qemu-patch-raspberry4/include/qemu/plugin.h
Alex Bennée 357af9be5c plugins: try and make plugin_insn_append more ergonomic
Currently we make the assumption that the guest frontend loads all
op code bytes sequentially. This mostly holds up for regular fixed
encodings but some architectures like s390x like to re-read the
instruction which causes weirdness to occur. Rather than changing the
frontends make the plugin API a little more ergonomic and able to
handle the re-read case.

Stuff will still get strange if we read ahead of the opcode but so far
no front ends have done that and this patch asserts the case so we can
catch it early if they do.

Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Suggested-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20211026102234.3961636-21-alex.bennee@linaro.org>
2021-11-04 10:32:01 +00:00

293 lines
7.8 KiB
C

/*
* Copyright (C) 2017, Emilio G. Cota <cota@braap.org>
*
* License: GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#ifndef QEMU_PLUGIN_H
#define QEMU_PLUGIN_H
#include "qemu/config-file.h"
#include "qemu/qemu-plugin.h"
#include "qemu/error-report.h"
#include "qemu/queue.h"
#include "qemu/option.h"
#include "exec/memopidx.h"
/*
* Events that plugins can subscribe to.
*/
enum qemu_plugin_event {
QEMU_PLUGIN_EV_VCPU_INIT,
QEMU_PLUGIN_EV_VCPU_EXIT,
QEMU_PLUGIN_EV_VCPU_TB_TRANS,
QEMU_PLUGIN_EV_VCPU_IDLE,
QEMU_PLUGIN_EV_VCPU_RESUME,
QEMU_PLUGIN_EV_VCPU_SYSCALL,
QEMU_PLUGIN_EV_VCPU_SYSCALL_RET,
QEMU_PLUGIN_EV_FLUSH,
QEMU_PLUGIN_EV_ATEXIT,
QEMU_PLUGIN_EV_MAX, /* total number of plugin events we support */
};
/*
* Option parsing/processing.
* Note that we can load an arbitrary number of plugins.
*/
struct qemu_plugin_desc;
typedef QTAILQ_HEAD(, qemu_plugin_desc) QemuPluginList;
/*
* Construct a qemu_plugin_meminfo_t.
*/
static inline qemu_plugin_meminfo_t
make_plugin_meminfo(MemOpIdx oi, enum qemu_plugin_mem_rw rw)
{
return oi | (rw << 16);
}
/*
* Extract the memory operation direction from a qemu_plugin_meminfo_t.
* Other portions may be extracted via get_memop and get_mmuidx.
*/
static inline enum qemu_plugin_mem_rw
get_plugin_meminfo_rw(qemu_plugin_meminfo_t i)
{
return i >> 16;
}
#ifdef CONFIG_PLUGIN
extern QemuOptsList qemu_plugin_opts;
static inline void qemu_plugin_add_opts(void)
{
qemu_add_opts(&qemu_plugin_opts);
}
void qemu_plugin_opt_parse(const char *optarg, QemuPluginList *head);
int qemu_plugin_load_list(QemuPluginList *head, Error **errp);
union qemu_plugin_cb_sig {
qemu_plugin_simple_cb_t simple;
qemu_plugin_udata_cb_t udata;
qemu_plugin_vcpu_simple_cb_t vcpu_simple;
qemu_plugin_vcpu_udata_cb_t vcpu_udata;
qemu_plugin_vcpu_tb_trans_cb_t vcpu_tb_trans;
qemu_plugin_vcpu_mem_cb_t vcpu_mem;
qemu_plugin_vcpu_syscall_cb_t vcpu_syscall;
qemu_plugin_vcpu_syscall_ret_cb_t vcpu_syscall_ret;
void *generic;
};
enum plugin_dyn_cb_type {
PLUGIN_CB_INSN,
PLUGIN_CB_MEM,
PLUGIN_N_CB_TYPES,
};
enum plugin_dyn_cb_subtype {
PLUGIN_CB_REGULAR,
PLUGIN_CB_INLINE,
PLUGIN_N_CB_SUBTYPES,
};
/*
* A dynamic callback has an insertion point that is determined at run-time.
* Usually the insertion point is somewhere in the code cache; think for
* instance of a callback to be called upon the execution of a particular TB.
*/
struct qemu_plugin_dyn_cb {
union qemu_plugin_cb_sig f;
void *userp;
enum plugin_dyn_cb_subtype type;
/* @rw applies to mem callbacks only (both regular and inline) */
enum qemu_plugin_mem_rw rw;
/* fields specific to each dyn_cb type go here */
union {
struct {
enum qemu_plugin_op op;
uint64_t imm;
} inline_insn;
};
};
/* Internal context for instrumenting an instruction */
struct qemu_plugin_insn {
GByteArray *data;
uint64_t vaddr;
void *haddr;
GArray *cbs[PLUGIN_N_CB_TYPES][PLUGIN_N_CB_SUBTYPES];
bool calls_helpers;
bool mem_helper;
bool mem_only;
};
/*
* qemu_plugin_insn allocate and cleanup functions. We don't expect to
* cleanup many of these structures. They are reused for each fresh
* translation.
*/
static inline void qemu_plugin_insn_cleanup_fn(gpointer data)
{
struct qemu_plugin_insn *insn = (struct qemu_plugin_insn *) data;
g_byte_array_free(insn->data, true);
}
static inline struct qemu_plugin_insn *qemu_plugin_insn_alloc(void)
{
int i, j;
struct qemu_plugin_insn *insn = g_new0(struct qemu_plugin_insn, 1);
insn->data = g_byte_array_sized_new(4);
for (i = 0; i < PLUGIN_N_CB_TYPES; i++) {
for (j = 0; j < PLUGIN_N_CB_SUBTYPES; j++) {
insn->cbs[i][j] = g_array_new(false, false,
sizeof(struct qemu_plugin_dyn_cb));
}
}
return insn;
}
/* Internal context for this TranslationBlock */
struct qemu_plugin_tb {
GPtrArray *insns;
size_t n;
uint64_t vaddr;
uint64_t vaddr2;
void *haddr1;
void *haddr2;
bool mem_only;
GArray *cbs[PLUGIN_N_CB_SUBTYPES];
};
/**
* qemu_plugin_tb_insn_get(): get next plugin record for translation.
* @tb: the internal tb context
* @pc: address of instruction
*/
static inline
struct qemu_plugin_insn *qemu_plugin_tb_insn_get(struct qemu_plugin_tb *tb,
uint64_t pc)
{
struct qemu_plugin_insn *insn;
int i, j;
if (unlikely(tb->n == tb->insns->len)) {
struct qemu_plugin_insn *new_insn = qemu_plugin_insn_alloc();
g_ptr_array_add(tb->insns, new_insn);
}
insn = g_ptr_array_index(tb->insns, tb->n++);
g_byte_array_set_size(insn->data, 0);
insn->calls_helpers = false;
insn->mem_helper = false;
insn->vaddr = pc;
for (i = 0; i < PLUGIN_N_CB_TYPES; i++) {
for (j = 0; j < PLUGIN_N_CB_SUBTYPES; j++) {
g_array_set_size(insn->cbs[i][j], 0);
}
}
return insn;
}
void qemu_plugin_vcpu_init_hook(CPUState *cpu);
void qemu_plugin_vcpu_exit_hook(CPUState *cpu);
void qemu_plugin_tb_trans_cb(CPUState *cpu, struct qemu_plugin_tb *tb);
void qemu_plugin_vcpu_idle_cb(CPUState *cpu);
void qemu_plugin_vcpu_resume_cb(CPUState *cpu);
void
qemu_plugin_vcpu_syscall(CPUState *cpu, int64_t num, uint64_t a1,
uint64_t a2, uint64_t a3, uint64_t a4, uint64_t a5,
uint64_t a6, uint64_t a7, uint64_t a8);
void qemu_plugin_vcpu_syscall_ret(CPUState *cpu, int64_t num, int64_t ret);
void qemu_plugin_vcpu_mem_cb(CPUState *cpu, uint64_t vaddr,
MemOpIdx oi, enum qemu_plugin_mem_rw rw);
void qemu_plugin_flush_cb(void);
void qemu_plugin_atexit_cb(void);
void qemu_plugin_add_dyn_cb_arr(GArray *arr);
void qemu_plugin_disable_mem_helpers(CPUState *cpu);
/**
* qemu_plugin_user_exit(): clean-up callbacks before calling exit callbacks
*
* This is a user-mode only helper that ensure we have fully cleared
* callbacks from all threads before calling the exit callbacks. This
* is so the plugins themselves don't have to jump through hoops to
* guard against race conditions.
*/
void qemu_plugin_user_exit(void);
#else /* !CONFIG_PLUGIN */
static inline void qemu_plugin_add_opts(void)
{ }
static inline void qemu_plugin_opt_parse(const char *optarg,
QemuPluginList *head)
{
error_report("plugin interface not enabled in this build");
exit(1);
}
static inline int qemu_plugin_load_list(QemuPluginList *head, Error **errp)
{
return 0;
}
static inline void qemu_plugin_vcpu_init_hook(CPUState *cpu)
{ }
static inline void qemu_plugin_vcpu_exit_hook(CPUState *cpu)
{ }
static inline void qemu_plugin_tb_trans_cb(CPUState *cpu,
struct qemu_plugin_tb *tb)
{ }
static inline void qemu_plugin_vcpu_idle_cb(CPUState *cpu)
{ }
static inline void qemu_plugin_vcpu_resume_cb(CPUState *cpu)
{ }
static inline void
qemu_plugin_vcpu_syscall(CPUState *cpu, int64_t num, uint64_t a1, uint64_t a2,
uint64_t a3, uint64_t a4, uint64_t a5, uint64_t a6,
uint64_t a7, uint64_t a8)
{ }
static inline
void qemu_plugin_vcpu_syscall_ret(CPUState *cpu, int64_t num, int64_t ret)
{ }
static inline void qemu_plugin_vcpu_mem_cb(CPUState *cpu, uint64_t vaddr,
MemOpIdx oi,
enum qemu_plugin_mem_rw rw)
{ }
static inline void qemu_plugin_flush_cb(void)
{ }
static inline void qemu_plugin_atexit_cb(void)
{ }
static inline
void qemu_plugin_add_dyn_cb_arr(GArray *arr)
{ }
static inline void qemu_plugin_disable_mem_helpers(CPUState *cpu)
{ }
static inline void qemu_plugin_user_exit(void)
{ }
#endif /* !CONFIG_PLUGIN */
#endif /* QEMU_PLUGIN_H */