/* * vm86 linux syscall support * * Copyright (c) 2003 Fabrice Bellard * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include "qemu.h" //#define DEBUG_VM86 #define set_flags(X,new,mask) \ ((X) = ((X) & ~(mask)) | ((new) & (mask))) #define SAFE_MASK (0xDD5) #define RETURN_MASK (0xDFF) static inline int is_revectored(int nr, struct target_revectored_struct *bitmap) { return (tswap32(bitmap->__map[nr >> 5]) >> (nr & 0x1f)) & 1; } static inline void vm_putw(uint8_t *segptr, unsigned int reg16, unsigned int val) { *(uint16_t *)(segptr + (reg16 & 0xffff)) = tswap16(val); } static inline void vm_putl(uint8_t *segptr, unsigned int reg16, unsigned int val) { *(uint32_t *)(segptr + (reg16 & 0xffff)) = tswap32(val); } static inline unsigned int vm_getw(uint8_t *segptr, unsigned int reg16) { return tswap16(*(uint16_t *)(segptr + (reg16 & 0xffff))); } static inline unsigned int vm_getl(uint8_t *segptr, unsigned int reg16) { return tswap32(*(uint16_t *)(segptr + (reg16 & 0xffff))); } void save_v86_state(CPUX86State *env) { TaskState *ts = env->opaque; /* put the VM86 registers in the userspace register structure */ ts->target_v86->regs.eax = tswap32(env->regs[R_EAX]); ts->target_v86->regs.ebx = tswap32(env->regs[R_EBX]); ts->target_v86->regs.ecx = tswap32(env->regs[R_ECX]); ts->target_v86->regs.edx = tswap32(env->regs[R_EDX]); ts->target_v86->regs.esi = tswap32(env->regs[R_ESI]); ts->target_v86->regs.edi = tswap32(env->regs[R_EDI]); ts->target_v86->regs.ebp = tswap32(env->regs[R_EBP]); ts->target_v86->regs.esp = tswap32(env->regs[R_ESP]); ts->target_v86->regs.eip = tswap32(env->eip); ts->target_v86->regs.cs = tswap16(env->segs[R_CS]); ts->target_v86->regs.ss = tswap16(env->segs[R_SS]); ts->target_v86->regs.ds = tswap16(env->segs[R_DS]); ts->target_v86->regs.es = tswap16(env->segs[R_ES]); ts->target_v86->regs.fs = tswap16(env->segs[R_FS]); ts->target_v86->regs.gs = tswap16(env->segs[R_GS]); set_flags(env->eflags, ts->v86flags, VIF_MASK | ts->v86mask); ts->target_v86->regs.eflags = tswap32(env->eflags); #ifdef DEBUG_VM86 fprintf(logfile, "save_v86_state: eflags=%08x cs:ip=%04x:%04x\n", env->eflags, env->segs[R_CS], env->eip); #endif /* restore 32 bit registers */ env->regs[R_EAX] = ts->vm86_saved_regs.eax; env->regs[R_EBX] = ts->vm86_saved_regs.ebx; env->regs[R_ECX] = ts->vm86_saved_regs.ecx; env->regs[R_EDX] = ts->vm86_saved_regs.edx; env->regs[R_ESI] = ts->vm86_saved_regs.esi; env->regs[R_EDI] = ts->vm86_saved_regs.edi; env->regs[R_EBP] = ts->vm86_saved_regs.ebp; env->regs[R_ESP] = ts->vm86_saved_regs.esp; env->eflags = ts->vm86_saved_regs.eflags; env->eip = ts->vm86_saved_regs.eip; cpu_x86_load_seg(env, R_CS, ts->vm86_saved_regs.cs); cpu_x86_load_seg(env, R_SS, ts->vm86_saved_regs.ss); cpu_x86_load_seg(env, R_DS, ts->vm86_saved_regs.ds); cpu_x86_load_seg(env, R_ES, ts->vm86_saved_regs.es); cpu_x86_load_seg(env, R_FS, ts->vm86_saved_regs.fs); cpu_x86_load_seg(env, R_GS, ts->vm86_saved_regs.gs); } /* return from vm86 mode to 32 bit. The vm86() syscall will return 'retval' */ static inline void return_to_32bit(CPUX86State *env, int retval) { #ifdef DEBUG_VM86 fprintf(logfile, "return_to_32bit: ret=0x%x\n", retval); #endif save_v86_state(env); env->regs[R_EAX] = retval; } static inline int set_IF(CPUX86State *env) { TaskState *ts = env->opaque; ts->v86flags |= VIF_MASK; if (ts->v86flags & VIP_MASK) { return_to_32bit(env, TARGET_VM86_STI); return 1; } return 0; } static inline void clear_IF(CPUX86State *env) { TaskState *ts = env->opaque; ts->v86flags &= ~VIF_MASK; } static inline void clear_TF(CPUX86State *env) { env->eflags &= ~TF_MASK; } static inline int set_vflags_long(unsigned long eflags, CPUX86State *env) { TaskState *ts = env->opaque; set_flags(ts->v86flags, eflags, ts->v86mask); set_flags(env->eflags, eflags, SAFE_MASK); if (eflags & IF_MASK) return set_IF(env); return 0; } static inline int set_vflags_short(unsigned short flags, CPUX86State *env) { TaskState *ts = env->opaque; set_flags(ts->v86flags, flags, ts->v86mask & 0xffff); set_flags(env->eflags, flags, SAFE_MASK); if (flags & IF_MASK) return set_IF(env); return 0; } static inline unsigned int get_vflags(CPUX86State *env) { TaskState *ts = env->opaque; unsigned int flags; flags = env->eflags & RETURN_MASK; if (ts->v86flags & VIF_MASK) flags |= IF_MASK; return flags | (ts->v86flags & ts->v86mask); } #define ADD16(reg, val) reg = (reg & ~0xffff) | ((reg + (val)) & 0xffff) /* handle VM86 interrupt (NOTE: the CPU core currently does not support TSS interrupt revectoring, so this code is always executed) */ static void do_int(CPUX86State *env, int intno) { TaskState *ts = env->opaque; uint32_t *int_ptr, segoffs; uint8_t *ssp; unsigned int sp; #if 1 if (intno == 0xe6 && (env->regs[R_EAX] & 0xffff) == 0x00c0) loglevel = 1; #endif if (env->segs[R_CS] == TARGET_BIOSSEG) goto cannot_handle; if (is_revectored(intno, &ts->target_v86->int_revectored)) goto cannot_handle; if (intno == 0x21 && is_revectored((env->regs[R_EAX] >> 8) & 0xff, &ts->target_v86->int21_revectored)) goto cannot_handle; int_ptr = (uint32_t *)(intno << 2); segoffs = tswap32(*int_ptr); if ((segoffs >> 16) == TARGET_BIOSSEG) goto cannot_handle; #if defined(DEBUG_VM86) fprintf(logfile, "VM86: emulating int 0x%x. CS:IP=%04x:%04x\n", intno, segoffs >> 16, segoffs & 0xffff); #endif /* save old state */ ssp = (uint8_t *)(env->segs[R_SS] << 4); sp = env->regs[R_ESP] & 0xffff; vm_putw(ssp, sp - 2, get_vflags(env)); vm_putw(ssp, sp - 4, env->segs[R_CS]); vm_putw(ssp, sp - 6, env->eip); ADD16(env->regs[R_ESP], -6); /* goto interrupt handler */ env->eip = segoffs & 0xffff; cpu_x86_load_seg(env, R_CS, segoffs >> 16); clear_TF(env); clear_IF(env); return; cannot_handle: #if defined(DEBUG_VM86) fprintf(logfile, "VM86: return to 32 bits int 0x%x\n", intno); #endif return_to_32bit(env, TARGET_VM86_INTx | (intno << 8)); } void handle_vm86_trap(CPUX86State *env, int trapno) { if (trapno == 1 || trapno == 3) { return_to_32bit(env, TARGET_VM86_TRAP + (trapno << 8)); } else { do_int(env, trapno); } } #define CHECK_IF_IN_TRAP(disp) \ if ((tswap32(ts->target_v86->vm86plus.flags) & TARGET_vm86dbg_active) && \ (tswap32(ts->target_v86->vm86plus.flags) & TARGET_vm86dbg_TFpendig)) \ vm_putw(ssp,sp + disp,vm_getw(ssp,sp + disp) | TF_MASK) #define VM86_FAULT_RETURN \ if ((tswap32(ts->target_v86->vm86plus.flags) & TARGET_force_return_for_pic) && \ (ts->v86flags & (IF_MASK | VIF_MASK))) \ return_to_32bit(env, TARGET_VM86_PICRETURN); \ return void handle_vm86_fault(CPUX86State *env) { TaskState *ts = env->opaque; uint8_t *csp, *pc, *ssp; unsigned int ip, sp; csp = (uint8_t *)(env->segs[R_CS] << 4); ip = env->eip & 0xffff; pc = csp + ip; ssp = (uint8_t *)(env->segs[R_SS] << 4); sp = env->regs[R_ESP] & 0xffff; #if defined(DEBUG_VM86) fprintf(logfile, "VM86 exception %04x:%08x %02x %02x\n", env->segs[R_CS], env->eip, pc[0], pc[1]); #endif /* VM86 mode */ switch(pc[0]) { case 0x66: switch(pc[1]) { case 0x9c: /* pushfd */ ADD16(env->eip, 2); ADD16(env->regs[R_ESP], -4); vm_putl(ssp, sp - 4, get_vflags(env)); VM86_FAULT_RETURN; case 0x9d: /* popfd */ ADD16(env->eip, 2); ADD16(env->regs[R_ESP], 4); CHECK_IF_IN_TRAP(0); if (set_vflags_long(vm_getl(ssp, sp), env)) return; VM86_FAULT_RETURN; case 0xcf: /* iretd */ ADD16(env->regs[R_ESP], 12); env->eip = vm_getl(ssp, sp) & 0xffff; cpu_x86_load_seg(env, R_CS, vm_getl(ssp, sp + 4) & 0xffff); CHECK_IF_IN_TRAP(8); if (set_vflags_long(vm_getl(ssp, sp + 8), env)) return; VM86_FAULT_RETURN; default: goto vm86_gpf; } break; case 0x9c: /* pushf */ ADD16(env->eip, 1); ADD16(env->regs[R_ESP], -2); vm_putw(ssp, sp - 2, get_vflags(env)); VM86_FAULT_RETURN; case 0x9d: /* popf */ ADD16(env->eip, 1); ADD16(env->regs[R_ESP], 2); CHECK_IF_IN_TRAP(0); if (set_vflags_short(vm_getw(ssp, sp), env)) return; VM86_FAULT_RETURN; case 0xcd: /* int */ ADD16(env->eip, 2); do_int(env, pc[1]); break; case 0xcf: /* iret */ ADD16(env->regs[R_ESP], 6); env->eip = vm_getw(ssp, sp); cpu_x86_load_seg(env, R_CS, vm_getw(ssp, sp + 2)); CHECK_IF_IN_TRAP(4); if (set_vflags_short(vm_getw(ssp, sp + 4), env)) return; VM86_FAULT_RETURN; case 0xfa: /* cli */ ADD16(env->eip, 1); clear_IF(env); VM86_FAULT_RETURN; case 0xfb: /* sti */ ADD16(env->eip, 1); if (set_IF(env)) return; VM86_FAULT_RETURN; default: vm86_gpf: /* real VM86 GPF exception */ return_to_32bit(env, TARGET_VM86_UNKNOWN); break; } } int do_vm86(CPUX86State *env, long subfunction, struct target_vm86plus_struct * target_v86) { TaskState *ts = env->opaque; int ret; switch (subfunction) { case TARGET_VM86_REQUEST_IRQ: case TARGET_VM86_FREE_IRQ: case TARGET_VM86_GET_IRQ_BITS: case TARGET_VM86_GET_AND_RESET_IRQ: gemu_log("qemu: unsupported vm86 subfunction (%ld)\n", subfunction); ret = -EINVAL; goto out; case TARGET_VM86_PLUS_INSTALL_CHECK: /* NOTE: on old vm86 stuff this will return the error from verify_area(), because the subfunction is interpreted as (invalid) address to vm86_struct. So the installation check works. */ ret = 0; goto out; } ts->target_v86 = target_v86; /* save current CPU regs */ ts->vm86_saved_regs.eax = 0; /* default vm86 syscall return code */ ts->vm86_saved_regs.ebx = env->regs[R_EBX]; ts->vm86_saved_regs.ecx = env->regs[R_ECX]; ts->vm86_saved_regs.edx = env->regs[R_EDX]; ts->vm86_saved_regs.esi = env->regs[R_ESI]; ts->vm86_saved_regs.edi = env->regs[R_EDI]; ts->vm86_saved_regs.ebp = env->regs[R_EBP]; ts->vm86_saved_regs.esp = env->regs[R_ESP]; ts->vm86_saved_regs.eflags = env->eflags; ts->vm86_saved_regs.eip = env->eip; ts->vm86_saved_regs.cs = env->segs[R_CS]; ts->vm86_saved_regs.ss = env->segs[R_SS]; ts->vm86_saved_regs.ds = env->segs[R_DS]; ts->vm86_saved_regs.es = env->segs[R_ES]; ts->vm86_saved_regs.fs = env->segs[R_FS]; ts->vm86_saved_regs.gs = env->segs[R_GS]; /* build vm86 CPU state */ ts->v86flags = tswap32(target_v86->regs.eflags); env->eflags = (env->eflags & ~SAFE_MASK) | (tswap32(target_v86->regs.eflags) & SAFE_MASK) | VM_MASK; ts->v86mask = ID_MASK | AC_MASK | NT_MASK | IOPL_MASK; env->regs[R_EBX] = tswap32(target_v86->regs.ebx); env->regs[R_ECX] = tswap32(target_v86->regs.ecx); env->regs[R_EDX] = tswap32(target_v86->regs.edx); env->regs[R_ESI] = tswap32(target_v86->regs.esi); env->regs[R_EDI] = tswap32(target_v86->regs.edi); env->regs[R_EBP] = tswap32(target_v86->regs.ebp); env->regs[R_ESP] = tswap32(target_v86->regs.esp); env->eip = tswap32(target_v86->regs.eip); cpu_x86_load_seg(env, R_CS, tswap16(target_v86->regs.cs)); cpu_x86_load_seg(env, R_SS, tswap16(target_v86->regs.ss)); cpu_x86_load_seg(env, R_DS, tswap16(target_v86->regs.ds)); cpu_x86_load_seg(env, R_ES, tswap16(target_v86->regs.es)); cpu_x86_load_seg(env, R_FS, tswap16(target_v86->regs.fs)); cpu_x86_load_seg(env, R_GS, tswap16(target_v86->regs.gs)); ret = tswap32(target_v86->regs.eax); /* eax will be restored at the end of the syscall */ #ifdef DEBUG_VM86 fprintf(logfile, "do_vm86: cs:ip=%04x:%04x\n", env->segs[R_CS], env->eip); #endif /* now the virtual CPU is ready for vm86 execution ! */ out: return ret; }