qemu-patch-raspberry4/target-arm/cpu64.c
Peter Maydell 48eb3ae64b target-arm: Adjust debug ID registers per-CPU
Allow each CPU type to specify the value for the debug ID
registers, by putting them in the ARMCPU struct, and use
the resulting information to only expose the correct number
of watchpoint and breakpoint registers for the CPU.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
2014-08-19 19:02:03 +01:00

245 lines
8.1 KiB
C

/*
* QEMU AArch64 CPU
*
* Copyright (c) 2013 Linaro Ltd
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see
* <http://www.gnu.org/licenses/gpl-2.0.html>
*/
#include "cpu.h"
#include "qemu-common.h"
#if !defined(CONFIG_USER_ONLY)
#include "hw/loader.h"
#endif
#include "hw/arm/arm.h"
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
static inline void set_feature(CPUARMState *env, int feature)
{
env->features |= 1ULL << feature;
}
#ifndef CONFIG_USER_ONLY
static uint64_t a57_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
/* Number of processors is in [25:24]; otherwise we RAZ */
return (smp_cpus - 1) << 24;
}
#endif
static const ARMCPRegInfo cortexa57_cp_reginfo[] = {
#ifndef CONFIG_USER_ONLY
{ .name = "L2CTLR_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 2,
.access = PL1_RW, .readfn = a57_l2ctlr_read,
.writefn = arm_cp_write_ignore },
{ .name = "L2CTLR",
.cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 2,
.access = PL1_RW, .readfn = a57_l2ctlr_read,
.writefn = arm_cp_write_ignore },
#endif
{ .name = "L2ECTLR_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 3,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "L2ECTLR",
.cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 3,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "L2ACTLR", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 1, .crn = 15, .crm = 0, .opc2 = 0,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "CPUACTLR_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 0,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "CPUACTLR",
.cp = 15, .opc1 = 0, .crm = 15,
.access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
{ .name = "CPUECTLR_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 1,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "CPUECTLR",
.cp = 15, .opc1 = 1, .crm = 15,
.access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
{ .name = "CPUMERRSR_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 2,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "CPUMERRSR",
.cp = 15, .opc1 = 2, .crm = 15,
.access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
{ .name = "L2MERRSR_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 3,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "L2MERRSR",
.cp = 15, .opc1 = 3, .crm = 15,
.access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
REGINFO_SENTINEL
};
static void aarch64_a57_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
set_feature(&cpu->env, ARM_FEATURE_V8);
set_feature(&cpu->env, ARM_FEATURE_VFP4);
set_feature(&cpu->env, ARM_FEATURE_NEON);
set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
set_feature(&cpu->env, ARM_FEATURE_AARCH64);
set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
set_feature(&cpu->env, ARM_FEATURE_V8_AES);
set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
set_feature(&cpu->env, ARM_FEATURE_CRC);
cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57;
cpu->midr = 0x411fd070;
cpu->reset_fpsid = 0x41034070;
cpu->mvfr0 = 0x10110222;
cpu->mvfr1 = 0x12111111;
cpu->mvfr2 = 0x00000043;
cpu->ctr = 0x8444c004;
cpu->reset_sctlr = 0x00c50838;
cpu->id_pfr0 = 0x00000131;
cpu->id_pfr1 = 0x00011011;
cpu->id_dfr0 = 0x03010066;
cpu->id_afr0 = 0x00000000;
cpu->id_mmfr0 = 0x10101105;
cpu->id_mmfr1 = 0x40000000;
cpu->id_mmfr2 = 0x01260000;
cpu->id_mmfr3 = 0x02102211;
cpu->id_isar0 = 0x02101110;
cpu->id_isar1 = 0x13112111;
cpu->id_isar2 = 0x21232042;
cpu->id_isar3 = 0x01112131;
cpu->id_isar4 = 0x00011142;
cpu->id_aa64pfr0 = 0x00002222;
cpu->id_aa64dfr0 = 0x10305106;
cpu->id_aa64isar0 = 0x00010000;
cpu->id_aa64mmfr0 = 0x00001124;
cpu->dbgdidr = 0x3516d000;
cpu->clidr = 0x0a200023;
cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */
cpu->dcz_blocksize = 4; /* 64 bytes */
define_arm_cp_regs(cpu, cortexa57_cp_reginfo);
}
#ifdef CONFIG_USER_ONLY
static void aarch64_any_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
set_feature(&cpu->env, ARM_FEATURE_V8);
set_feature(&cpu->env, ARM_FEATURE_VFP4);
set_feature(&cpu->env, ARM_FEATURE_NEON);
set_feature(&cpu->env, ARM_FEATURE_AARCH64);
set_feature(&cpu->env, ARM_FEATURE_V8_AES);
set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
set_feature(&cpu->env, ARM_FEATURE_CRC);
cpu->ctr = 0x80030003; /* 32 byte I and D cacheline size, VIPT icache */
cpu->dcz_blocksize = 7; /* 512 bytes */
}
#endif
typedef struct ARMCPUInfo {
const char *name;
void (*initfn)(Object *obj);
void (*class_init)(ObjectClass *oc, void *data);
} ARMCPUInfo;
static const ARMCPUInfo aarch64_cpus[] = {
{ .name = "cortex-a57", .initfn = aarch64_a57_initfn },
#ifdef CONFIG_USER_ONLY
{ .name = "any", .initfn = aarch64_any_initfn },
#endif
{ .name = NULL }
};
static void aarch64_cpu_initfn(Object *obj)
{
}
static void aarch64_cpu_finalizefn(Object *obj)
{
}
static void aarch64_cpu_set_pc(CPUState *cs, vaddr value)
{
ARMCPU *cpu = ARM_CPU(cs);
/* It's OK to look at env for the current mode here, because it's
* never possible for an AArch64 TB to chain to an AArch32 TB.
* (Otherwise we would need to use synchronize_from_tb instead.)
*/
if (is_a64(&cpu->env)) {
cpu->env.pc = value;
} else {
cpu->env.regs[15] = value;
}
}
static void aarch64_cpu_class_init(ObjectClass *oc, void *data)
{
CPUClass *cc = CPU_CLASS(oc);
cc->do_interrupt = aarch64_cpu_do_interrupt;
cc->set_pc = aarch64_cpu_set_pc;
cc->gdb_read_register = aarch64_cpu_gdb_read_register;
cc->gdb_write_register = aarch64_cpu_gdb_write_register;
cc->gdb_num_core_regs = 34;
cc->gdb_core_xml_file = "aarch64-core.xml";
}
static void aarch64_cpu_register(const ARMCPUInfo *info)
{
TypeInfo type_info = {
.parent = TYPE_AARCH64_CPU,
.instance_size = sizeof(ARMCPU),
.instance_init = info->initfn,
.class_size = sizeof(ARMCPUClass),
.class_init = info->class_init,
};
type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
type_register(&type_info);
g_free((void *)type_info.name);
}
static const TypeInfo aarch64_cpu_type_info = {
.name = TYPE_AARCH64_CPU,
.parent = TYPE_ARM_CPU,
.instance_size = sizeof(ARMCPU),
.instance_init = aarch64_cpu_initfn,
.instance_finalize = aarch64_cpu_finalizefn,
.abstract = true,
.class_size = sizeof(AArch64CPUClass),
.class_init = aarch64_cpu_class_init,
};
static void aarch64_cpu_register_types(void)
{
const ARMCPUInfo *info = aarch64_cpus;
type_register_static(&aarch64_cpu_type_info);
while (info->name) {
aarch64_cpu_register(info);
info++;
}
}
type_init(aarch64_cpu_register_types)