qemu-patch-raspberry4/hw/slavio_intctl.c
Jan Kiszka 8217606e6e Introduce reset notifier order
Add the parameter 'order' to qemu_register_reset and sort callbacks on
registration. On system reset, callbacks with lower order will be
invoked before those with higher order. Update all existing users to the
standard order 0.

Note: At least for x86, the existing users seem to assume that handlers
are called in their registration order. Therefore, the patch preserves
this property. If someone feels bored, (s)he could try to identify this
dependency and express it properly on callback registration.

Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2009-05-22 10:50:34 -05:00

419 lines
12 KiB
C

/*
* QEMU Sparc SLAVIO interrupt controller emulation
*
* Copyright (c) 2003-2005 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "sun4m.h"
#include "monitor.h"
//#define DEBUG_IRQ_COUNT
//#define DEBUG_IRQ
#ifdef DEBUG_IRQ
#define DPRINTF(fmt, ...) \
do { printf("IRQ: " fmt , ## __VA_ARGS__); } while (0)
#else
#define DPRINTF(fmt, ...)
#endif
/*
* Registers of interrupt controller in sun4m.
*
* This is the interrupt controller part of chip STP2001 (Slave I/O), also
* produced as NCR89C105. See
* http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
*
* There is a system master controller and one for each cpu.
*
*/
#define MAX_CPUS 16
#define MAX_PILS 16
struct SLAVIO_CPUINTCTLState;
typedef struct SLAVIO_INTCTLState {
uint32_t intregm_pending;
uint32_t intregm_disabled;
uint32_t target_cpu;
#ifdef DEBUG_IRQ_COUNT
uint64_t irq_count[32];
#endif
qemu_irq *cpu_irqs[MAX_CPUS];
const uint32_t *intbit_to_level;
uint32_t cputimer_lbit, cputimer_mbit;
uint32_t pil_out[MAX_CPUS];
struct SLAVIO_CPUINTCTLState *slaves[MAX_CPUS];
} SLAVIO_INTCTLState;
typedef struct SLAVIO_CPUINTCTLState {
uint32_t intreg_pending;
SLAVIO_INTCTLState *master;
uint32_t cpu;
} SLAVIO_CPUINTCTLState;
#define INTCTL_MAXADDR 0xf
#define INTCTL_SIZE (INTCTL_MAXADDR + 1)
#define INTCTLM_SIZE 0x14
#define MASTER_IRQ_MASK ~0x0fa2007f
#define MASTER_DISABLE 0x80000000
#define CPU_SOFTIRQ_MASK 0xfffe0000
#define CPU_IRQ_INT15_IN 0x0004000
#define CPU_IRQ_INT15_MASK 0x80000000
static void slavio_check_interrupts(SLAVIO_INTCTLState *s);
// per-cpu interrupt controller
static uint32_t slavio_intctl_mem_readl(void *opaque, target_phys_addr_t addr)
{
SLAVIO_CPUINTCTLState *s = opaque;
uint32_t saddr, ret;
saddr = addr >> 2;
switch (saddr) {
case 0:
ret = s->intreg_pending;
break;
default:
ret = 0;
break;
}
DPRINTF("read cpu %d reg 0x" TARGET_FMT_plx " = %x\n", s->cpu, addr, ret);
return ret;
}
static void slavio_intctl_mem_writel(void *opaque, target_phys_addr_t addr,
uint32_t val)
{
SLAVIO_CPUINTCTLState *s = opaque;
uint32_t saddr;
saddr = addr >> 2;
DPRINTF("write cpu %d reg 0x" TARGET_FMT_plx " = %x\n", s->cpu, addr, val);
switch (saddr) {
case 1: // clear pending softints
if (val & CPU_IRQ_INT15_IN)
val |= CPU_IRQ_INT15_MASK;
val &= CPU_SOFTIRQ_MASK;
s->intreg_pending &= ~val;
slavio_check_interrupts(s->master);
DPRINTF("Cleared cpu %d irq mask %x, curmask %x\n", s->cpu, val,
s->intreg_pending);
break;
case 2: // set softint
val &= CPU_SOFTIRQ_MASK;
s->intreg_pending |= val;
slavio_check_interrupts(s->master);
DPRINTF("Set cpu %d irq mask %x, curmask %x\n", s->cpu, val,
s->intreg_pending);
break;
default:
break;
}
}
static CPUReadMemoryFunc *slavio_intctl_mem_read[3] = {
NULL,
NULL,
slavio_intctl_mem_readl,
};
static CPUWriteMemoryFunc *slavio_intctl_mem_write[3] = {
NULL,
NULL,
slavio_intctl_mem_writel,
};
// master system interrupt controller
static uint32_t slavio_intctlm_mem_readl(void *opaque, target_phys_addr_t addr)
{
SLAVIO_INTCTLState *s = opaque;
uint32_t saddr, ret;
saddr = addr >> 2;
switch (saddr) {
case 0:
ret = s->intregm_pending & ~MASTER_DISABLE;
break;
case 1:
ret = s->intregm_disabled & MASTER_IRQ_MASK;
break;
case 4:
ret = s->target_cpu;
break;
default:
ret = 0;
break;
}
DPRINTF("read system reg 0x" TARGET_FMT_plx " = %x\n", addr, ret);
return ret;
}
static void slavio_intctlm_mem_writel(void *opaque, target_phys_addr_t addr,
uint32_t val)
{
SLAVIO_INTCTLState *s = opaque;
uint32_t saddr;
saddr = addr >> 2;
DPRINTF("write system reg 0x" TARGET_FMT_plx " = %x\n", addr, val);
switch (saddr) {
case 2: // clear (enable)
// Force clear unused bits
val &= MASTER_IRQ_MASK;
s->intregm_disabled &= ~val;
DPRINTF("Enabled master irq mask %x, curmask %x\n", val,
s->intregm_disabled);
slavio_check_interrupts(s);
break;
case 3: // set (disable, clear pending)
// Force clear unused bits
val &= MASTER_IRQ_MASK;
s->intregm_disabled |= val;
s->intregm_pending &= ~val;
slavio_check_interrupts(s);
DPRINTF("Disabled master irq mask %x, curmask %x\n", val,
s->intregm_disabled);
break;
case 4:
s->target_cpu = val & (MAX_CPUS - 1);
slavio_check_interrupts(s);
DPRINTF("Set master irq cpu %d\n", s->target_cpu);
break;
default:
break;
}
}
static CPUReadMemoryFunc *slavio_intctlm_mem_read[3] = {
NULL,
NULL,
slavio_intctlm_mem_readl,
};
static CPUWriteMemoryFunc *slavio_intctlm_mem_write[3] = {
NULL,
NULL,
slavio_intctlm_mem_writel,
};
void slavio_pic_info(Monitor *mon, void *opaque)
{
SLAVIO_INTCTLState *s = opaque;
int i;
for (i = 0; i < MAX_CPUS; i++) {
monitor_printf(mon, "per-cpu %d: pending 0x%08x\n", i,
s->slaves[i]->intreg_pending);
}
monitor_printf(mon, "master: pending 0x%08x, disabled 0x%08x\n",
s->intregm_pending, s->intregm_disabled);
}
void slavio_irq_info(Monitor *mon, void *opaque)
{
#ifndef DEBUG_IRQ_COUNT
monitor_printf(mon, "irq statistic code not compiled.\n");
#else
SLAVIO_INTCTLState *s = opaque;
int i;
int64_t count;
monitor_printf(mon, "IRQ statistics:\n");
for (i = 0; i < 32; i++) {
count = s->irq_count[i];
if (count > 0)
monitor_printf(mon, "%2d: %" PRId64 "\n", i, count);
}
#endif
}
static void slavio_check_interrupts(SLAVIO_INTCTLState *s)
{
uint32_t pending = s->intregm_pending, pil_pending;
unsigned int i, j;
pending &= ~s->intregm_disabled;
DPRINTF("pending %x disabled %x\n", pending, s->intregm_disabled);
for (i = 0; i < MAX_CPUS; i++) {
pil_pending = 0;
if (pending && !(s->intregm_disabled & MASTER_DISABLE) &&
(i == s->target_cpu)) {
for (j = 0; j < 32; j++) {
if (pending & (1 << j))
pil_pending |= 1 << s->intbit_to_level[j];
}
}
pil_pending |= (s->slaves[i]->intreg_pending & CPU_SOFTIRQ_MASK) >> 16;
for (j = 0; j < MAX_PILS; j++) {
if (pil_pending & (1 << j)) {
if (!(s->pil_out[i] & (1 << j)))
qemu_irq_raise(s->cpu_irqs[i][j]);
} else {
if (s->pil_out[i] & (1 << j))
qemu_irq_lower(s->cpu_irqs[i][j]);
}
}
s->pil_out[i] = pil_pending;
}
}
/*
* "irq" here is the bit number in the system interrupt register to
* separate serial and keyboard interrupts sharing a level.
*/
static void slavio_set_irq(void *opaque, int irq, int level)
{
SLAVIO_INTCTLState *s = opaque;
uint32_t mask = 1 << irq;
uint32_t pil = s->intbit_to_level[irq];
DPRINTF("Set cpu %d irq %d -> pil %d level %d\n", s->target_cpu, irq, pil,
level);
if (pil > 0) {
if (level) {
#ifdef DEBUG_IRQ_COUNT
s->irq_count[pil]++;
#endif
s->intregm_pending |= mask;
s->slaves[s->target_cpu]->intreg_pending |= 1 << pil;
} else {
s->intregm_pending &= ~mask;
s->slaves[s->target_cpu]->intreg_pending &= ~(1 << pil);
}
slavio_check_interrupts(s);
}
}
static void slavio_set_timer_irq_cpu(void *opaque, int cpu, int level)
{
SLAVIO_INTCTLState *s = opaque;
DPRINTF("Set cpu %d local timer level %d\n", cpu, level);
if (level) {
s->intregm_pending |= s->cputimer_mbit;
s->slaves[cpu]->intreg_pending |= s->cputimer_lbit;
} else {
s->intregm_pending &= ~s->cputimer_mbit;
s->slaves[cpu]->intreg_pending &= ~s->cputimer_lbit;
}
slavio_check_interrupts(s);
}
static void slavio_intctl_save(QEMUFile *f, void *opaque)
{
SLAVIO_INTCTLState *s = opaque;
int i;
for (i = 0; i < MAX_CPUS; i++) {
qemu_put_be32s(f, &s->slaves[i]->intreg_pending);
}
qemu_put_be32s(f, &s->intregm_pending);
qemu_put_be32s(f, &s->intregm_disabled);
qemu_put_be32s(f, &s->target_cpu);
}
static int slavio_intctl_load(QEMUFile *f, void *opaque, int version_id)
{
SLAVIO_INTCTLState *s = opaque;
int i;
if (version_id != 1)
return -EINVAL;
for (i = 0; i < MAX_CPUS; i++) {
qemu_get_be32s(f, &s->slaves[i]->intreg_pending);
}
qemu_get_be32s(f, &s->intregm_pending);
qemu_get_be32s(f, &s->intregm_disabled);
qemu_get_be32s(f, &s->target_cpu);
slavio_check_interrupts(s);
return 0;
}
static void slavio_intctl_reset(void *opaque)
{
SLAVIO_INTCTLState *s = opaque;
int i;
for (i = 0; i < MAX_CPUS; i++) {
s->slaves[i]->intreg_pending = 0;
}
s->intregm_disabled = ~MASTER_IRQ_MASK;
s->intregm_pending = 0;
s->target_cpu = 0;
slavio_check_interrupts(s);
}
void *slavio_intctl_init(target_phys_addr_t addr, target_phys_addr_t addrg,
const uint32_t *intbit_to_level,
qemu_irq **irq, qemu_irq **cpu_irq,
qemu_irq **parent_irq, unsigned int cputimer)
{
int slavio_intctl_io_memory, slavio_intctlm_io_memory, i;
SLAVIO_INTCTLState *s;
SLAVIO_CPUINTCTLState *slave;
s = qemu_mallocz(sizeof(SLAVIO_INTCTLState));
s->intbit_to_level = intbit_to_level;
for (i = 0; i < MAX_CPUS; i++) {
slave = qemu_mallocz(sizeof(SLAVIO_CPUINTCTLState));
slave->cpu = i;
slave->master = s;
slavio_intctl_io_memory = cpu_register_io_memory(0,
slavio_intctl_mem_read,
slavio_intctl_mem_write,
slave);
cpu_register_physical_memory(addr + i * TARGET_PAGE_SIZE, INTCTL_SIZE,
slavio_intctl_io_memory);
s->slaves[i] = slave;
s->cpu_irqs[i] = parent_irq[i];
}
slavio_intctlm_io_memory = cpu_register_io_memory(0,
slavio_intctlm_mem_read,
slavio_intctlm_mem_write,
s);
cpu_register_physical_memory(addrg, INTCTLM_SIZE, slavio_intctlm_io_memory);
register_savevm("slavio_intctl", addr, 1, slavio_intctl_save,
slavio_intctl_load, s);
qemu_register_reset(slavio_intctl_reset, 0, s);
*irq = qemu_allocate_irqs(slavio_set_irq, s, 32);
*cpu_irq = qemu_allocate_irqs(slavio_set_timer_irq_cpu, s, MAX_CPUS);
s->cputimer_mbit = 1 << cputimer;
s->cputimer_lbit = 1 << intbit_to_level[cputimer];
slavio_intctl_reset(s);
return s;
}