target-arm queue:

* Support emulating the generic timers at frequencies other than 62.5MHz
  * Various fixes for SMMUv3 emulation bugs
  * Improve assert error message for hflags mismatches
  * arm-powerctl: rebuild hflags after setting CP15 bits in arm_set_cpu_on()
 -----BEGIN PGP SIGNATURE-----
 
 iQJNBAABCAA3FiEE4aXFk81BneKOgxXPPCUl7RQ2DN4FAl382e8ZHHBldGVyLm1h
 eWRlbGxAbGluYXJvLm9yZwAKCRA8JSXtFDYM3uXjEACX9Gf7OUNusIwNqiiTL7St
 l+SD3tuiWPAFup5/0+5bN+SMEpbAjgqzCBdcMJztMBxMwmVnho1smjRHFzY+f5Cv
 pHWDU2V37W9ANgHEoyg4pNI8hyuDZ26yFvmxZ2R/qeDvVtTbHaxZ6yS8A85qq6vl
 WZm1NjiPUdQiO4QbJl9nnx4RsVLz3UrGxS23Cs8MQ7eKU28gFpauwDbKg8doDyfe
 +fC0MSJCQsugNklspde5aGeHCKWuBUNNHbGAmu23W8vdOWAENSQKnC9SGaAMW76g
 8TjvISXMNWE4kCh1nQYiTqpQxv0QQ7MuTctG1Mqf4xcJYUeBDA53euiaeyu8WfIE
 sOVEvf6G/y3i6tN2QbFGohwW4q77k3QErlnWFe1Viii3J4i62bGaeFLtmuPKohLh
 Oo8PCK4yRKoSUVsUaFY5cCkEVfeVuIGhNpsoL8IP+lK+/tUJeD6tjncHlRGMbt/u
 //oa5hgiTz+/qUfeQqebJrmyAjOhOH2gaQOzwHbg2GoPcuNA3qUbJkO8GnKNzxDh
 2YntQbmv2QeAiBYb05Qdwo90IfIWnxoZpM5lXHsuK0/00hGomQPdGSl7+ofK/aCz
 G65rYYGUwi3tRTA/NOllBX2R5lFp7I9P1/l2bdjlhRuJIdGwbRUm/OIc53FoE4RU
 EBbugC2FW/dCncHEBXfySg==
 =n3MZ
 -----END PGP SIGNATURE-----

Merge remote-tracking branch 'remotes/pmaydell/tags/pull-target-arm-20191220' into staging

target-arm queue:
 * Support emulating the generic timers at frequencies other than 62.5MHz
 * Various fixes for SMMUv3 emulation bugs
 * Improve assert error message for hflags mismatches
 * arm-powerctl: rebuild hflags after setting CP15 bits in arm_set_cpu_on()

# gpg: Signature made Fri 20 Dec 2019 14:25:51 GMT
# gpg:                using RSA key E1A5C593CD419DE28E8315CF3C2525ED14360CDE
# gpg:                issuer "peter.maydell@linaro.org"
# gpg: Good signature from "Peter Maydell <peter.maydell@linaro.org>" [ultimate]
# gpg:                 aka "Peter Maydell <pmaydell@gmail.com>" [ultimate]
# gpg:                 aka "Peter Maydell <pmaydell@chiark.greenend.org.uk>" [ultimate]
# Primary key fingerprint: E1A5 C593 CD41 9DE2 8E83  15CF 3C25 25ED 1436 0CDE

* remotes/pmaydell/tags/pull-target-arm-20191220:
  arm/arm-powerctl: rebuild hflags after setting CP15 bits in arm_set_cpu_on()
  target/arm: Display helpful message when hflags mismatch
  hw/arm/smmuv3: Report F_STE_FETCH fault address in correct word position
  hw/arm/smmuv3: Use correct bit positions in EVT_SET_ADDR2 macro
  hw/arm/smmuv3: Align stream table base address to table size
  hw/arm/smmuv3: Check stream IDs against actual table LOG2SIZE
  hw/arm/smmuv3: Correct SMMU_BASE_ADDR_MASK value
  hw/arm/smmuv3: Apply address mask to linear strtab base address
  ast2600: Configure CNTFRQ at 1125MHz
  target/arm: Prepare generic timer for per-platform CNTFRQ
  target/arm: Abstract the generic timer frequency
  target/arm: Remove redundant scaling of nexttick

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
Peter Maydell 2020-01-03 18:50:33 +00:00
commit f17783e706
7 changed files with 125 additions and 27 deletions

View file

@ -250,6 +250,9 @@ static void aspeed_soc_ast2600_realize(DeviceState *dev, Error **errp)
object_property_set_int(OBJECT(&s->cpu[i]), aspeed_calc_affinity(i),
"mp-affinity", &error_abort);
object_property_set_int(OBJECT(&s->cpu[i]), 1125000000, "cntfrq",
&error_abort);
/*
* TODO: the secondary CPUs are started and a boot helper
* is needed when using -kernel

View file

@ -99,7 +99,7 @@ REG32(GERROR_IRQ_CFG2, 0x74)
#define A_STRTAB_BASE 0x80 /* 64b */
#define SMMU_BASE_ADDR_MASK 0xffffffffffe0
#define SMMU_BASE_ADDR_MASK 0xfffffffffffc0
REG32(STRTAB_BASE_CFG, 0x88)
FIELD(STRTAB_BASE_CFG, FMT, 16, 2)
@ -461,8 +461,8 @@ typedef struct SMMUEventInfo {
} while (0)
#define EVT_SET_ADDR2(x, addr) \
do { \
(x)->word[7] = deposit32((x)->word[7], 3, 29, addr >> 16); \
(x)->word[7] = deposit32((x)->word[7], 0, 16, addr & 0xffff);\
(x)->word[7] = (uint32_t)(addr >> 32); \
(x)->word[6] = (uint32_t)(addr & 0xffffffff); \
} while (0)
void smmuv3_record_event(SMMUv3State *s, SMMUEventInfo *event);

View file

@ -172,7 +172,7 @@ void smmuv3_record_event(SMMUv3State *s, SMMUEventInfo *info)
case SMMU_EVT_F_STE_FETCH:
EVT_SET_SSID(&evt, info->u.f_ste_fetch.ssid);
EVT_SET_SSV(&evt, info->u.f_ste_fetch.ssv);
EVT_SET_ADDR(&evt, info->u.f_ste_fetch.addr);
EVT_SET_ADDR2(&evt, info->u.f_ste_fetch.addr);
break;
case SMMU_EVT_C_BAD_STE:
EVT_SET_SSID(&evt, info->u.c_bad_ste.ssid);
@ -376,21 +376,32 @@ bad_ste:
static int smmu_find_ste(SMMUv3State *s, uint32_t sid, STE *ste,
SMMUEventInfo *event)
{
dma_addr_t addr;
dma_addr_t addr, strtab_base;
uint32_t log2size;
int strtab_size_shift;
int ret;
trace_smmuv3_find_ste(sid, s->features, s->sid_split);
/* Check SID range */
if (sid > (1 << SMMU_IDR1_SIDSIZE)) {
log2size = FIELD_EX32(s->strtab_base_cfg, STRTAB_BASE_CFG, LOG2SIZE);
/*
* Check SID range against both guest-configured and implementation limits
*/
if (sid >= (1 << MIN(log2size, SMMU_IDR1_SIDSIZE))) {
event->type = SMMU_EVT_C_BAD_STREAMID;
return -EINVAL;
}
if (s->features & SMMU_FEATURE_2LVL_STE) {
int l1_ste_offset, l2_ste_offset, max_l2_ste, span;
dma_addr_t strtab_base, l1ptr, l2ptr;
dma_addr_t l1ptr, l2ptr;
STEDesc l1std;
strtab_base = s->strtab_base & SMMU_BASE_ADDR_MASK;
/*
* Align strtab base address to table size. For this purpose, assume it
* is not bounded by SMMU_IDR1_SIDSIZE.
*/
strtab_size_shift = MAX(5, (int)log2size - s->sid_split - 1 + 3);
strtab_base = s->strtab_base & SMMU_BASE_ADDR_MASK &
~MAKE_64BIT_MASK(0, strtab_size_shift);
l1_ste_offset = sid >> s->sid_split;
l2_ste_offset = sid & ((1 << s->sid_split) - 1);
l1ptr = (dma_addr_t)(strtab_base + l1_ste_offset * sizeof(l1std));
@ -429,7 +440,10 @@ static int smmu_find_ste(SMMUv3State *s, uint32_t sid, STE *ste,
}
addr = l2ptr + l2_ste_offset * sizeof(*ste);
} else {
addr = s->strtab_base + sid * sizeof(*ste);
strtab_size_shift = log2size + 5;
strtab_base = s->strtab_base & SMMU_BASE_ADDR_MASK &
~MAKE_64BIT_MASK(0, strtab_size_shift);
addr = strtab_base + sid * sizeof(*ste);
}
if (smmu_get_ste(s, addr, ste, event)) {

View file

@ -127,6 +127,9 @@ static void arm_set_cpu_on_async_work(CPUState *target_cpu_state,
target_cpu->env.regs[0] = info->context_id;
}
/* CP15 update requires rebuilding hflags */
arm_rebuild_hflags(&target_cpu->env);
/* Start the new CPU at the requested address */
cpu_set_pc(target_cpu_state, info->entry);

View file

@ -976,6 +976,10 @@ static void arm_cpu_initfn(Object *obj)
}
}
static Property arm_cpu_gt_cntfrq_property =
DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
NANOSECONDS_PER_SECOND / GTIMER_SCALE);
static Property arm_cpu_reset_cbar_property =
DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
@ -1055,6 +1059,30 @@ static void arm_set_init_svtor(Object *obj, Visitor *v, const char *name,
visit_type_uint32(v, name, &cpu->init_svtor, errp);
}
unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
{
/*
* The exact approach to calculating guest ticks is:
*
* muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
* NANOSECONDS_PER_SECOND);
*
* We don't do that. Rather we intentionally use integer division
* truncation below and in the caller for the conversion of host monotonic
* time to guest ticks to provide the exact inverse for the semantics of
* the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
* it loses precision when representing frequencies where
* `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
* provide an exact inverse leads to scheduling timers with negative
* periods, which in turn leads to sticky behaviour in the guest.
*
* Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
* cannot become zero.
*/
return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
}
void arm_cpu_post_init(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
@ -1172,6 +1200,11 @@ void arm_cpu_post_init(Object *obj)
qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
&error_abort);
if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property,
&error_abort);
}
}
static void arm_cpu_finalizefn(Object *obj)
@ -1251,14 +1284,30 @@ static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
}
}
cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
arm_gt_ptimer_cb, cpu);
cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
arm_gt_vtimer_cb, cpu);
cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
arm_gt_htimer_cb, cpu);
cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
arm_gt_stimer_cb, cpu);
{
uint64_t scale;
if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
if (!cpu->gt_cntfrq_hz) {
error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
cpu->gt_cntfrq_hz);
return;
}
scale = gt_cntfrq_period_ns(cpu);
} else {
scale = GTIMER_SCALE;
}
cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
arm_gt_ptimer_cb, cpu);
cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
arm_gt_vtimer_cb, cpu);
cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
arm_gt_htimer_cb, cpu);
cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
arm_gt_stimer_cb, cpu);
}
#endif
cpu_exec_realizefn(cs, &local_err);

View file

@ -932,8 +932,13 @@ struct ARMCPU {
*/
DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
/* Generic timer counter frequency, in Hz */
uint64_t gt_cntfrq_hz;
};
unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
void arm_cpu_post_init(Object *obj);
uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);

View file

@ -2449,7 +2449,9 @@ static CPAccessResult gt_stimer_access(CPUARMState *env,
static uint64_t gt_get_countervalue(CPUARMState *env)
{
return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
ARMCPU *cpu = env_archcpu(env);
return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
}
static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
@ -2485,10 +2487,11 @@ static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
* set the timer for as far in the future as possible. When the
* timer expires we will reset the timer for any remaining period.
*/
if (nexttick > INT64_MAX / GTIMER_SCALE) {
nexttick = INT64_MAX / GTIMER_SCALE;
if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
} else {
timer_mod(cpu->gt_timer[timeridx], nexttick);
}
timer_mod(cpu->gt_timer[timeridx], nexttick);
trace_arm_gt_recalc(timeridx, irqstate, nexttick);
} else {
/* Timer disabled: ISTATUS and timer output always clear */
@ -2720,6 +2723,13 @@ void arm_gt_stimer_cb(void *opaque)
gt_recalc_timer(cpu, GTIMER_SEC);
}
static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
{
ARMCPU *cpu = env_archcpu(env);
cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
}
static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
/* Note that CNTFRQ is purely reads-as-written for the benefit
* of software; writing it doesn't actually change the timer frequency.
@ -2734,7 +2744,7 @@ static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
.access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
.fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
.resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
.resetfn = arm_gt_cntfrq_reset,
},
/* overall control: mostly access permissions */
{ .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
@ -2913,11 +2923,13 @@ static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
ARMCPU *cpu = env_archcpu(env);
/* Currently we have no support for QEMUTimer in linux-user so we
* can't call gt_get_countervalue(env), instead we directly
* call the lower level functions.
*/
return cpu_get_clock() / GTIMER_SCALE;
return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
}
static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
@ -11500,6 +11512,20 @@ void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
}
static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
{
#ifdef CONFIG_DEBUG_TCG
uint32_t env_flags_current = env->hflags;
uint32_t env_flags_rebuilt = rebuild_hflags_internal(env);
if (unlikely(env_flags_current != env_flags_rebuilt)) {
fprintf(stderr, "TCG hflags mismatch (current:0x%08x rebuilt:0x%08x)\n",
env_flags_current, env_flags_rebuilt);
abort();
}
#endif
}
void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
target_ulong *cs_base, uint32_t *pflags)
{
@ -11507,9 +11533,7 @@ void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
uint32_t pstate_for_ss;
*cs_base = 0;
#ifdef CONFIG_DEBUG_TCG
assert(flags == rebuild_hflags_internal(env));
#endif
assert_hflags_rebuild_correctly(env);
if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) {
*pc = env->pc;