/* * ARM GICv3 emulation: Redistributor * * Copyright (c) 2015 Huawei. * Copyright (c) 2016 Linaro Limited. * Written by Shlomo Pongratz, Peter Maydell * * This code is licensed under the GPL, version 2 or (at your option) * any later version. */ #include "qemu/osdep.h" #include "qemu/log.h" #include "trace.h" #include "gicv3_internal.h" static uint32_t mask_group(GICv3CPUState *cs, MemTxAttrs attrs) { /* Return a 32-bit mask which should be applied for this set of 32 * interrupts; each bit is 1 if access is permitted by the * combination of attrs.secure and GICR_GROUPR. (GICR_NSACR does * not affect config register accesses, unlike GICD_NSACR.) */ if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) { /* bits for Group 0 or Secure Group 1 interrupts are RAZ/WI */ return cs->gicr_igroupr0; } return 0xFFFFFFFFU; } static int gicr_ns_access(GICv3CPUState *cs, int irq) { /* Return the 2 bit NSACR.NS_access field for this SGI */ assert(irq < 16); return extract32(cs->gicr_nsacr, irq * 2, 2); } static void gicr_write_set_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs, uint32_t *reg, uint32_t val) { /* Helper routine to implement writing to a "set-bitmap" register */ val &= mask_group(cs, attrs); *reg |= val; gicv3_redist_update(cs); } static void gicr_write_clear_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs, uint32_t *reg, uint32_t val) { /* Helper routine to implement writing to a "clear-bitmap" register */ val &= mask_group(cs, attrs); *reg &= ~val; gicv3_redist_update(cs); } static uint32_t gicr_read_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs, uint32_t reg) { reg &= mask_group(cs, attrs); return reg; } static uint8_t gicr_read_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs, int irq) { /* Read the value of GICR_IPRIORITYR for the specified interrupt, * honouring security state (these are RAZ/WI for Group 0 or Secure * Group 1 interrupts). */ uint32_t prio; prio = cs->gicr_ipriorityr[irq]; if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) { if (!(cs->gicr_igroupr0 & (1U << irq))) { /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */ return 0; } /* NS view of the interrupt priority */ prio = (prio << 1) & 0xff; } return prio; } static void gicr_write_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs, int irq, uint8_t value) { /* Write the value of GICD_IPRIORITYR for the specified interrupt, * honouring security state (these are RAZ/WI for Group 0 or Secure * Group 1 interrupts). */ if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) { if (!(cs->gicr_igroupr0 & (1U << irq))) { /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */ return; } /* NS view of the interrupt priority */ value = 0x80 | (value >> 1); } cs->gicr_ipriorityr[irq] = value; } static MemTxResult gicr_readb(GICv3CPUState *cs, hwaddr offset, uint64_t *data, MemTxAttrs attrs) { switch (offset) { case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f: *data = gicr_read_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR); return MEMTX_OK; default: return MEMTX_ERROR; } } static MemTxResult gicr_writeb(GICv3CPUState *cs, hwaddr offset, uint64_t value, MemTxAttrs attrs) { switch (offset) { case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f: gicr_write_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR, value); gicv3_redist_update(cs); return MEMTX_OK; default: return MEMTX_ERROR; } } static MemTxResult gicr_readl(GICv3CPUState *cs, hwaddr offset, uint64_t *data, MemTxAttrs attrs) { switch (offset) { case GICR_CTLR: *data = cs->gicr_ctlr; return MEMTX_OK; case GICR_IIDR: *data = gicv3_iidr(); return MEMTX_OK; case GICR_TYPER: *data = extract64(cs->gicr_typer, 0, 32); return MEMTX_OK; case GICR_TYPER + 4: *data = extract64(cs->gicr_typer, 32, 32); return MEMTX_OK; case GICR_STATUSR: /* RAZ/WI for us (this is an optional register and our implementation * does not track RO/WO/reserved violations to report them to the guest) */ *data = 0; return MEMTX_OK; case GICR_WAKER: *data = cs->gicr_waker; return MEMTX_OK; case GICR_PROPBASER: *data = extract64(cs->gicr_propbaser, 0, 32); return MEMTX_OK; case GICR_PROPBASER + 4: *data = extract64(cs->gicr_propbaser, 32, 32); return MEMTX_OK; case GICR_PENDBASER: *data = extract64(cs->gicr_pendbaser, 0, 32); return MEMTX_OK; case GICR_PENDBASER + 4: *data = extract64(cs->gicr_pendbaser, 32, 32); return MEMTX_OK; case GICR_IGROUPR0: if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) { *data = 0; return MEMTX_OK; } *data = cs->gicr_igroupr0; return MEMTX_OK; case GICR_ISENABLER0: case GICR_ICENABLER0: *data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_ienabler0); return MEMTX_OK; case GICR_ISPENDR0: case GICR_ICPENDR0: { /* The pending register reads as the logical OR of the pending * latch and the input line level for level-triggered interrupts. */ uint32_t val = cs->gicr_ipendr0 | (~cs->edge_trigger & cs->level); *data = gicr_read_bitmap_reg(cs, attrs, val); return MEMTX_OK; } case GICR_ISACTIVER0: case GICR_ICACTIVER0: *data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_iactiver0); return MEMTX_OK; case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f: { int i, irq = offset - GICR_IPRIORITYR; uint32_t value = 0; for (i = irq + 3; i >= irq; i--) { value <<= 8; value |= gicr_read_ipriorityr(cs, attrs, i); } *data = value; return MEMTX_OK; } case GICR_ICFGR0: case GICR_ICFGR1: { /* Our edge_trigger bitmap is one bit per irq; take the correct * half of it, and spread it out into the odd bits. */ uint32_t value; value = cs->edge_trigger & mask_group(cs, attrs); value = extract32(value, (offset == GICR_ICFGR1) ? 16 : 0, 16); value = half_shuffle32(value) << 1; *data = value; return MEMTX_OK; } case GICR_IGRPMODR0: if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { /* RAZ/WI if security disabled, or if * security enabled and this is an NS access */ *data = 0; return MEMTX_OK; } *data = cs->gicr_igrpmodr0; return MEMTX_OK; case GICR_NSACR: if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { /* RAZ/WI if security disabled, or if * security enabled and this is an NS access */ *data = 0; return MEMTX_OK; } *data = cs->gicr_nsacr; return MEMTX_OK; case GICR_IDREGS ... GICR_IDREGS + 0x2f: *data = gicv3_idreg(offset - GICR_IDREGS); return MEMTX_OK; default: return MEMTX_ERROR; } } static MemTxResult gicr_writel(GICv3CPUState *cs, hwaddr offset, uint64_t value, MemTxAttrs attrs) { switch (offset) { case GICR_CTLR: /* For our implementation, GICR_TYPER.DPGS is 0 and so all * the DPG bits are RAZ/WI. We don't do anything asynchronously, * so UWP and RWP are RAZ/WI. GICR_TYPER.LPIS is 1 (we * implement LPIs) so Enable_LPIs is programmable. */ if (cs->gicr_typer & GICR_TYPER_PLPIS) { if (value & GICR_CTLR_ENABLE_LPIS) { cs->gicr_ctlr |= GICR_CTLR_ENABLE_LPIS; /* Check for any pending interr in pending table */ gicv3_redist_update_lpi(cs); } else { cs->gicr_ctlr &= ~GICR_CTLR_ENABLE_LPIS; /* cs->hppi might have been an LPI; recalculate */ gicv3_redist_update(cs); } } return MEMTX_OK; case GICR_STATUSR: /* RAZ/WI for our implementation */ return MEMTX_OK; case GICR_WAKER: /* Only the ProcessorSleep bit is writeable. When the guest sets * it it requests that we transition the channel between the * redistributor and the cpu interface to quiescent, and that * we set the ChildrenAsleep bit once the inteface has reached the * quiescent state. * Setting the ProcessorSleep to 0 reverses the quiescing, and * ChildrenAsleep is cleared once the transition is complete. * Since our interface is not asynchronous, we complete these * transitions instantaneously, so we set ChildrenAsleep to the * same value as ProcessorSleep here. */ value &= GICR_WAKER_ProcessorSleep; if (value & GICR_WAKER_ProcessorSleep) { value |= GICR_WAKER_ChildrenAsleep; } cs->gicr_waker = value; return MEMTX_OK; case GICR_PROPBASER: cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 0, 32, value); return MEMTX_OK; case GICR_PROPBASER + 4: cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 32, 32, value); return MEMTX_OK; case GICR_PENDBASER: cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 0, 32, value); return MEMTX_OK; case GICR_PENDBASER + 4: cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 32, 32, value); return MEMTX_OK; case GICR_IGROUPR0: if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) { return MEMTX_OK; } cs->gicr_igroupr0 = value; gicv3_redist_update(cs); return MEMTX_OK; case GICR_ISENABLER0: gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value); return MEMTX_OK; case GICR_ICENABLER0: gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value); return MEMTX_OK; case GICR_ISPENDR0: gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value); return MEMTX_OK; case GICR_ICPENDR0: gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value); return MEMTX_OK; case GICR_ISACTIVER0: gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value); return MEMTX_OK; case GICR_ICACTIVER0: gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value); return MEMTX_OK; case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f: { int i, irq = offset - GICR_IPRIORITYR; for (i = irq; i < irq + 4; i++, value >>= 8) { gicr_write_ipriorityr(cs, attrs, i, value); } gicv3_redist_update(cs); return MEMTX_OK; } case GICR_ICFGR0: /* Register is all RAZ/WI or RAO/WI bits */ return MEMTX_OK; case GICR_ICFGR1: { uint32_t mask; /* Since our edge_trigger bitmap is one bit per irq, our input * 32-bits will compress down into 16 bits which we need * to write into the bitmap. */ value = half_unshuffle32(value >> 1) << 16; mask = mask_group(cs, attrs) & 0xffff0000U; cs->edge_trigger &= ~mask; cs->edge_trigger |= (value & mask); gicv3_redist_update(cs); return MEMTX_OK; } case GICR_IGRPMODR0: if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { /* RAZ/WI if security disabled, or if * security enabled and this is an NS access */ return MEMTX_OK; } cs->gicr_igrpmodr0 = value; gicv3_redist_update(cs); return MEMTX_OK; case GICR_NSACR: if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { /* RAZ/WI if security disabled, or if * security enabled and this is an NS access */ return MEMTX_OK; } cs->gicr_nsacr = value; /* no update required as this only affects access permission checks */ return MEMTX_OK; case GICR_IIDR: case GICR_TYPER: case GICR_IDREGS ... GICR_IDREGS + 0x2f: /* RO registers, ignore the write */ qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid guest write to RO register at offset " TARGET_FMT_plx "\n", __func__, offset); return MEMTX_OK; default: return MEMTX_ERROR; } } static MemTxResult gicr_readll(GICv3CPUState *cs, hwaddr offset, uint64_t *data, MemTxAttrs attrs) { switch (offset) { case GICR_TYPER: *data = cs->gicr_typer; return MEMTX_OK; case GICR_PROPBASER: *data = cs->gicr_propbaser; return MEMTX_OK; case GICR_PENDBASER: *data = cs->gicr_pendbaser; return MEMTX_OK; default: return MEMTX_ERROR; } } static MemTxResult gicr_writell(GICv3CPUState *cs, hwaddr offset, uint64_t value, MemTxAttrs attrs) { switch (offset) { case GICR_PROPBASER: cs->gicr_propbaser = value; return MEMTX_OK; case GICR_PENDBASER: cs->gicr_pendbaser = value; return MEMTX_OK; case GICR_TYPER: /* RO register, ignore the write */ qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid guest write to RO register at offset " TARGET_FMT_plx "\n", __func__, offset); return MEMTX_OK; default: return MEMTX_ERROR; } } MemTxResult gicv3_redist_read(void *opaque, hwaddr offset, uint64_t *data, unsigned size, MemTxAttrs attrs) { GICv3RedistRegion *region = opaque; GICv3State *s = region->gic; GICv3CPUState *cs; MemTxResult r; int cpuidx; assert((offset & (size - 1)) == 0); /* * There are (for GICv3) two 64K redistributor pages per CPU. * In some cases the redistributor pages for all CPUs are not * contiguous (eg on the virt board they are split into two * parts if there are too many CPUs to all fit in the same place * in the memory map); if so then the GIC has multiple MemoryRegions * for the redistributors. */ cpuidx = region->cpuidx + offset / GICV3_REDIST_SIZE; offset %= GICV3_REDIST_SIZE; cs = &s->cpu[cpuidx]; switch (size) { case 1: r = gicr_readb(cs, offset, data, attrs); break; case 4: r = gicr_readl(cs, offset, data, attrs); break; case 8: r = gicr_readll(cs, offset, data, attrs); break; default: r = MEMTX_ERROR; break; } if (r != MEMTX_OK) { qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid guest read at offset " TARGET_FMT_plx " size %u\n", __func__, offset, size); trace_gicv3_redist_badread(gicv3_redist_affid(cs), offset, size, attrs.secure); /* The spec requires that reserved registers are RAZ/WI; * so use MEMTX_ERROR returns from leaf functions as a way to * trigger the guest-error logging but don't return it to * the caller, or we'll cause a spurious guest data abort. */ r = MEMTX_OK; *data = 0; } else { trace_gicv3_redist_read(gicv3_redist_affid(cs), offset, *data, size, attrs.secure); } return r; } MemTxResult gicv3_redist_write(void *opaque, hwaddr offset, uint64_t data, unsigned size, MemTxAttrs attrs) { GICv3RedistRegion *region = opaque; GICv3State *s = region->gic; GICv3CPUState *cs; MemTxResult r; int cpuidx; assert((offset & (size - 1)) == 0); /* * There are (for GICv3) two 64K redistributor pages per CPU. * In some cases the redistributor pages for all CPUs are not * contiguous (eg on the virt board they are split into two * parts if there are too many CPUs to all fit in the same place * in the memory map); if so then the GIC has multiple MemoryRegions * for the redistributors. */ cpuidx = region->cpuidx + offset / GICV3_REDIST_SIZE; offset %= GICV3_REDIST_SIZE; cs = &s->cpu[cpuidx]; switch (size) { case 1: r = gicr_writeb(cs, offset, data, attrs); break; case 4: r = gicr_writel(cs, offset, data, attrs); break; case 8: r = gicr_writell(cs, offset, data, attrs); break; default: r = MEMTX_ERROR; break; } if (r != MEMTX_OK) { qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid guest write at offset " TARGET_FMT_plx " size %u\n", __func__, offset, size); trace_gicv3_redist_badwrite(gicv3_redist_affid(cs), offset, data, size, attrs.secure); /* The spec requires that reserved registers are RAZ/WI; * so use MEMTX_ERROR returns from leaf functions as a way to * trigger the guest-error logging but don't return it to * the caller, or we'll cause a spurious guest data abort. */ r = MEMTX_OK; } else { trace_gicv3_redist_write(gicv3_redist_affid(cs), offset, data, size, attrs.secure); } return r; } static void gicv3_redist_check_lpi_priority(GICv3CPUState *cs, int irq) { AddressSpace *as = &cs->gic->dma_as; uint64_t lpict_baddr; uint8_t lpite; uint8_t prio; lpict_baddr = cs->gicr_propbaser & R_GICR_PROPBASER_PHYADDR_MASK; address_space_read(as, lpict_baddr + ((irq - GICV3_LPI_INTID_START) * sizeof(lpite)), MEMTXATTRS_UNSPECIFIED, &lpite, sizeof(lpite)); if (!(lpite & LPI_CTE_ENABLED)) { return; } if (cs->gic->gicd_ctlr & GICD_CTLR_DS) { prio = lpite & LPI_PRIORITY_MASK; } else { prio = ((lpite & LPI_PRIORITY_MASK) >> 1) | 0x80; } if ((prio < cs->hpplpi.prio) || ((prio == cs->hpplpi.prio) && (irq <= cs->hpplpi.irq))) { cs->hpplpi.irq = irq; cs->hpplpi.prio = prio; /* LPIs are always non-secure Grp1 interrupts */ cs->hpplpi.grp = GICV3_G1NS; } } void gicv3_redist_update_lpi_only(GICv3CPUState *cs) { /* * This function scans the LPI pending table and for each pending * LPI, reads the corresponding entry from LPI configuration table * to extract the priority info and determine if the current LPI * priority is lower than the last computed high priority lpi interrupt. * If yes, replace current LPI as the new high priority lpi interrupt. */ AddressSpace *as = &cs->gic->dma_as; uint64_t lpipt_baddr; uint32_t pendt_size = 0; uint8_t pend; int i, bit; uint64_t idbits; idbits = MIN(FIELD_EX64(cs->gicr_propbaser, GICR_PROPBASER, IDBITS), GICD_TYPER_IDBITS); if (!(cs->gicr_ctlr & GICR_CTLR_ENABLE_LPIS)) { return; } cs->hpplpi.prio = 0xff; lpipt_baddr = cs->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK; /* Determine the highest priority pending interrupt among LPIs */ pendt_size = (1ULL << (idbits + 1)); for (i = GICV3_LPI_INTID_START / 8; i < pendt_size / 8; i++) { address_space_read(as, lpipt_baddr + i, MEMTXATTRS_UNSPECIFIED, &pend, sizeof(pend)); while (pend) { bit = ctz32(pend); gicv3_redist_check_lpi_priority(cs, i * 8 + bit); pend &= ~(1 << bit); } } } void gicv3_redist_update_lpi(GICv3CPUState *cs) { gicv3_redist_update_lpi_only(cs); gicv3_redist_update(cs); } void gicv3_redist_lpi_pending(GICv3CPUState *cs, int irq, int level) { /* * This function updates the pending bit in lpi pending table for * the irq being activated or deactivated. */ AddressSpace *as = &cs->gic->dma_as; uint64_t lpipt_baddr; bool ispend = false; uint8_t pend; /* * get the bit value corresponding to this irq in the * lpi pending table */ lpipt_baddr = cs->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK; address_space_read(as, lpipt_baddr + ((irq / 8) * sizeof(pend)), MEMTXATTRS_UNSPECIFIED, &pend, sizeof(pend)); ispend = extract32(pend, irq % 8, 1); /* no change in the value of pending bit, return */ if (ispend == level) { return; } pend = deposit32(pend, irq % 8, 1, level ? 1 : 0); address_space_write(as, lpipt_baddr + ((irq / 8) * sizeof(pend)), MEMTXATTRS_UNSPECIFIED, &pend, sizeof(pend)); /* * check if this LPI is better than the current hpplpi, if yes * just set hpplpi.prio and .irq without doing a full rescan */ if (level) { gicv3_redist_check_lpi_priority(cs, irq); gicv3_redist_update(cs); } else { if (irq == cs->hpplpi.irq) { gicv3_redist_update_lpi(cs); } } } void gicv3_redist_process_lpi(GICv3CPUState *cs, int irq, int level) { uint64_t idbits; idbits = MIN(FIELD_EX64(cs->gicr_propbaser, GICR_PROPBASER, IDBITS), GICD_TYPER_IDBITS); if (!(cs->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) || (irq > (1ULL << (idbits + 1)) - 1) || irq < GICV3_LPI_INTID_START) { return; } /* set/clear the pending bit for this irq */ gicv3_redist_lpi_pending(cs, irq, level); } void gicv3_redist_mov_lpi(GICv3CPUState *src, GICv3CPUState *dest, int irq) { /* * Move the specified LPI's pending state from the source redistributor * to the destination. * * If LPIs are disabled on dest this is CONSTRAINED UNPREDICTABLE: * we choose to NOP. If LPIs are disabled on source there's nothing * to be transferred anyway. */ AddressSpace *as = &src->gic->dma_as; uint64_t idbits; uint32_t pendt_size; uint64_t src_baddr; uint8_t src_pend; if (!(src->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) || !(dest->gicr_ctlr & GICR_CTLR_ENABLE_LPIS)) { return; } idbits = MIN(FIELD_EX64(src->gicr_propbaser, GICR_PROPBASER, IDBITS), GICD_TYPER_IDBITS); idbits = MIN(FIELD_EX64(dest->gicr_propbaser, GICR_PROPBASER, IDBITS), idbits); pendt_size = 1ULL << (idbits + 1); if ((irq / 8) >= pendt_size) { return; } src_baddr = src->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK; address_space_read(as, src_baddr + (irq / 8), MEMTXATTRS_UNSPECIFIED, &src_pend, sizeof(src_pend)); if (!extract32(src_pend, irq % 8, 1)) { /* Not pending on source, nothing to do */ return; } src_pend &= ~(1 << (irq % 8)); address_space_write(as, src_baddr + (irq / 8), MEMTXATTRS_UNSPECIFIED, &src_pend, sizeof(src_pend)); if (irq == src->hpplpi.irq) { /* * We just made this LPI not-pending so only need to update * if it was previously the highest priority pending LPI */ gicv3_redist_update_lpi(src); } /* Mark it pending on the destination */ gicv3_redist_lpi_pending(dest, irq, 1); } void gicv3_redist_movall_lpis(GICv3CPUState *src, GICv3CPUState *dest) { /* * We must move all pending LPIs from the source redistributor * to the destination. That is, for every pending LPI X on * src, we must set it not-pending on src and pending on dest. * LPIs that are already pending on dest are not cleared. * * If LPIs are disabled on dest this is CONSTRAINED UNPREDICTABLE: * we choose to NOP. If LPIs are disabled on source there's nothing * to be transferred anyway. */ AddressSpace *as = &src->gic->dma_as; uint64_t idbits; uint32_t pendt_size; uint64_t src_baddr, dest_baddr; int i; if (!(src->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) || !(dest->gicr_ctlr & GICR_CTLR_ENABLE_LPIS)) { return; } idbits = MIN(FIELD_EX64(src->gicr_propbaser, GICR_PROPBASER, IDBITS), GICD_TYPER_IDBITS); idbits = MIN(FIELD_EX64(dest->gicr_propbaser, GICR_PROPBASER, IDBITS), idbits); pendt_size = 1ULL << (idbits + 1); src_baddr = src->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK; dest_baddr = dest->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK; for (i = GICV3_LPI_INTID_START / 8; i < pendt_size / 8; i++) { uint8_t src_pend, dest_pend; address_space_read(as, src_baddr + i, MEMTXATTRS_UNSPECIFIED, &src_pend, sizeof(src_pend)); if (!src_pend) { continue; } address_space_read(as, dest_baddr + i, MEMTXATTRS_UNSPECIFIED, &dest_pend, sizeof(dest_pend)); dest_pend |= src_pend; src_pend = 0; address_space_write(as, src_baddr + i, MEMTXATTRS_UNSPECIFIED, &src_pend, sizeof(src_pend)); address_space_write(as, dest_baddr + i, MEMTXATTRS_UNSPECIFIED, &dest_pend, sizeof(dest_pend)); } gicv3_redist_update_lpi(src); gicv3_redist_update_lpi(dest); } void gicv3_redist_set_irq(GICv3CPUState *cs, int irq, int level) { /* Update redistributor state for a change in an external PPI input line */ if (level == extract32(cs->level, irq, 1)) { return; } trace_gicv3_redist_set_irq(gicv3_redist_affid(cs), irq, level); cs->level = deposit32(cs->level, irq, 1, level); if (level) { /* 0->1 edges latch the pending bit for edge-triggered interrupts */ if (extract32(cs->edge_trigger, irq, 1)) { cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1); } } gicv3_redist_update(cs); } void gicv3_redist_send_sgi(GICv3CPUState *cs, int grp, int irq, bool ns) { /* Update redistributor state for a generated SGI */ int irqgrp = gicv3_irq_group(cs->gic, cs, irq); /* If we are asked for a Secure Group 1 SGI and it's actually * configured as Secure Group 0 this is OK (subject to the usual * NSACR checks). */ if (grp == GICV3_G1 && irqgrp == GICV3_G0) { grp = GICV3_G0; } if (grp != irqgrp) { return; } if (ns && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) { /* If security is enabled we must test the NSACR bits */ int nsaccess = gicr_ns_access(cs, irq); if ((irqgrp == GICV3_G0 && nsaccess < 1) || (irqgrp == GICV3_G1 && nsaccess < 2)) { return; } } /* OK, we can accept the SGI */ trace_gicv3_redist_send_sgi(gicv3_redist_affid(cs), irq); cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1); gicv3_redist_update(cs); }