qemu-patch-raspberry4/hw/ssi/xilinx_spips.c
Peter Crosthwaite 10e60b35d0 xilinx_spips: Fix QSPI FIFO size
QSPI has a bigger FIFO than the regular SPI controller. Differentiate
between the two with correct FIFO sizes for each.

This is the first piece of class data for SPIPS, so this patch sees
the creation of the XilinxSPIPSClass definition and assoicated QOM
constructs.

Signed-off-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Edgar E. Iglesias <edgar.iglesias@gmail.com>
Message-id: acee25dd5e203215cbc15ca5d3cb5d5b2efebe7b.1369117359.git.peter.crosthwaite@xilinx.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2013-06-03 17:17:42 +01:00

672 lines
20 KiB
C

/*
* QEMU model of the Xilinx Zynq SPI controller
*
* Copyright (c) 2012 Peter A. G. Crosthwaite
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw/sysbus.h"
#include "sysemu/sysemu.h"
#include "hw/ptimer.h"
#include "qemu/log.h"
#include "qemu/fifo8.h"
#include "hw/ssi.h"
#include "qemu/bitops.h"
#ifdef XILINX_SPIPS_ERR_DEBUG
#define DB_PRINT(...) do { \
fprintf(stderr, ": %s: ", __func__); \
fprintf(stderr, ## __VA_ARGS__); \
} while (0);
#else
#define DB_PRINT(...)
#endif
/* config register */
#define R_CONFIG (0x00 / 4)
#define IFMODE (1 << 31)
#define ENDIAN (1 << 26)
#define MODEFAIL_GEN_EN (1 << 17)
#define MAN_START_COM (1 << 16)
#define MAN_START_EN (1 << 15)
#define MANUAL_CS (1 << 14)
#define CS (0xF << 10)
#define CS_SHIFT (10)
#define PERI_SEL (1 << 9)
#define REF_CLK (1 << 8)
#define FIFO_WIDTH (3 << 6)
#define BAUD_RATE_DIV (7 << 3)
#define CLK_PH (1 << 2)
#define CLK_POL (1 << 1)
#define MODE_SEL (1 << 0)
/* interrupt mechanism */
#define R_INTR_STATUS (0x04 / 4)
#define R_INTR_EN (0x08 / 4)
#define R_INTR_DIS (0x0C / 4)
#define R_INTR_MASK (0x10 / 4)
#define IXR_TX_FIFO_UNDERFLOW (1 << 6)
#define IXR_RX_FIFO_FULL (1 << 5)
#define IXR_RX_FIFO_NOT_EMPTY (1 << 4)
#define IXR_TX_FIFO_FULL (1 << 3)
#define IXR_TX_FIFO_NOT_FULL (1 << 2)
#define IXR_TX_FIFO_MODE_FAIL (1 << 1)
#define IXR_RX_FIFO_OVERFLOW (1 << 0)
#define IXR_ALL ((IXR_TX_FIFO_UNDERFLOW<<1)-1)
#define R_EN (0x14 / 4)
#define R_DELAY (0x18 / 4)
#define R_TX_DATA (0x1C / 4)
#define R_RX_DATA (0x20 / 4)
#define R_SLAVE_IDLE_COUNT (0x24 / 4)
#define R_TX_THRES (0x28 / 4)
#define R_RX_THRES (0x2C / 4)
#define R_TXD1 (0x80 / 4)
#define R_TXD2 (0x84 / 4)
#define R_TXD3 (0x88 / 4)
#define R_LQSPI_CFG (0xa0 / 4)
#define R_LQSPI_CFG_RESET 0x03A002EB
#define LQSPI_CFG_LQ_MODE (1 << 31)
#define LQSPI_CFG_TWO_MEM (1 << 30)
#define LQSPI_CFG_SEP_BUS (1 << 30)
#define LQSPI_CFG_U_PAGE (1 << 28)
#define LQSPI_CFG_MODE_EN (1 << 25)
#define LQSPI_CFG_MODE_WIDTH 8
#define LQSPI_CFG_MODE_SHIFT 16
#define LQSPI_CFG_DUMMY_WIDTH 3
#define LQSPI_CFG_DUMMY_SHIFT 8
#define LQSPI_CFG_INST_CODE 0xFF
#define R_LQSPI_STS (0xA4 / 4)
#define LQSPI_STS_WR_RECVD (1 << 1)
#define R_MOD_ID (0xFC / 4)
#define R_MAX (R_MOD_ID+1)
/* size of TXRX FIFOs */
#define RXFF_A 32
#define TXFF_A 32
#define RXFF_A_Q (64 * 4)
#define TXFF_A_Q (64 * 4)
/* 16MB per linear region */
#define LQSPI_ADDRESS_BITS 24
/* Bite off 4k chunks at a time */
#define LQSPI_CACHE_SIZE 1024
#define SNOOP_CHECKING 0xFF
#define SNOOP_NONE 0xFE
#define SNOOP_STRIPING 0
typedef enum {
READ = 0x3,
FAST_READ = 0xb,
DOR = 0x3b,
QOR = 0x6b,
DIOR = 0xbb,
QIOR = 0xeb,
PP = 0x2,
DPP = 0xa2,
QPP = 0x32,
} FlashCMD;
typedef struct {
SysBusDevice parent_obj;
MemoryRegion iomem;
MemoryRegion mmlqspi;
qemu_irq irq;
int irqline;
uint8_t num_cs;
uint8_t num_busses;
uint8_t snoop_state;
qemu_irq *cs_lines;
SSIBus **spi;
Fifo8 rx_fifo;
Fifo8 tx_fifo;
uint8_t num_txrx_bytes;
uint32_t regs[R_MAX];
} XilinxSPIPS;
typedef struct {
XilinxSPIPS parent_obj;
uint32_t lqspi_buf[LQSPI_CACHE_SIZE];
hwaddr lqspi_cached_addr;
} XilinxQSPIPS;
typedef struct XilinxSPIPSClass {
SysBusDeviceClass parent_class;
uint32_t rx_fifo_size;
uint32_t tx_fifo_size;
} XilinxSPIPSClass;
#define TYPE_XILINX_SPIPS "xlnx.ps7-spi"
#define TYPE_XILINX_QSPIPS "xlnx.ps7-qspi"
#define XILINX_SPIPS(obj) \
OBJECT_CHECK(XilinxSPIPS, (obj), TYPE_XILINX_SPIPS)
#define XILINX_SPIPS_CLASS(klass) \
OBJECT_CLASS_CHECK(XilinxSPIPSClass, (klass), TYPE_XILINX_SPIPS)
#define XILINX_SPIPS_GET_CLASS(obj) \
OBJECT_GET_CLASS(XilinxSPIPSClass, (obj), TYPE_XILINX_SPIPS)
#define XILINX_QSPIPS(obj) \
OBJECT_CHECK(XilinxQSPIPS, (obj), TYPE_XILINX_QSPIPS)
static inline int num_effective_busses(XilinxSPIPS *s)
{
return (s->regs[R_LQSPI_CFG] & LQSPI_CFG_SEP_BUS &&
s->regs[R_LQSPI_CFG] & LQSPI_CFG_TWO_MEM) ? s->num_busses : 1;
}
static void xilinx_spips_update_cs_lines(XilinxSPIPS *s)
{
int i, j;
bool found = false;
int field = s->regs[R_CONFIG] >> CS_SHIFT;
for (i = 0; i < s->num_cs; i++) {
for (j = 0; j < num_effective_busses(s); j++) {
int upage = !!(s->regs[R_LQSPI_STS] & LQSPI_CFG_U_PAGE);
int cs_to_set = (j * s->num_cs + i + upage) %
(s->num_cs * s->num_busses);
if (~field & (1 << i) && !found) {
DB_PRINT("selecting slave %d\n", i);
qemu_set_irq(s->cs_lines[cs_to_set], 0);
} else {
qemu_set_irq(s->cs_lines[cs_to_set], 1);
}
}
if (~field & (1 << i)) {
found = true;
}
}
if (!found) {
s->snoop_state = SNOOP_CHECKING;
}
}
static void xilinx_spips_update_ixr(XilinxSPIPS *s)
{
if (s->regs[R_LQSPI_CFG] & LQSPI_CFG_LQ_MODE) {
return;
}
/* These are set/cleared as they occur */
s->regs[R_INTR_STATUS] &= (IXR_TX_FIFO_UNDERFLOW | IXR_RX_FIFO_OVERFLOW |
IXR_TX_FIFO_MODE_FAIL);
/* these are pure functions of fifo state, set them here */
s->regs[R_INTR_STATUS] |=
(fifo8_is_full(&s->rx_fifo) ? IXR_RX_FIFO_FULL : 0) |
(s->rx_fifo.num >= s->regs[R_RX_THRES] ? IXR_RX_FIFO_NOT_EMPTY : 0) |
(fifo8_is_full(&s->tx_fifo) ? IXR_TX_FIFO_FULL : 0) |
(s->tx_fifo.num < s->regs[R_TX_THRES] ? IXR_TX_FIFO_NOT_FULL : 0);
/* drive external interrupt pin */
int new_irqline = !!(s->regs[R_INTR_MASK] & s->regs[R_INTR_STATUS] &
IXR_ALL);
if (new_irqline != s->irqline) {
s->irqline = new_irqline;
qemu_set_irq(s->irq, s->irqline);
}
}
static void xilinx_spips_reset(DeviceState *d)
{
XilinxSPIPS *s = XILINX_SPIPS(d);
int i;
for (i = 0; i < R_MAX; i++) {
s->regs[i] = 0;
}
fifo8_reset(&s->rx_fifo);
fifo8_reset(&s->rx_fifo);
/* non zero resets */
s->regs[R_CONFIG] |= MODEFAIL_GEN_EN;
s->regs[R_SLAVE_IDLE_COUNT] = 0xFF;
s->regs[R_TX_THRES] = 1;
s->regs[R_RX_THRES] = 1;
/* FIXME: move magic number definition somewhere sensible */
s->regs[R_MOD_ID] = 0x01090106;
s->regs[R_LQSPI_CFG] = R_LQSPI_CFG_RESET;
s->snoop_state = SNOOP_CHECKING;
xilinx_spips_update_ixr(s);
xilinx_spips_update_cs_lines(s);
}
static void xilinx_spips_flush_txfifo(XilinxSPIPS *s)
{
for (;;) {
int i;
uint8_t rx;
uint8_t tx = 0;
for (i = 0; i < num_effective_busses(s); ++i) {
if (!i || s->snoop_state == SNOOP_STRIPING) {
if (fifo8_is_empty(&s->tx_fifo)) {
if (!(s->regs[R_LQSPI_CFG] & LQSPI_CFG_LQ_MODE)) {
s->regs[R_INTR_STATUS] |= IXR_TX_FIFO_UNDERFLOW;
}
xilinx_spips_update_ixr(s);
return;
} else {
tx = fifo8_pop(&s->tx_fifo);
}
}
rx = ssi_transfer(s->spi[i], (uint32_t)tx);
DB_PRINT("tx = %02x rx = %02x\n", tx, rx);
if (!i || s->snoop_state == SNOOP_STRIPING) {
if (fifo8_is_full(&s->rx_fifo)) {
s->regs[R_INTR_STATUS] |= IXR_RX_FIFO_OVERFLOW;
DB_PRINT("rx FIFO overflow");
} else {
fifo8_push(&s->rx_fifo, (uint8_t)rx);
}
}
}
switch (s->snoop_state) {
case (SNOOP_CHECKING):
switch (tx) { /* new instruction code */
case READ: /* 3 address bytes, no dummy bytes/cycles */
case PP:
case DPP:
case QPP:
s->snoop_state = 3;
break;
case FAST_READ: /* 3 address bytes, 1 dummy byte */
case DOR:
case QOR:
case DIOR: /* FIXME: these vary between vendor - set to spansion */
s->snoop_state = 4;
break;
case QIOR: /* 3 address bytes, 2 dummy bytes */
s->snoop_state = 6;
break;
default:
s->snoop_state = SNOOP_NONE;
}
break;
case (SNOOP_STRIPING):
case (SNOOP_NONE):
break;
default:
s->snoop_state--;
}
}
}
static inline void rx_data_bytes(XilinxSPIPS *s, uint32_t *value, int max)
{
int i;
*value = 0;
for (i = 0; i < max && !fifo8_is_empty(&s->rx_fifo); ++i) {
uint32_t next = fifo8_pop(&s->rx_fifo) & 0xFF;
*value |= next << 8 * (s->regs[R_CONFIG] & ENDIAN ? 3-i : i);
}
}
static uint64_t xilinx_spips_read(void *opaque, hwaddr addr,
unsigned size)
{
XilinxSPIPS *s = opaque;
uint32_t mask = ~0;
uint32_t ret;
addr >>= 2;
switch (addr) {
case R_CONFIG:
mask = 0x0002FFFF;
break;
case R_INTR_STATUS:
ret = s->regs[addr] & IXR_ALL;
s->regs[addr] = 0;
DB_PRINT("addr=" TARGET_FMT_plx " = %x\n", addr * 4, ret);
return ret;
case R_INTR_MASK:
mask = IXR_ALL;
break;
case R_EN:
mask = 0x1;
break;
case R_SLAVE_IDLE_COUNT:
mask = 0xFF;
break;
case R_MOD_ID:
mask = 0x01FFFFFF;
break;
case R_INTR_EN:
case R_INTR_DIS:
case R_TX_DATA:
mask = 0;
break;
case R_RX_DATA:
rx_data_bytes(s, &ret, s->num_txrx_bytes);
DB_PRINT("addr=" TARGET_FMT_plx " = %x\n", addr * 4, ret);
xilinx_spips_update_ixr(s);
return ret;
}
DB_PRINT("addr=" TARGET_FMT_plx " = %x\n", addr * 4, s->regs[addr] & mask);
return s->regs[addr] & mask;
}
static inline void tx_data_bytes(XilinxSPIPS *s, uint32_t value, int num)
{
int i;
for (i = 0; i < num && !fifo8_is_full(&s->tx_fifo); ++i) {
if (s->regs[R_CONFIG] & ENDIAN) {
fifo8_push(&s->tx_fifo, (uint8_t)(value >> 24));
value <<= 8;
} else {
fifo8_push(&s->tx_fifo, (uint8_t)value);
value >>= 8;
}
}
}
static void xilinx_spips_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size)
{
int mask = ~0;
int man_start_com = 0;
XilinxSPIPS *s = opaque;
DB_PRINT("addr=" TARGET_FMT_plx " = %x\n", addr, (unsigned)value);
addr >>= 2;
switch (addr) {
case R_CONFIG:
mask = 0x0002FFFF;
if (value & MAN_START_COM) {
man_start_com = 1;
}
break;
case R_INTR_STATUS:
mask = IXR_ALL;
s->regs[R_INTR_STATUS] &= ~(mask & value);
goto no_reg_update;
case R_INTR_DIS:
mask = IXR_ALL;
s->regs[R_INTR_MASK] &= ~(mask & value);
goto no_reg_update;
case R_INTR_EN:
mask = IXR_ALL;
s->regs[R_INTR_MASK] |= mask & value;
goto no_reg_update;
case R_EN:
mask = 0x1;
break;
case R_SLAVE_IDLE_COUNT:
mask = 0xFF;
break;
case R_RX_DATA:
case R_INTR_MASK:
case R_MOD_ID:
mask = 0;
break;
case R_TX_DATA:
tx_data_bytes(s, (uint32_t)value, s->num_txrx_bytes);
goto no_reg_update;
case R_TXD1:
tx_data_bytes(s, (uint32_t)value, 1);
goto no_reg_update;
case R_TXD2:
tx_data_bytes(s, (uint32_t)value, 2);
goto no_reg_update;
case R_TXD3:
tx_data_bytes(s, (uint32_t)value, 3);
goto no_reg_update;
}
s->regs[addr] = (s->regs[addr] & ~mask) | (value & mask);
no_reg_update:
if (man_start_com) {
xilinx_spips_flush_txfifo(s);
}
xilinx_spips_update_ixr(s);
xilinx_spips_update_cs_lines(s);
}
static const MemoryRegionOps spips_ops = {
.read = xilinx_spips_read,
.write = xilinx_spips_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
#define LQSPI_CACHE_SIZE 1024
static uint64_t
lqspi_read(void *opaque, hwaddr addr, unsigned int size)
{
int i;
XilinxQSPIPS *q = opaque;
XilinxSPIPS *s = opaque;
uint32_t ret;
if (addr >= q->lqspi_cached_addr &&
addr <= q->lqspi_cached_addr + LQSPI_CACHE_SIZE - 4) {
ret = q->lqspi_buf[(addr - q->lqspi_cached_addr) >> 2];
DB_PRINT("addr: %08x, data: %08x\n", (unsigned)addr, (unsigned)ret);
return ret;
} else {
int flash_addr = (addr / num_effective_busses(s));
int slave = flash_addr >> LQSPI_ADDRESS_BITS;
int cache_entry = 0;
DB_PRINT("config reg status: %08x\n", s->regs[R_LQSPI_CFG]);
fifo8_reset(&s->tx_fifo);
fifo8_reset(&s->rx_fifo);
s->regs[R_CONFIG] &= ~CS;
s->regs[R_CONFIG] |= (~(1 << slave) << CS_SHIFT) & CS;
xilinx_spips_update_cs_lines(s);
/* instruction */
DB_PRINT("pushing read instruction: %02x\n",
(uint8_t)(s->regs[R_LQSPI_CFG] & LQSPI_CFG_INST_CODE));
fifo8_push(&s->tx_fifo, s->regs[R_LQSPI_CFG] & LQSPI_CFG_INST_CODE);
/* read address */
DB_PRINT("pushing read address %06x\n", flash_addr);
fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 16));
fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 8));
fifo8_push(&s->tx_fifo, (uint8_t)flash_addr);
/* mode bits */
if (s->regs[R_LQSPI_CFG] & LQSPI_CFG_MODE_EN) {
fifo8_push(&s->tx_fifo, extract32(s->regs[R_LQSPI_CFG],
LQSPI_CFG_MODE_SHIFT,
LQSPI_CFG_MODE_WIDTH));
}
/* dummy bytes */
for (i = 0; i < (extract32(s->regs[R_LQSPI_CFG], LQSPI_CFG_DUMMY_SHIFT,
LQSPI_CFG_DUMMY_WIDTH)); ++i) {
DB_PRINT("pushing dummy byte\n");
fifo8_push(&s->tx_fifo, 0);
}
xilinx_spips_flush_txfifo(s);
fifo8_reset(&s->rx_fifo);
DB_PRINT("starting QSPI data read\n");
for (i = 0; i < LQSPI_CACHE_SIZE / 4; ++i) {
tx_data_bytes(s, 0, 4);
xilinx_spips_flush_txfifo(s);
rx_data_bytes(s, &q->lqspi_buf[cache_entry], 4);
cache_entry++;
}
s->regs[R_CONFIG] |= CS;
xilinx_spips_update_cs_lines(s);
q->lqspi_cached_addr = addr;
return lqspi_read(opaque, addr, size);
}
}
static const MemoryRegionOps lqspi_ops = {
.read = lqspi_read,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4
}
};
static void xilinx_spips_realize(DeviceState *dev, Error **errp)
{
XilinxSPIPS *s = XILINX_SPIPS(dev);
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
XilinxSPIPSClass *xsc = XILINX_SPIPS_GET_CLASS(s);
int i;
DB_PRINT("realized spips\n");
s->spi = g_new(SSIBus *, s->num_busses);
for (i = 0; i < s->num_busses; ++i) {
char bus_name[16];
snprintf(bus_name, 16, "spi%d", i);
s->spi[i] = ssi_create_bus(dev, bus_name);
}
s->cs_lines = g_new0(qemu_irq, s->num_cs * s->num_busses);
ssi_auto_connect_slaves(DEVICE(s), s->cs_lines, s->spi[0]);
ssi_auto_connect_slaves(DEVICE(s), s->cs_lines, s->spi[1]);
sysbus_init_irq(sbd, &s->irq);
for (i = 0; i < s->num_cs * s->num_busses; ++i) {
sysbus_init_irq(sbd, &s->cs_lines[i]);
}
memory_region_init_io(&s->iomem, &spips_ops, s, "spi", R_MAX*4);
sysbus_init_mmio(sbd, &s->iomem);
s->irqline = -1;
fifo8_create(&s->rx_fifo, xsc->rx_fifo_size);
fifo8_create(&s->tx_fifo, xsc->tx_fifo_size);
}
static void xilinx_qspips_realize(DeviceState *dev, Error **errp)
{
XilinxSPIPS *s = XILINX_SPIPS(dev);
XilinxQSPIPS *q = XILINX_QSPIPS(dev);
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
DB_PRINT("realized qspips\n");
s->num_busses = 2;
s->num_cs = 2;
s->num_txrx_bytes = 4;
xilinx_spips_realize(dev, errp);
memory_region_init_io(&s->mmlqspi, &lqspi_ops, s, "lqspi",
(1 << LQSPI_ADDRESS_BITS) * 2);
sysbus_init_mmio(sbd, &s->mmlqspi);
q->lqspi_cached_addr = ~0ULL;
}
static int xilinx_spips_post_load(void *opaque, int version_id)
{
xilinx_spips_update_ixr((XilinxSPIPS *)opaque);
xilinx_spips_update_cs_lines((XilinxSPIPS *)opaque);
return 0;
}
static const VMStateDescription vmstate_xilinx_spips = {
.name = "xilinx_spips",
.version_id = 2,
.minimum_version_id = 2,
.minimum_version_id_old = 2,
.post_load = xilinx_spips_post_load,
.fields = (VMStateField[]) {
VMSTATE_FIFO8(tx_fifo, XilinxSPIPS),
VMSTATE_FIFO8(rx_fifo, XilinxSPIPS),
VMSTATE_UINT32_ARRAY(regs, XilinxSPIPS, R_MAX),
VMSTATE_UINT8(snoop_state, XilinxSPIPS),
VMSTATE_END_OF_LIST()
}
};
static Property xilinx_spips_properties[] = {
DEFINE_PROP_UINT8("num-busses", XilinxSPIPS, num_busses, 1),
DEFINE_PROP_UINT8("num-ss-bits", XilinxSPIPS, num_cs, 4),
DEFINE_PROP_UINT8("num-txrx-bytes", XilinxSPIPS, num_txrx_bytes, 1),
DEFINE_PROP_END_OF_LIST(),
};
static void xilinx_qspips_class_init(ObjectClass *klass, void * data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
XilinxSPIPSClass *xsc = XILINX_SPIPS_CLASS(klass);
dc->realize = xilinx_qspips_realize;
xsc->rx_fifo_size = RXFF_A_Q;
xsc->tx_fifo_size = TXFF_A_Q;
}
static void xilinx_spips_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
XilinxSPIPSClass *xsc = XILINX_SPIPS_CLASS(klass);
dc->realize = xilinx_spips_realize;
dc->reset = xilinx_spips_reset;
dc->props = xilinx_spips_properties;
dc->vmsd = &vmstate_xilinx_spips;
xsc->rx_fifo_size = RXFF_A;
xsc->tx_fifo_size = TXFF_A;
}
static const TypeInfo xilinx_spips_info = {
.name = TYPE_XILINX_SPIPS,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(XilinxSPIPS),
.class_init = xilinx_spips_class_init,
.class_size = sizeof(XilinxSPIPSClass),
};
static const TypeInfo xilinx_qspips_info = {
.name = TYPE_XILINX_QSPIPS,
.parent = TYPE_XILINX_SPIPS,
.instance_size = sizeof(XilinxQSPIPS),
.class_init = xilinx_qspips_class_init,
};
static void xilinx_spips_register_types(void)
{
type_register_static(&xilinx_spips_info);
type_register_static(&xilinx_qspips_info);
}
type_init(xilinx_spips_register_types)