qemu-patch-raspberry4/include/hw/register.h
Alistair Francis 0b73c9bb06 register: Add Memory API glue
Add memory io handlers that glue the register API to the memory API.
Just translation functions at this stage. Although it does allow for
devices to be created without all-in-one mmio r/w handlers.

This patch also adds the RegisterInfoArray struct, which allows all of
the individual RegisterInfo structs to be grouped into a single memory
region.

Signed-off-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
Signed-off-by: Alistair Francis <alistair.francis@xilinx.com>
Message-id: f7704d8ac6ac0f469ed35401f8151a38bd01468b.1467053537.git.alistair.francis@xilinx.com
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2016-07-04 13:15:22 +01:00

156 lines
4.2 KiB
C

/*
* Register Definition API
*
* Copyright (c) 2016 Xilinx Inc.
* Copyright (c) 2013 Peter Crosthwaite <peter.crosthwaite@xilinx.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*/
#ifndef REGISTER_H
#define REGISTER_H
#include "exec/memory.h"
typedef struct RegisterInfo RegisterInfo;
typedef struct RegisterAccessInfo RegisterAccessInfo;
typedef struct RegisterInfoArray RegisterInfoArray;
/**
* Access description for a register that is part of guest accessible device
* state.
*
* @name: String name of the register
* @ro: whether or not the bit is read-only
* @w1c: bits with the common write 1 to clear semantic.
* @reset: reset value.
* @cor: Bits that are clear on read
* @rsvd: Bits that are reserved and should not be changed
*
* @pre_write: Pre write callback. Passed the value that's to be written,
* immediately before the actual write. The returned value is what is written,
* giving the handler a chance to modify the written value.
* @post_write: Post write callback. Passed the written value. Most write side
* effects should be implemented here.
*
* @post_read: Post read callback. Passes the value that is about to be returned
* for a read. The return value from this function is what is ultimately read,
* allowing this function to modify the value before return to the client.
*/
struct RegisterAccessInfo {
const char *name;
uint64_t ro;
uint64_t w1c;
uint64_t reset;
uint64_t cor;
uint64_t rsvd;
uint64_t unimp;
uint64_t (*pre_write)(RegisterInfo *reg, uint64_t val);
void (*post_write)(RegisterInfo *reg, uint64_t val);
uint64_t (*post_read)(RegisterInfo *reg, uint64_t val);
hwaddr addr;
};
/**
* A register that is part of guest accessible state
* @data: pointer to the register data. Will be cast
* to the relevant uint type depending on data_size.
* @data_size: Size of the register in bytes. Must be
* 1, 2, 4 or 8
*
* @access: Access description of this register
*
* @debug: Whether or not verbose debug is enabled
* @prefix: String prefix for log and debug messages
*
* @opaque: Opaque data for the register
*/
struct RegisterInfo {
/* <public> */
void *data;
int data_size;
const RegisterAccessInfo *access;
void *opaque;
};
/**
* This structure is used to group all of the individual registers which are
* modeled using the RegisterInfo structure.
*
* @r is an aray containing of all the relevent RegisterInfo structures.
*
* @num_elements is the number of elements in the array r
*
* @mem: optional Memory region for the register
*/
struct RegisterInfoArray {
int num_elements;
RegisterInfo **r;
bool debug;
const char *prefix;
};
/**
* write a value to a register, subject to its restrictions
* @reg: register to write to
* @val: value to write
* @we: write enable mask
* @prefix: The device prefix that should be printed before the register name
* @debug: Should the write operation debug information be printed?
*/
void register_write(RegisterInfo *reg, uint64_t val, uint64_t we,
const char *prefix, bool debug);
/**
* read a value from a register, subject to its restrictions
* @reg: register to read from
* @re: read enable mask
* @prefix: The device prefix that should be printed before the register name
* @debug: Should the read operation debug information be printed?
* returns: value read
*/
uint64_t register_read(RegisterInfo *reg, uint64_t re, const char* prefix,
bool debug);
/**
* reset a register
* @reg: register to reset
*/
void register_reset(RegisterInfo *reg);
/**
* Memory API MMIO write handler that will write to a Register API register.
* @opaque: RegisterInfo to write to
* @addr: Address to write
* @value: Value to write
* @size: Number of bytes to write
*/
void register_write_memory(void *opaque, hwaddr addr, uint64_t value,
unsigned size);
/**
* Memory API MMIO read handler that will read from a Register API register.
* @opaque: RegisterInfo to read from
* @addr: Address to read
* @size: Number of bytes to read
* returns: Value read from register
*/
uint64_t register_read_memory(void *opaque, hwaddr addr, unsigned size);
#endif