qemu-patch-raspberry4/hw/char/cadence_uart.c
Bin Meng 47c305f6f2 hw/char: cadence_uart: Log a guest error when device is unclocked or in reset
We've got SW that expects FSBL (Bootlooader) to setup clocks and
resets. It's quite common that users run that SW on QEMU without
FSBL (FSBL typically requires the Xilinx tools installed). That's
fine, since users can stil use -device loader to enable clocks etc.

To help folks understand what's going, a log (guest-error) message
would be helpful here. In particular with the serial port since
things will go very quiet if they get things wrong.

Suggested-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Reviewed-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-id: 20210901124521.30599-7-bmeng.cn@gmail.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2021-09-13 16:07:21 +01:00

649 lines
18 KiB
C

/*
* Device model for Cadence UART
*
* Reference: Xilinx Zynq 7000 reference manual
* - http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
* - Chapter 19 UART Controller
* - Appendix B for Register details
*
* Copyright (c) 2010 Xilinx Inc.
* Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
* Copyright (c) 2012 PetaLogix Pty Ltd.
* Written by Haibing Ma
* M.Habib
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "hw/sysbus.h"
#include "migration/vmstate.h"
#include "chardev/char-fe.h"
#include "chardev/char-serial.h"
#include "qemu/timer.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "hw/char/cadence_uart.h"
#include "hw/irq.h"
#include "hw/qdev-clock.h"
#include "hw/qdev-properties-system.h"
#include "trace.h"
#ifdef CADENCE_UART_ERR_DEBUG
#define DB_PRINT(...) do { \
fprintf(stderr, ": %s: ", __func__); \
fprintf(stderr, ## __VA_ARGS__); \
} while (0)
#else
#define DB_PRINT(...)
#endif
#define UART_SR_INTR_RTRIG 0x00000001
#define UART_SR_INTR_REMPTY 0x00000002
#define UART_SR_INTR_RFUL 0x00000004
#define UART_SR_INTR_TEMPTY 0x00000008
#define UART_SR_INTR_TFUL 0x00000010
/* somewhat awkwardly, TTRIG is misaligned between SR and ISR */
#define UART_SR_TTRIG 0x00002000
#define UART_INTR_TTRIG 0x00000400
/* bits fields in CSR that correlate to CISR. If any of these bits are set in
* SR, then the same bit in CISR is set high too */
#define UART_SR_TO_CISR_MASK 0x0000001F
#define UART_INTR_ROVR 0x00000020
#define UART_INTR_FRAME 0x00000040
#define UART_INTR_PARE 0x00000080
#define UART_INTR_TIMEOUT 0x00000100
#define UART_INTR_DMSI 0x00000200
#define UART_INTR_TOVR 0x00001000
#define UART_SR_RACTIVE 0x00000400
#define UART_SR_TACTIVE 0x00000800
#define UART_SR_FDELT 0x00001000
#define UART_CR_RXRST 0x00000001
#define UART_CR_TXRST 0x00000002
#define UART_CR_RX_EN 0x00000004
#define UART_CR_RX_DIS 0x00000008
#define UART_CR_TX_EN 0x00000010
#define UART_CR_TX_DIS 0x00000020
#define UART_CR_RST_TO 0x00000040
#define UART_CR_STARTBRK 0x00000080
#define UART_CR_STOPBRK 0x00000100
#define UART_MR_CLKS 0x00000001
#define UART_MR_CHRL 0x00000006
#define UART_MR_CHRL_SH 1
#define UART_MR_PAR 0x00000038
#define UART_MR_PAR_SH 3
#define UART_MR_NBSTOP 0x000000C0
#define UART_MR_NBSTOP_SH 6
#define UART_MR_CHMODE 0x00000300
#define UART_MR_CHMODE_SH 8
#define UART_MR_UCLKEN 0x00000400
#define UART_MR_IRMODE 0x00000800
#define UART_DATA_BITS_6 (0x3 << UART_MR_CHRL_SH)
#define UART_DATA_BITS_7 (0x2 << UART_MR_CHRL_SH)
#define UART_PARITY_ODD (0x1 << UART_MR_PAR_SH)
#define UART_PARITY_EVEN (0x0 << UART_MR_PAR_SH)
#define UART_STOP_BITS_1 (0x3 << UART_MR_NBSTOP_SH)
#define UART_STOP_BITS_2 (0x2 << UART_MR_NBSTOP_SH)
#define NORMAL_MODE (0x0 << UART_MR_CHMODE_SH)
#define ECHO_MODE (0x1 << UART_MR_CHMODE_SH)
#define LOCAL_LOOPBACK (0x2 << UART_MR_CHMODE_SH)
#define REMOTE_LOOPBACK (0x3 << UART_MR_CHMODE_SH)
#define UART_DEFAULT_REF_CLK (50 * 1000 * 1000)
#define R_CR (0x00/4)
#define R_MR (0x04/4)
#define R_IER (0x08/4)
#define R_IDR (0x0C/4)
#define R_IMR (0x10/4)
#define R_CISR (0x14/4)
#define R_BRGR (0x18/4)
#define R_RTOR (0x1C/4)
#define R_RTRIG (0x20/4)
#define R_MCR (0x24/4)
#define R_MSR (0x28/4)
#define R_SR (0x2C/4)
#define R_TX_RX (0x30/4)
#define R_BDIV (0x34/4)
#define R_FDEL (0x38/4)
#define R_PMIN (0x3C/4)
#define R_PWID (0x40/4)
#define R_TTRIG (0x44/4)
static void uart_update_status(CadenceUARTState *s)
{
s->r[R_SR] = 0;
s->r[R_SR] |= s->rx_count == CADENCE_UART_RX_FIFO_SIZE ? UART_SR_INTR_RFUL
: 0;
s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0;
s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0;
s->r[R_SR] |= s->tx_count == CADENCE_UART_TX_FIFO_SIZE ? UART_SR_INTR_TFUL
: 0;
s->r[R_SR] |= !s->tx_count ? UART_SR_INTR_TEMPTY : 0;
s->r[R_SR] |= s->tx_count >= s->r[R_TTRIG] ? UART_SR_TTRIG : 0;
s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
s->r[R_CISR] |= s->r[R_SR] & UART_SR_TTRIG ? UART_INTR_TTRIG : 0;
qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
}
static void fifo_trigger_update(void *opaque)
{
CadenceUARTState *s = opaque;
if (s->r[R_RTOR]) {
s->r[R_CISR] |= UART_INTR_TIMEOUT;
uart_update_status(s);
}
}
static void uart_rx_reset(CadenceUARTState *s)
{
s->rx_wpos = 0;
s->rx_count = 0;
qemu_chr_fe_accept_input(&s->chr);
}
static void uart_tx_reset(CadenceUARTState *s)
{
s->tx_count = 0;
}
static void uart_send_breaks(CadenceUARTState *s)
{
int break_enabled = 1;
qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
&break_enabled);
}
static void uart_parameters_setup(CadenceUARTState *s)
{
QEMUSerialSetParams ssp;
unsigned int baud_rate, packet_size, input_clk;
input_clk = clock_get_hz(s->refclk);
baud_rate = (s->r[R_MR] & UART_MR_CLKS) ? input_clk / 8 : input_clk;
baud_rate /= (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
trace_cadence_uart_baudrate(baud_rate);
ssp.speed = baud_rate;
packet_size = 1;
switch (s->r[R_MR] & UART_MR_PAR) {
case UART_PARITY_EVEN:
ssp.parity = 'E';
packet_size++;
break;
case UART_PARITY_ODD:
ssp.parity = 'O';
packet_size++;
break;
default:
ssp.parity = 'N';
break;
}
switch (s->r[R_MR] & UART_MR_CHRL) {
case UART_DATA_BITS_6:
ssp.data_bits = 6;
break;
case UART_DATA_BITS_7:
ssp.data_bits = 7;
break;
default:
ssp.data_bits = 8;
break;
}
switch (s->r[R_MR] & UART_MR_NBSTOP) {
case UART_STOP_BITS_1:
ssp.stop_bits = 1;
break;
default:
ssp.stop_bits = 2;
break;
}
packet_size += ssp.data_bits + ssp.stop_bits;
if (ssp.speed == 0) {
/*
* Avoid division-by-zero below.
* TODO: find something better
*/
ssp.speed = 1;
}
s->char_tx_time = (NANOSECONDS_PER_SECOND / ssp.speed) * packet_size;
qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
}
static int uart_can_receive(void *opaque)
{
CadenceUARTState *s = opaque;
int ret;
uint32_t ch_mode;
/* ignore characters when unclocked or in reset */
if (!clock_is_enabled(s->refclk) || device_is_in_reset(DEVICE(s))) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: uart is unclocked or in reset\n",
__func__);
return 0;
}
ret = MAX(CADENCE_UART_RX_FIFO_SIZE, CADENCE_UART_TX_FIFO_SIZE);
ch_mode = s->r[R_MR] & UART_MR_CHMODE;
if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
ret = MIN(ret, CADENCE_UART_RX_FIFO_SIZE - s->rx_count);
}
if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
ret = MIN(ret, CADENCE_UART_TX_FIFO_SIZE - s->tx_count);
}
return ret;
}
static void uart_ctrl_update(CadenceUARTState *s)
{
if (s->r[R_CR] & UART_CR_TXRST) {
uart_tx_reset(s);
}
if (s->r[R_CR] & UART_CR_RXRST) {
uart_rx_reset(s);
}
s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
uart_send_breaks(s);
}
}
static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
{
CadenceUARTState *s = opaque;
uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
int i;
if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
return;
}
if (s->rx_count == CADENCE_UART_RX_FIFO_SIZE) {
s->r[R_CISR] |= UART_INTR_ROVR;
} else {
for (i = 0; i < size; i++) {
s->rx_fifo[s->rx_wpos] = buf[i];
s->rx_wpos = (s->rx_wpos + 1) % CADENCE_UART_RX_FIFO_SIZE;
s->rx_count++;
}
timer_mod(s->fifo_trigger_handle, new_rx_time +
(s->char_tx_time * 4));
}
uart_update_status(s);
}
static gboolean cadence_uart_xmit(void *do_not_use, GIOCondition cond,
void *opaque)
{
CadenceUARTState *s = opaque;
int ret;
/* instant drain the fifo when there's no back-end */
if (!qemu_chr_fe_backend_connected(&s->chr)) {
s->tx_count = 0;
return FALSE;
}
if (!s->tx_count) {
return FALSE;
}
ret = qemu_chr_fe_write(&s->chr, s->tx_fifo, s->tx_count);
if (ret >= 0) {
s->tx_count -= ret;
memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_count);
}
if (s->tx_count) {
guint r = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
cadence_uart_xmit, s);
if (!r) {
s->tx_count = 0;
return FALSE;
}
}
uart_update_status(s);
return FALSE;
}
static void uart_write_tx_fifo(CadenceUARTState *s, const uint8_t *buf,
int size)
{
if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
return;
}
if (size > CADENCE_UART_TX_FIFO_SIZE - s->tx_count) {
size = CADENCE_UART_TX_FIFO_SIZE - s->tx_count;
/*
* This can only be a guest error via a bad tx fifo register push,
* as can_receive() should stop remote loop and echo modes ever getting
* us to here.
*/
qemu_log_mask(LOG_GUEST_ERROR, "cadence_uart: TxFIFO overflow");
s->r[R_CISR] |= UART_INTR_ROVR;
}
memcpy(s->tx_fifo + s->tx_count, buf, size);
s->tx_count += size;
cadence_uart_xmit(NULL, G_IO_OUT, s);
}
static void uart_receive(void *opaque, const uint8_t *buf, int size)
{
CadenceUARTState *s = opaque;
uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
uart_write_rx_fifo(opaque, buf, size);
}
if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
uart_write_tx_fifo(s, buf, size);
}
}
static void uart_event(void *opaque, QEMUChrEvent event)
{
CadenceUARTState *s = opaque;
uint8_t buf = '\0';
/* ignore characters when unclocked or in reset */
if (!clock_is_enabled(s->refclk) || device_is_in_reset(DEVICE(s))) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: uart is unclocked or in reset\n",
__func__);
return;
}
if (event == CHR_EVENT_BREAK) {
uart_write_rx_fifo(opaque, &buf, 1);
}
uart_update_status(s);
}
static void uart_read_rx_fifo(CadenceUARTState *s, uint32_t *c)
{
if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
return;
}
if (s->rx_count) {
uint32_t rx_rpos = (CADENCE_UART_RX_FIFO_SIZE + s->rx_wpos -
s->rx_count) % CADENCE_UART_RX_FIFO_SIZE;
*c = s->rx_fifo[rx_rpos];
s->rx_count--;
qemu_chr_fe_accept_input(&s->chr);
} else {
*c = 0;
}
uart_update_status(s);
}
static MemTxResult uart_write(void *opaque, hwaddr offset,
uint64_t value, unsigned size, MemTxAttrs attrs)
{
CadenceUARTState *s = opaque;
/* ignore access when unclocked or in reset */
if (!clock_is_enabled(s->refclk) || device_is_in_reset(DEVICE(s))) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: uart is unclocked or in reset\n",
__func__);
return MEMTX_ERROR;
}
DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
offset >>= 2;
if (offset >= CADENCE_UART_R_MAX) {
return MEMTX_DECODE_ERROR;
}
switch (offset) {
case R_IER: /* ier (wts imr) */
s->r[R_IMR] |= value;
break;
case R_IDR: /* idr (wtc imr) */
s->r[R_IMR] &= ~value;
break;
case R_IMR: /* imr (read only) */
break;
case R_CISR: /* cisr (wtc) */
s->r[R_CISR] &= ~value;
break;
case R_TX_RX: /* UARTDR */
switch (s->r[R_MR] & UART_MR_CHMODE) {
case NORMAL_MODE:
uart_write_tx_fifo(s, (uint8_t *) &value, 1);
break;
case LOCAL_LOOPBACK:
uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
break;
}
break;
case R_BRGR: /* Baud rate generator */
if (value >= 0x01) {
s->r[offset] = value & 0xFFFF;
}
break;
case R_BDIV: /* Baud rate divider */
if (value >= 0x04) {
s->r[offset] = value & 0xFF;
}
break;
default:
s->r[offset] = value;
}
switch (offset) {
case R_CR:
uart_ctrl_update(s);
break;
case R_MR:
uart_parameters_setup(s);
break;
}
uart_update_status(s);
return MEMTX_OK;
}
static MemTxResult uart_read(void *opaque, hwaddr offset,
uint64_t *value, unsigned size, MemTxAttrs attrs)
{
CadenceUARTState *s = opaque;
uint32_t c = 0;
/* ignore access when unclocked or in reset */
if (!clock_is_enabled(s->refclk) || device_is_in_reset(DEVICE(s))) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: uart is unclocked or in reset\n",
__func__);
return MEMTX_ERROR;
}
offset >>= 2;
if (offset >= CADENCE_UART_R_MAX) {
return MEMTX_DECODE_ERROR;
}
if (offset == R_TX_RX) {
uart_read_rx_fifo(s, &c);
} else {
c = s->r[offset];
}
DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
*value = c;
return MEMTX_OK;
}
static const MemoryRegionOps uart_ops = {
.read_with_attrs = uart_read,
.write_with_attrs = uart_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void cadence_uart_reset_init(Object *obj, ResetType type)
{
CadenceUARTState *s = CADENCE_UART(obj);
s->r[R_CR] = 0x00000128;
s->r[R_IMR] = 0;
s->r[R_CISR] = 0;
s->r[R_RTRIG] = 0x00000020;
s->r[R_BRGR] = 0x0000028B;
s->r[R_BDIV] = 0x0000000F;
s->r[R_TTRIG] = 0x00000020;
}
static void cadence_uart_reset_hold(Object *obj)
{
CadenceUARTState *s = CADENCE_UART(obj);
uart_rx_reset(s);
uart_tx_reset(s);
uart_update_status(s);
}
static void cadence_uart_realize(DeviceState *dev, Error **errp)
{
CadenceUARTState *s = CADENCE_UART(dev);
s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
fifo_trigger_update, s);
qemu_chr_fe_set_handlers(&s->chr, uart_can_receive, uart_receive,
uart_event, NULL, s, NULL, true);
}
static void cadence_uart_refclk_update(void *opaque, ClockEvent event)
{
CadenceUARTState *s = opaque;
/* recompute uart's speed on clock change */
uart_parameters_setup(s);
}
static void cadence_uart_init(Object *obj)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
CadenceUARTState *s = CADENCE_UART(obj);
memory_region_init_io(&s->iomem, obj, &uart_ops, s, "uart", 0x1000);
sysbus_init_mmio(sbd, &s->iomem);
sysbus_init_irq(sbd, &s->irq);
s->refclk = qdev_init_clock_in(DEVICE(obj), "refclk",
cadence_uart_refclk_update, s, ClockUpdate);
/* initialize the frequency in case the clock remains unconnected */
clock_set_hz(s->refclk, UART_DEFAULT_REF_CLK);
s->char_tx_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
}
static int cadence_uart_pre_load(void *opaque)
{
CadenceUARTState *s = opaque;
/* the frequency will be overriden if the refclk field is present */
clock_set_hz(s->refclk, UART_DEFAULT_REF_CLK);
return 0;
}
static int cadence_uart_post_load(void *opaque, int version_id)
{
CadenceUARTState *s = opaque;
/* Ensure these two aren't invalid numbers */
if (s->r[R_BRGR] < 1 || s->r[R_BRGR] & ~0xFFFF ||
s->r[R_BDIV] <= 3 || s->r[R_BDIV] & ~0xFF) {
/* Value is invalid, abort */
return 1;
}
uart_parameters_setup(s);
uart_update_status(s);
return 0;
}
static const VMStateDescription vmstate_cadence_uart = {
.name = "cadence_uart",
.version_id = 3,
.minimum_version_id = 2,
.pre_load = cadence_uart_pre_load,
.post_load = cadence_uart_post_load,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(r, CadenceUARTState, CADENCE_UART_R_MAX),
VMSTATE_UINT8_ARRAY(rx_fifo, CadenceUARTState,
CADENCE_UART_RX_FIFO_SIZE),
VMSTATE_UINT8_ARRAY(tx_fifo, CadenceUARTState,
CADENCE_UART_TX_FIFO_SIZE),
VMSTATE_UINT32(rx_count, CadenceUARTState),
VMSTATE_UINT32(tx_count, CadenceUARTState),
VMSTATE_UINT32(rx_wpos, CadenceUARTState),
VMSTATE_TIMER_PTR(fifo_trigger_handle, CadenceUARTState),
VMSTATE_CLOCK_V(refclk, CadenceUARTState, 3),
VMSTATE_END_OF_LIST()
},
};
static Property cadence_uart_properties[] = {
DEFINE_PROP_CHR("chardev", CadenceUARTState, chr),
DEFINE_PROP_END_OF_LIST(),
};
static void cadence_uart_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
ResettableClass *rc = RESETTABLE_CLASS(klass);
dc->realize = cadence_uart_realize;
dc->vmsd = &vmstate_cadence_uart;
rc->phases.enter = cadence_uart_reset_init;
rc->phases.hold = cadence_uart_reset_hold;
device_class_set_props(dc, cadence_uart_properties);
}
static const TypeInfo cadence_uart_info = {
.name = TYPE_CADENCE_UART,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(CadenceUARTState),
.instance_init = cadence_uart_init,
.class_init = cadence_uart_class_init,
};
static void cadence_uart_register_types(void)
{
type_register_static(&cadence_uart_info);
}
type_init(cadence_uart_register_types)