qemu-patch-raspberry4/hw/sched.c
bellard 420557e898 full system SPARC emulation (Blue Swirl)
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@1085 c046a42c-6fe2-441c-8c8c-71466251a162
2004-09-30 22:13:50 +00:00

347 lines
9.2 KiB
C

/*
* QEMU interrupt controller & timer emulation
*
* Copyright (c) 2003-2004 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "vl.h"
#define PHYS_JJ_CLOCK 0x71D00000
#define PHYS_JJ_CLOCK1 0x71D10000
#define PHYS_JJ_INTR0 0x71E00000 /* CPU0 interrupt control registers */
#define PHYS_JJ_INTR_G 0x71E10000 /* Master interrupt control registers */
/* These registers are used for sending/receiving irqs from/to
* different cpu's.
*/
struct sun4m_intreg_percpu {
unsigned int tbt; /* Intrs pending for this cpu, by PIL. */
/* These next two registers are WRITE-ONLY and are only
* "on bit" sensitive, "off bits" written have NO affect.
*/
unsigned int clear; /* Clear this cpus irqs here. */
unsigned int set; /* Set this cpus irqs here. */
};
/*
* djhr
* Actually the clear and set fields in this struct are misleading..
* according to the SLAVIO manual (and the same applies for the SEC)
* the clear field clears bits in the mask which will ENABLE that IRQ
* the set field sets bits in the mask to DISABLE the IRQ.
*
* Also the undirected_xx address in the SLAVIO is defined as
* RESERVED and write only..
*
* DAVEM_NOTE: The SLAVIO only specifies behavior on uniprocessor
* sun4m machines, for MP the layout makes more sense.
*/
struct sun4m_intreg_master {
unsigned int tbt; /* IRQ's that are pending, see sun4m masks. */
unsigned int irqs; /* Master IRQ bits. */
/* Again, like the above, two these registers are WRITE-ONLY. */
unsigned int clear; /* Clear master IRQ's by setting bits here. */
unsigned int set; /* Set master IRQ's by setting bits here. */
/* This register is both READ and WRITE. */
unsigned int undirected_target; /* Which cpu gets undirected irqs. */
};
/*
* Registers of hardware timer in sun4m.
*/
struct sun4m_timer_percpu {
volatile unsigned int l14_timer_limit; /* Initial value is 0x009c4000 */
volatile unsigned int l14_cur_count;
};
struct sun4m_timer_global {
volatile unsigned int l10_timer_limit;
volatile unsigned int l10_cur_count;
};
#define SUN4M_INT_ENABLE 0x80000000
#define SUN4M_INT_E14 0x00000080
#define SUN4M_INT_E10 0x00080000
#define SUN4M_HARD_INT(x) (0x000000001 << (x))
#define SUN4M_SOFT_INT(x) (0x000010000 << (x))
#define SUN4M_INT_MASKALL 0x80000000 /* mask all interrupts */
#define SUN4M_INT_MODULE_ERR 0x40000000 /* module error */
#define SUN4M_INT_M2S_WRITE 0x20000000 /* write buffer error */
#define SUN4M_INT_ECC 0x10000000 /* ecc memory error */
#define SUN4M_INT_FLOPPY 0x00400000 /* floppy disk */
#define SUN4M_INT_MODULE 0x00200000 /* module interrupt */
#define SUN4M_INT_VIDEO 0x00100000 /* onboard video */
#define SUN4M_INT_REALTIME 0x00080000 /* system timer */
#define SUN4M_INT_SCSI 0x00040000 /* onboard scsi */
#define SUN4M_INT_AUDIO 0x00020000 /* audio/isdn */
#define SUN4M_INT_ETHERNET 0x00010000 /* onboard ethernet */
#define SUN4M_INT_SERIAL 0x00008000 /* serial ports */
#define SUN4M_INT_SBUSBITS 0x00003F80 /* sbus int bits */
#define SUN4M_INT_SBUS(x) (1 << (x+7))
#define SUN4M_INT_VME(x) (1 << (x))
typedef struct SCHEDState {
uint32_t intreg_pending;
uint32_t intreg_enabled;
uint32_t intregm_pending;
uint32_t intregm_enabled;
uint32_t timer_regs[2];
uint32_t timerm_regs[2];
} SCHEDState;
static SCHEDState *ps;
static int intreg_io_memory, intregm_io_memory,
timer_io_memory, timerm_io_memory;
static void sched_reset(SCHEDState *s)
{
}
static uint32_t intreg_mem_readl(void *opaque, target_phys_addr_t addr)
{
SCHEDState *s = opaque;
uint32_t saddr;
saddr = (addr - PHYS_JJ_INTR0) >> 2;
switch (saddr) {
case 0:
return s->intreg_pending;
break;
default:
break;
}
return 0;
}
static void intreg_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
SCHEDState *s = opaque;
uint32_t saddr;
saddr = (addr - PHYS_JJ_INTR0) >> 2;
switch (saddr) {
case 0:
s->intreg_pending = val;
break;
case 1: // clear
s->intreg_enabled &= ~val;
break;
case 2: // set
s->intreg_enabled |= val;
break;
default:
break;
}
}
static CPUReadMemoryFunc *intreg_mem_read[3] = {
intreg_mem_readl,
intreg_mem_readl,
intreg_mem_readl,
};
static CPUWriteMemoryFunc *intreg_mem_write[3] = {
intreg_mem_writel,
intreg_mem_writel,
intreg_mem_writel,
};
static uint32_t intregm_mem_readl(void *opaque, target_phys_addr_t addr)
{
SCHEDState *s = opaque;
uint32_t saddr;
saddr = (addr - PHYS_JJ_INTR_G) >> 2;
switch (saddr) {
case 0:
return s->intregm_pending;
break;
case 1:
return s->intregm_enabled;
break;
default:
break;
}
return 0;
}
static void intregm_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
SCHEDState *s = opaque;
uint32_t saddr;
saddr = (addr - PHYS_JJ_INTR_G) >> 2;
switch (saddr) {
case 0:
s->intregm_pending = val;
break;
case 1:
s->intregm_enabled = val;
break;
case 2: // clear
s->intregm_enabled &= ~val;
break;
case 3: // set
s->intregm_enabled |= val;
break;
default:
break;
}
}
static CPUReadMemoryFunc *intregm_mem_read[3] = {
intregm_mem_readl,
intregm_mem_readl,
intregm_mem_readl,
};
static CPUWriteMemoryFunc *intregm_mem_write[3] = {
intregm_mem_writel,
intregm_mem_writel,
intregm_mem_writel,
};
static uint32_t timer_mem_readl(void *opaque, target_phys_addr_t addr)
{
SCHEDState *s = opaque;
uint32_t saddr;
saddr = (addr - PHYS_JJ_CLOCK) >> 2;
switch (saddr) {
default:
return s->timer_regs[saddr];
break;
}
return 0;
}
static void timer_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
SCHEDState *s = opaque;
uint32_t saddr;
saddr = (addr - PHYS_JJ_CLOCK) >> 2;
switch (saddr) {
default:
s->timer_regs[saddr] = val;
break;
}
}
static CPUReadMemoryFunc *timer_mem_read[3] = {
timer_mem_readl,
timer_mem_readl,
timer_mem_readl,
};
static CPUWriteMemoryFunc *timer_mem_write[3] = {
timer_mem_writel,
timer_mem_writel,
timer_mem_writel,
};
static uint32_t timerm_mem_readl(void *opaque, target_phys_addr_t addr)
{
SCHEDState *s = opaque;
uint32_t saddr;
saddr = (addr - PHYS_JJ_CLOCK1) >> 2;
switch (saddr) {
default:
return s->timerm_regs[saddr];
break;
}
return 0;
}
static void timerm_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
SCHEDState *s = opaque;
uint32_t saddr;
saddr = (addr - PHYS_JJ_CLOCK1) >> 2;
switch (saddr) {
default:
s->timerm_regs[saddr] = val;
break;
}
}
static CPUReadMemoryFunc *timerm_mem_read[3] = {
timerm_mem_readl,
timerm_mem_readl,
timerm_mem_readl,
};
static CPUWriteMemoryFunc *timerm_mem_write[3] = {
timerm_mem_writel,
timerm_mem_writel,
timerm_mem_writel,
};
void pic_info() {}
void irq_info() {}
static const unsigned int intr_to_mask[16] = {
0, 0, 0, 0, 0, 0, SUN4M_INT_ETHERNET, 0,
0, 0, 0, 0, 0, 0, 0, 0,
};
void pic_set_irq(int irq, int level)
{
if (irq < 16) {
unsigned int mask = intr_to_mask[irq];
ps->intreg_pending |= 1 << irq;
if (ps->intregm_enabled & mask) {
cpu_single_env->interrupt_index = irq;
cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
}
}
}
void sched_init()
{
SCHEDState *s;
s = qemu_mallocz(sizeof(SCHEDState));
if (!s)
return;
intreg_io_memory = cpu_register_io_memory(0, intreg_mem_read, intreg_mem_write, s);
cpu_register_physical_memory(PHYS_JJ_INTR0, 3, intreg_io_memory);
intregm_io_memory = cpu_register_io_memory(0, intregm_mem_read, intregm_mem_write, s);
cpu_register_physical_memory(PHYS_JJ_INTR_G, 5, intregm_io_memory);
timer_io_memory = cpu_register_io_memory(0, timer_mem_read, timer_mem_write, s);
cpu_register_physical_memory(PHYS_JJ_CLOCK, 2, timer_io_memory);
timerm_io_memory = cpu_register_io_memory(0, timerm_mem_read, timerm_mem_write, s);
cpu_register_physical_memory(PHYS_JJ_CLOCK1, 2, timerm_io_memory);
sched_reset(s);
ps = s;
}