT1(rs2);
@ -806,6 +835,8 @@ static void disas_sparc_insn(DisasContext * dc)
gen_op_fmuld(); gen_op_fmuld();
gen_op_store_DT0_fpr(rd); gen_op_store_DT0_fpr(rd);
break; break;
case 0x4b: /* fmulq */
goto nfpu_insn;
case 0x4d: case 0x4d:
gen_op_load_fpr_FT0(rs1); gen_op_load_fpr_FT0(rs1);
gen_op_load_fpr_FT1(rs2); gen_op_load_fpr_FT1(rs2);
@ -818,32 +849,16 @@ static void disas_sparc_insn(DisasContext * dc)
gen_op_fdivd(); gen_op_fdivd();
gen_op_store_DT0_fpr(rd); gen_op_store_DT0_fpr(rd);
break; break;
case 0x51: case 0x4f: /* fdivq */
gen_op_load_fpr_FT0(rs1); goto nfpu_insn;
gen_op_load_fpr_FT1(rs2);
gen_op_fcmps();
break;
case 0x52:
gen_op_load_fpr_DT0(rs1);
gen_op_load_fpr_DT1(rs2);
gen_op_fcmpd();
break;
case 0x55: /* fcmpes */
gen_op_load_fpr_FT0(rs1);
gen_op_load_fpr_FT1(rs2);
gen_op_fcmps(); /* XXX */
break;
case 0x56: /* fcmped */
gen_op_load_fpr_DT0(rs1);
gen_op_load_fpr_DT1(rs2);
gen_op_fcmpd(); /* XXX */
break;
case 0x69: case 0x69:
gen_op_load_fpr_FT0(rs1); gen_op_load_fpr_FT0(rs1);
gen_op_load_fpr_FT1(rs2); gen_op_load_fpr_FT1(rs2);
gen_op_fsmuld(); gen_op_fsmuld();
gen_op_store_DT0_fpr(rd); gen_op_store_DT0_fpr(rd);
break; break;
case 0x6e: /* fdmulq */
goto nfpu_insn;
case 0xc4: case 0xc4:
gen_op_load_fpr_FT1(rs2); gen_op_load_fpr_FT1(rs2);
gen_op_fitos(); gen_op_fitos();
@ -854,6 +869,8 @@ static void disas_sparc_insn(DisasContext * dc)
gen_op_fdtos(); gen_op_fdtos();
gen_op_store_FT0_fpr(rd); gen_op_store_FT0_fpr(rd);
break; break;
case 0xc7: /* fqtos */
goto nfpu_insn;
case 0xc8: case 0xc8:
gen_op_load_fpr_FT1(rs2); gen_op_load_fpr_FT1(rs2);
gen_op_fitod(); gen_op_fitod();
@ -864,6 +881,14 @@ static void disas_sparc_insn(DisasContext * dc)
gen_op_fstod(); gen_op_fstod();
gen_op_store_DT0_fpr(rd); gen_op_store_DT0_fpr(rd);
break; break;
case 0xcb: /* fqtod */
goto nfpu_insn;
case 0xcc: /* fitoq */
goto nfpu_insn;
case 0xcd: /* fstoq */
goto nfpu_insn;
case 0xce: /* fdtoq */
goto nfpu_insn;
case 0xd1: case 0xd1:
gen_op_load_fpr_FT1(rs2); gen_op_load_fpr_FT1(rs2);
gen_op_fstoi(); gen_op_fstoi();
@ -874,13 +899,85 @@ static void disas_sparc_insn(DisasContext * dc)
gen_op_fdtoi(); gen_op_fdtoi();
gen_op_store_FT0_fpr(rd); gen_op_store_FT0_fpr(rd);
break; break;
case 0xd3: /* fqtoi */
goto nfpu_insn;
default: default:
goto illegal_insn; goto illegal_insn;
} }
} else { } else if (xop == 0x35) { /* FPU Operations */
#if !defined(CONFIG_USER_ONLY)
gen_op_trap_ifnofpu();
#endif
rs1 = GET_FIELD(insn, 13, 17); rs1 = GET_FIELD(insn, 13, 17);
gen_movl_reg_T0(rs1); rs2 = GET_FIELD(insn, 27, 31);
if (IS_IMM) { /* immediate */ xop = GET_FIELD(insn, 18, 26);
switch (xop) {
case 0x51:
gen_op_load_fpr_FT0(rs1);
gen_op_load_fpr_FT1(rs2);
gen_op_fcmps();
break;
case 0x52:
gen_op_load_fpr_DT0(rs1);
gen_op_load_fpr_DT1(rs2);
gen_op_fcmpd();
break;
case 0x53: /* fcmpq */
goto nfpu_insn;
case 0x55: /* fcmpes */
gen_op_load_fpr_FT0(rs1);
gen_op_load_fpr_FT1(rs2);
gen_op_fcmps(); /* XXX should trap if qNaN or sNaN */
break;
case 0x56: /* fcmped */
gen_op_load_fpr_DT0(rs1);
gen_op_load_fpr_DT1(rs2);
gen_op_fcmpd(); /* XXX should trap if qNaN or sNaN */
break;
case 0x57: /* fcmpeq */
goto nfpu_insn;
default:
goto illegal_insn;
}
#if defined(OPTIM)
} else if (xop == 0x2) {
// clr/mov shortcut
rs1 = GET_FIELD(insn, 13, 17);
if (rs1 == 0) {
// or %g0, x, y -> mov T1, x; mov y, T1
if (IS_IMM) { /* immediate */
rs2 = GET_FIELDs(insn, 19, 31);
gen_movl_imm_T1(rs2);
} else { /* register */
rs2 = GET_FIELD(insn, 27, 31);
gen_movl_reg_T1(rs2);
}
gen_movl_T1_reg(rd);
} else {
gen_movl_reg_T0(rs1);
if (IS_IMM) { /* immediate */
// or x, #0, y -> mov T1, x; mov y, T1
rs2 = GET_FIELDs(insn, 19, 31);
if (rs2 != 0) {
gen_movl_imm_T1(rs2);
gen_op_or_T1_T0();
}
} else { /* register */
// or x, %g0, y -> mov T1, x; mov y, T1
rs2 = GET_FIELD(insn, 27, 31);
if (rs2 != 0) {
gen_movl_reg_T1(rs2);
gen_op_or_T1_T0();
}
}
gen_movl_T0_reg(rd);
}
#endif
} else if (xop < 0x38) {
rs1 = GET_FIELD(insn, 13, 17);
gen_movl_reg_T0(rs1);
if (IS_IMM) { /* immediate */
rs2 = GET_FIELDs(insn, 19, 31); rs2 = GET_FIELDs(insn, 19, 31);
gen_movl_imm_T1(rs2); gen_movl_imm_T1(rs2);
} else { /* register */ } else { /* register */
@ -901,10 +998,10 @@ static void disas_sparc_insn(DisasContext * dc)
gen_op_logic_T0_cc(); gen_op_logic_T0_cc();
break; break;
case 0x2: case 0x2:
gen_op_or_T1_T0(); gen_op_or_T1_T0();
if (xop & 0x10) if (xop & 0x10)
gen_op_logic_T0_cc(); gen_op_logic_T0_cc();
break; break;
case 0x3: case 0x3:
gen_op_xor_T1_T0(); gen_op_xor_T1_T0();
if (xop & 0x10) if (xop & 0x10)
@ -964,9 +1061,14 @@ static void disas_sparc_insn(DisasContext * dc)
default: default:
goto illegal_insn; goto illegal_insn;
} }
gen_movl_T0_reg(rd); gen_movl_T0_reg(rd);
} else { } else {
switch (xop) { switch (xop) {
case 0x20: /* taddcc */
case 0x21: /* tsubcc */
case 0x22: /* taddcctv */
case 0x23: /* tsubcctv */
goto illegal_insn;
case 0x24: /* mulscc */ case 0x24: /* mulscc */
gen_op_mulscc_T1_T0(); gen_op_mulscc_T1_T0();
gen_movl_T0_reg(rd); gen_movl_T0_reg(rd);
@ -1021,56 +1123,72 @@ static void disas_sparc_insn(DisasContext * dc)
} }
break; break;
#endif #endif
case 0x38: /* jmpl */ default:
{ goto illegal_insn;
gen_op_add_T1_T0(); }
gen_op_movl_npc_T0(); }
if (rd != 0) { } else {
gen_op_movl_T0_im((long) (dc->pc)); rs1 = GET_FIELD(insn, 13, 17);
gen_movl_T0_reg(rd); gen_movl_reg_T0(rs1);
} if (IS_IMM) { /* immediate */
dc->pc = dc->npc; rs2 = GET_FIELDs(insn, 19, 31);
dc->npc = DYNAMIC_PC; #if defined(OPTIM)
} if (rs2) {
goto jmp_insn;
#if !defined(CONFIG_USER_ONLY)
case 0x39: /* rett */
{
if (!supervisor(dc))
goto priv_insn;
gen_op_add_T1_T0();
gen_op_movl_npc_T0();
gen_op_rett();
#if 0
dc->pc = dc->npc;
dc->npc = DYNAMIC_PC;
#endif #endif
} gen_movl_imm_T1(rs2);
#if 0 gen_op_add_T1_T0();
goto jmp_insn; #if defined(OPTIM)
}
#endif #endif
break; } else { /* register */
rs2 = GET_FIELD(insn, 27, 31);
#if defined(OPTIM)
if (rs2) {
#endif
gen_movl_reg_T1(rs2);
gen_op_add_T1_T0();
#if defined(OPTIM)
}
#endif #endif
case 0x3b: /* flush */
gen_op_add_T1_T0();
gen_op_flush_T0();
break;
case 0x3c: /* save */
save_state(dc);
gen_op_add_T1_T0();
gen_op_save();
gen_movl_T0_reg(rd);
break;
case 0x3d: /* restore */
save_state(dc);
gen_op_add_T1_T0();
gen_op_restore();
gen_movl_T0_reg(rd);
break;
default:
goto illegal_insn;
}
} }
switch (xop) {
case 0x38: /* jmpl */
{
gen_op_movl_npc_T0();
if (rd != 0) {
gen_op_movl_T0_im((long) (dc->pc));
gen_movl_T0_reg(rd);
}
dc->pc = dc->npc;
dc->npc = DYNAMIC_PC;
}
goto jmp_insn;
#if !defined(CONFIG_USER_ONLY)
case 0x39: /* rett */
{
if (!supervisor(dc))
goto priv_insn;
gen_op_movl_npc_T0();
gen_op_rett();
}
break;
#endif
case 0x3b: /* flush */
gen_op_flush_T0();
break;
case 0x3c: /* save */
save_state(dc);
gen_op_save();
gen_movl_T0_reg(rd);
break;
case 0x3d: /* restore */
save_state(dc);
gen_op_restore();
gen_movl_T0_reg(rd);
break;
default:
goto illegal_insn;
}
} }
break; break;
} }
@ -1081,14 +1199,24 @@ static void disas_sparc_insn(DisasContext * dc)
gen_movl_reg_T0(rs1); gen_movl_reg_T0(rs1);
if (IS_IMM) { /* immediate */ if (IS_IMM) { /* immediate */
rs2 = GET_FIELDs(insn, 19, 31); rs2 = GET_FIELDs(insn, 19, 31);
#if defined(OPTIM)
if (rs2 != 0) { if (rs2 != 0) {
#endif
gen_movl_imm_T1(rs2); gen_movl_imm_T1(rs2);
gen_op_add_T1_T0(); gen_op_add_T1_T0();
#if defined(OPTIM)
} }
#endif
} else { /* register */ } else { /* register */
rs2 = GET_FIELD(insn, 27, 31); rs2 = GET_FIELD(insn, 27, 31);
gen_movl_reg_T1(rs2); #if defined(OPTIM)
gen_op_add_T1_T0(); if (rs2 != 0) {
#endif
gen_movl_reg_T1(rs2);
gen_op_add_T1_T0();
#if defined(OPTIM)
}
#endif
} }
if (xop < 4 || (xop > 7 && xop < 0x14) || \ if (xop < 4 || (xop > 7 && xop < 0x14) || \
(xop > 0x17 && xop < 0x20)) { (xop > 0x17 && xop < 0x20)) {
@ -1116,8 +1244,10 @@ static void disas_sparc_insn(DisasContext * dc)
gen_op_ldst(ldstub); gen_op_ldst(ldstub);
break; break;
case 0x0f: /* swap register with memory. Also atomically */ case 0x0f: /* swap register with memory. Also atomically */
gen_movl_reg_T1(rd);
gen_op_ldst(swap); gen_op_ldst(swap);
break; break;
#if !defined(CONFIG_USER_ONLY)
case 0x10: /* load word alternate */ case 0x10: /* load word alternate */
if (!supervisor(dc)) if (!supervisor(dc))
goto priv_insn; goto priv_insn;
@ -1157,11 +1287,18 @@ static void disas_sparc_insn(DisasContext * dc)
case 0x1f: /* swap reg with alt. memory. Also atomically */ case 0x1f: /* swap reg with alt. memory. Also atomically */
if (!supervisor(dc)) if (!supervisor(dc))
goto priv_insn; goto priv_insn;
gen_movl_reg_T1(rd);
gen_op_swapa(insn, 1, 4, 0); gen_op_swapa(insn, 1, 4, 0);
break; break;
#endif
default:
goto illegal_insn;
} }
gen_movl_T1_reg(rd); gen_movl_T1_reg(rd);
} else if (xop >= 0x20 && xop < 0x24) { } else if (xop >= 0x20 && xop < 0x24) {
#if !defined(CONFIG_USER_ONLY)
gen_op_trap_ifnofpu();
#endif
switch (xop) { switch (xop) {
case 0x20: /* load fpreg */ case 0x20: /* load fpreg */
gen_op_ldst(ldf); gen_op_ldst(ldf);
@ -1169,11 +1306,14 @@ static void disas_sparc_insn(DisasContext * dc)
break; break;
case 0x21: /* load fsr */ case 0x21: /* load fsr */
gen_op_ldfsr(); gen_op_ldfsr();
gen_op_store_FT0_fpr(rd);
break; break;
case 0x23: /* load double fpreg */ case 0x23: /* load double fpreg */
gen_op_ldst(lddf); gen_op_ldst(lddf);
gen_op_store_DT0_fpr(rd); gen_op_store_DT0_fpr(rd);
break; break;
default:
goto illegal_insn;
} }
} else if (xop < 8 || (xop >= 0x14 && xop < 0x18)) { } else if (xop < 8 || (xop >= 0x14 && xop < 0x18)) {
gen_movl_reg_T1(rd); gen_movl_reg_T1(rd);
@ -1192,6 +1332,7 @@ static void disas_sparc_insn(DisasContext * dc)
gen_movl_reg_T2(rd + 1); gen_movl_reg_T2(rd + 1);
gen_op_ldst(std); gen_op_ldst(std);
break; break;
#if !defined(CONFIG_USER_ONLY)
case 0x14: case 0x14:
if (!supervisor(dc)) if (!supervisor(dc))
goto priv_insn; goto priv_insn;
@ -1214,24 +1355,37 @@ static void disas_sparc_insn(DisasContext * dc)
gen_movl_reg_T2(rd + 1); gen_movl_reg_T2(rd + 1);
gen_op_stda(insn, 0, 8, 0); gen_op_stda(insn, 0, 8, 0);
break; break;
#endif
default:
goto illegal_insn;
} }
} else if (xop > 0x23 && xop < 0x28) { } else if (xop > 0x23 && xop < 0x28) {
#if !defined(CONFIG_USER_ONLY)
gen_op_trap_ifnofpu();
#endif
switch (xop) { switch (xop) {
case 0x24: case 0x24:
gen_op_load_fpr_FT0(rd); gen_op_load_fpr_FT0(rd);
gen_op_ldst(stf); gen_op_ldst(stf);
break; break;
case 0x25: case 0x25:
gen_op_load_fpr_FT0(rd);
gen_op_stfsr(); gen_op_stfsr();
break; break;
case 0x27: case 0x27:
gen_op_load_fpr_DT0(rd); gen_op_load_fpr_DT0(rd);
gen_op_ldst(stdf); gen_op_ldst(stdf);
break; break;
case 0x26: /* stdfq */
default:
goto illegal_insn;
} }
} else if (xop > 0x33 && xop < 0x38) { } else if (xop > 0x33 && xop < 0x38) {
/* Co-processor */ /* Co-processor */
goto illegal_insn;
} }
else
goto illegal_insn;
} }
} }
/* default case for non jump instructions */ /* default case for non jump instructions */
@ -1246,17 +1400,24 @@ static void disas_sparc_insn(DisasContext * dc)
dc->pc = dc->npc; dc->pc = dc->npc;
dc->npc = dc->npc + 4; dc->npc = dc->npc + 4;
} }
jmp_insn:; jmp_insn:
return; return;
illegal_insn: illegal_insn:
save_state(dc); save_state(dc);
gen_op_exception(TT_ILL_INSN); gen_op_exception(TT_ILL_INSN);
dc->is_br = 1; dc->is_br = 1;
return; return;
#if !defined(CONFIG_USER_ONLY)
priv_insn: priv_insn:
save_state(dc); save_state(dc);
gen_op_exception(TT_PRIV_INSN); gen_op_exception(TT_PRIV_INSN);
dc->is_br = 1; dc->is_br = 1;
return;
#endif
nfpu_insn:
save_state(dc);
gen_op_fpexception_im(FSR_FTT_UNIMPFPOP);
dc->is_br = 1;
} }
static inline int gen_intermediate_code_internal(TranslationBlock * tb, static inline int gen_intermediate_code_internal(TranslationBlock * tb,
@ -1271,6 +1432,7 @@ static inline int gen_intermediate_code_internal(TranslationBlock * tb,
dc->tb = tb; dc->tb = tb;
pc_start = tb->pc; pc_start = tb->pc;
dc->pc = pc_start; dc->pc = pc_start;
last_pc = dc->pc;
dc->npc = (target_ulong) tb->cs_base; dc->npc = (target_ulong) tb->cs_base;
#if defined(CONFIG_USER_ONLY) #if defined(CONFIG_USER_ONLY)
dc->mem_idx = 0; dc->mem_idx = 0;
@ -1285,8 +1447,13 @@ static inline int gen_intermediate_code_internal(TranslationBlock * tb,
if (env->nb_breakpoints > 0) { if (env->nb_breakpoints > 0) {
for(j = 0; j < env->nb_breakpoints; j++) { for(j = 0; j < env->nb_breakpoints; j++) {
if (env->breakpoints[j] == dc->pc) { if (env->breakpoints[j] == dc->pc) {
gen_debug(dc, dc->pc); if (dc->pc != pc_start)
break; save_state(dc);
gen_op_debug();
gen_op_movl_T0_0();
gen_op_exit_tb();
dc->is_br = 1;
goto exit_gen_loop;
} }
} }
} }
@ -1310,8 +1477,18 @@ static inline int gen_intermediate_code_internal(TranslationBlock * tb,
/* if the next PC is different, we abort now */ /* if the next PC is different, we abort now */
if (dc->pc != (last_pc + 4)) if (dc->pc != (last_pc + 4))
break; break;
/* if single step mode, we generate only one instruction and
generate an exception */
if (env->singlestep_enabled) {
gen_op_jmp_im(dc->pc);
gen_op_movl_T0_0();
gen_op_exit_tb();
break;
}
} while ((gen_opc_ptr < gen_opc_end) && } while ((gen_opc_ptr < gen_opc_end) &&
(dc->pc - pc_start) < (TARGET_PAGE_SIZE - 32)); (dc->pc - pc_start) < (TARGET_PAGE_SIZE - 32));
exit_gen_loop:
if (!dc->is_br) { if (!dc->is_br) {
if (dc->pc != DYNAMIC_PC && if (dc->pc != DYNAMIC_PC &&
(dc->npc != DYNAMIC_PC && dc->npc != JUMP_PC)) { (dc->npc != DYNAMIC_PC && dc->npc != JUMP_PC)) {
@ -1338,7 +1515,7 @@ static inline int gen_intermediate_code_internal(TranslationBlock * tb,
} }
#endif #endif
} else { } else {
tb->size = dc->npc - pc_start; tb->size = last_pc + 4 - pc_start;
} }
#ifdef DEBUG_DISAS #ifdef DEBUG_DISAS
if (loglevel & CPU_LOG_TB_IN_ASM) { if (loglevel & CPU_LOG_TB_IN_ASM) {
@ -1366,6 +1543,25 @@ int gen_intermediate_code_pc(CPUSPARCState * env, TranslationBlock * tb)
return gen_intermediate_code_internal(tb, 1, env); return gen_intermediate_code_internal(tb, 1, env);
} }
extern int ram_size;
void cpu_reset(CPUSPARCState *env)
{
memset(env, 0, sizeof(*env));
env->cwp = 0;
env->wim = 1;
env->regwptr = env->regbase + (env->cwp * 16);
#if defined(CONFIG_USER_ONLY)
env->user_mode_only = 1;
#else
env->psrs = 1;
env->pc = 0xffd00000;
env->gregs[1] = ram_size;
env->mmuregs[0] = (0x04 << 24); /* Impl 0, ver 4, MMU disabled */
env->npc = env->pc + 4;
#endif
}
CPUSPARCState *cpu_sparc_init(void) CPUSPARCState *cpu_sparc_init(void)
{ {
CPUSPARCState *env; CPUSPARCState *env;
@ -1374,21 +1570,8 @@ CPUSPARCState *cpu_sparc_init(void)
if (!(env = malloc(sizeof(CPUSPARCState)))) if (!(env = malloc(sizeof(CPUSPARCState))))
return (NULL); return (NULL);
memset(env, 0, sizeof(*env));
env->cwp = 0;
env->wim = 1;
env->regwptr = env->regbase + (env->cwp * 16);
#if defined(CONFIG_USER_ONLY)
env->user_mode_only = 1;
#else
/* Emulate Prom */
env->psrs = 1;
env->pc = 0x4000;
env->npc = env->pc + 4;
env->mmuregs[0] = (0x10<<24) | MMU_E; /* Impl 1, ver 0, MMU Enabled */
env->mmuregs[1] = 0x3000 >> 4; /* MMU Context table */
#endif
cpu_single_env = env; cpu_single_env = env;
cpu_reset(env);
return (env); return (env);
} }
@ -1436,11 +1619,24 @@ void cpu_dump_state(CPUState *env, FILE *f,
cpu_fprintf(f, "fsr: 0x%08x\n", env->fsr); cpu_fprintf(f, "fsr: 0x%08x\n", env->fsr);
} }
#if defined(CONFIG_USER_ONLY)
target_ulong cpu_get_phys_page_debug(CPUState *env, target_ulong addr) target_ulong cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
{ {
return addr; return addr;
} }
#else
target_ulong cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
{
uint32_t phys_addr;
int prot, access_index;
if (get_physical_address(env, &phys_addr, &prot, &access_index, addr, 2, 0) != 0)
return -1;
return phys_addr;
}
#endif
void helper_flush(target_ulong addr) void helper_flush(target_ulong addr)
{ {
addr &= ~7; addr &= ~7;

66
vl.c
View file

@ -2214,10 +2214,74 @@ int cpu_load(QEMUFile *f, void *opaque, int version_id)
#elif defined(TARGET_SPARC) #elif defined(TARGET_SPARC)
void cpu_save(QEMUFile *f, void *opaque) void cpu_save(QEMUFile *f, void *opaque)
{ {
CPUState *env = opaque;
int i;
uint32_t tmp;
for(i = 1; i < 8; i++)
qemu_put_be32s(f, &env->gregs[i]);
tmp = env->regwptr - env->regbase;
qemu_put_be32s(f, &tmp);
for(i = 1; i < NWINDOWS * 16 + 8; i++)
qemu_put_be32s(f, &env->regbase[i]);
/* FPU */
for(i = 0; i < 32; i++) {
uint64_t mant;
uint16_t exp;
cpu_get_fp64(&mant, &exp, env->fpr[i]);
qemu_put_be64(f, mant);
qemu_put_be16(f, exp);
}
qemu_put_be32s(f, &env->pc);
qemu_put_be32s(f, &env->npc);
qemu_put_be32s(f, &env->y);
tmp = GET_PSR(env);
qemu_put_be32s(f, &tmp);
qemu_put_be32s(f, &env->fsr);
qemu_put_be32s(f, &env->cwp);
qemu_put_be32s(f, &env->wim);
qemu_put_be32s(f, &env->tbr);
/* MMU */
for(i = 0; i < 16; i++)
qemu_put_be32s(f, &env->mmuregs[i]);
} }
int cpu_load(QEMUFile *f, void *opaque, int version_id) int cpu_load(QEMUFile *f, void *opaque, int version_id)
{ {
CPUState *env = opaque;
int i;
uint32_t tmp;
for(i = 1; i < 8; i++)
qemu_get_be32s(f, &env->gregs[i]);
qemu_get_be32s(f, &tmp);
env->regwptr = env->regbase + tmp;
for(i = 1; i < NWINDOWS * 16 + 8; i++)
qemu_get_be32s(f, &env->regbase[i]);
/* FPU */
for(i = 0; i < 32; i++) {
uint64_t mant;
uint16_t exp;
qemu_get_be64s(f, &mant);
qemu_get_be16s(f, &exp);
env->fpr[i] = cpu_put_fp64(mant, exp);
}
qemu_get_be32s(f, &env->pc);
qemu_get_be32s(f, &env->npc);
qemu_get_be32s(f, &env->y);
qemu_get_be32s(f, &tmp);
PUT_PSR(env, tmp);
qemu_get_be32s(f, &env->fsr);
qemu_get_be32s(f, &env->cwp);
qemu_get_be32s(f, &env->wim);
qemu_get_be32s(f, &env->tbr);
/* MMU */
for(i = 0; i < 16; i++)
qemu_get_be32s(f, &env->mmuregs[i]);
tlb_flush(env, 1);
return 0; return 0;
} }
#else #else
@ -2388,7 +2452,7 @@ void qemu_system_shutdown_request(void)
static void main_cpu_reset(void *opaque) static void main_cpu_reset(void *opaque)
{ {
#ifdef TARGET_I386 #if defined(TARGET_I386) || defined(TARGET_SPARC)
CPUState *env = opaque; CPUState *env = opaque;
cpu_reset(env); cpu_reset(env);
#endif #endif

31
vl.h
View file

@ -261,7 +261,7 @@ typedef void QEMUTimerCB(void *opaque);
Hz. */ Hz. */
extern QEMUClock *rt_clock; extern QEMUClock *rt_clock;
/* Rge virtual clock is only run during the emulation. It is stopped /* The virtual clock is only run during the emulation. It is stopped
when the virtual machine is stopped. Virtual timers use a high when the virtual machine is stopped. Virtual timers use a high
precision clock, usually cpu cycles (use ticks_per_sec). */ precision clock, usually cpu cycles (use ticks_per_sec). */
extern QEMUClock *vm_clock; extern QEMUClock *vm_clock;
@ -672,25 +672,38 @@ void sun4m_init(int ram_size, int vga_ram_size, int boot_device,
DisplayState *ds, const char **fd_filename, int snapshot, DisplayState *ds, const char **fd_filename, int snapshot,
const char *kernel_filename, const char *kernel_cmdline, const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename); const char *initrd_filename);
uint32_t iommu_translate(uint32_t addr);
/* iommu.c */ /* iommu.c */
void iommu_init(uint32_t addr); void *iommu_init(uint32_t addr);
uint32_t iommu_translate(uint32_t addr); uint32_t iommu_translate_local(void *opaque, uint32_t addr);
/* lance.c */ /* lance.c */
void lance_init(NetDriverState *nd, int irq, uint32_t leaddr, uint32_t ledaddr); void lance_init(NetDriverState *nd, int irq, uint32_t leaddr, uint32_t ledaddr);
/* tcx.c */ /* tcx.c */
void tcx_init(DisplayState *ds, uint32_t addr); void *tcx_init(DisplayState *ds, uint32_t addr, uint8_t *vram_base,
unsigned long vram_offset, int vram_size);
void tcx_update_display(void *opaque);
void tcx_invalidate_display(void *opaque);
void tcx_screen_dump(void *opaque, const char *filename);
/* sched.c */ /* slavio_intctl.c */
void sched_init(); void *slavio_intctl_init();
void slavio_pic_info(void *opaque);
void slavio_irq_info(void *opaque);
void slavio_pic_set_irq(void *opaque, int irq, int level);
/* magic-load.c */ /* magic-load.c */
void magic_init(const char *kfn, int kloadaddr, uint32_t addr); int load_elf(const char *filename, uint8_t *addr);
int load_aout(const char *filename, uint8_t *addr);
/* timer.c */ /* slavio_timer.c */
void timer_init(uint32_t addr, int irq); void slavio_timer_init(uint32_t addr1, int irq1, uint32_t addr2, int irq2);
/* slavio_serial.c */
SerialState *slavio_serial_init(int base, int irq, CharDriverState *chr1, CharDriverState *chr2);
void slavio_serial_ms_kbd_init(int base, int irq);
/* NVRAM helpers */ /* NVRAM helpers */
#include "hw/m48t59.h" #include "hw/m48t59.h"