qemu-patch-raspberry4/hw/slavio_intctl.c
Alexander Graf 2507c12ab0 Add endianness as io mem parameter
As stated before, devices can be little, big or native endian. The
target endianness is not of their concern, so we need to push things
down a level.

This patch adds a parameter to cpu_register_io_memory that allows a
device to choose its endianness. For now, all devices simply choose
native endian, because that's the same behavior as before.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
2010-12-11 15:24:25 +00:00

459 lines
13 KiB
C

/*
* QEMU Sparc SLAVIO interrupt controller emulation
*
* Copyright (c) 2003-2005 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "sun4m.h"
#include "monitor.h"
#include "sysbus.h"
#include "trace.h"
//#define DEBUG_IRQ_COUNT
/*
* Registers of interrupt controller in sun4m.
*
* This is the interrupt controller part of chip STP2001 (Slave I/O), also
* produced as NCR89C105. See
* http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
*
* There is a system master controller and one for each cpu.
*
*/
#define MAX_CPUS 16
#define MAX_PILS 16
struct SLAVIO_INTCTLState;
typedef struct SLAVIO_CPUINTCTLState {
uint32_t intreg_pending;
struct SLAVIO_INTCTLState *master;
uint32_t cpu;
uint32_t irl_out;
} SLAVIO_CPUINTCTLState;
typedef struct SLAVIO_INTCTLState {
SysBusDevice busdev;
uint32_t intregm_pending;
uint32_t intregm_disabled;
uint32_t target_cpu;
#ifdef DEBUG_IRQ_COUNT
uint64_t irq_count[32];
#endif
qemu_irq cpu_irqs[MAX_CPUS][MAX_PILS];
SLAVIO_CPUINTCTLState slaves[MAX_CPUS];
} SLAVIO_INTCTLState;
#define INTCTL_MAXADDR 0xf
#define INTCTL_SIZE (INTCTL_MAXADDR + 1)
#define INTCTLM_SIZE 0x14
#define MASTER_IRQ_MASK ~0x0fa2007f
#define MASTER_DISABLE 0x80000000
#define CPU_SOFTIRQ_MASK 0xfffe0000
#define CPU_IRQ_INT15_IN (1 << 15)
#define CPU_IRQ_TIMER_IN (1 << 14)
static void slavio_check_interrupts(SLAVIO_INTCTLState *s, int set_irqs);
// per-cpu interrupt controller
static uint32_t slavio_intctl_mem_readl(void *opaque, target_phys_addr_t addr)
{
SLAVIO_CPUINTCTLState *s = opaque;
uint32_t saddr, ret;
saddr = addr >> 2;
switch (saddr) {
case 0:
ret = s->intreg_pending;
break;
default:
ret = 0;
break;
}
trace_slavio_intctl_mem_readl(s->cpu, addr, ret);
return ret;
}
static void slavio_intctl_mem_writel(void *opaque, target_phys_addr_t addr,
uint32_t val)
{
SLAVIO_CPUINTCTLState *s = opaque;
uint32_t saddr;
saddr = addr >> 2;
trace_slavio_intctl_mem_writel(s->cpu, addr, val);
switch (saddr) {
case 1: // clear pending softints
val &= CPU_SOFTIRQ_MASK | CPU_IRQ_INT15_IN;
s->intreg_pending &= ~val;
slavio_check_interrupts(s->master, 1);
trace_slavio_intctl_mem_writel_clear(s->cpu, val, s->intreg_pending);
break;
case 2: // set softint
val &= CPU_SOFTIRQ_MASK;
s->intreg_pending |= val;
slavio_check_interrupts(s->master, 1);
trace_slavio_intctl_mem_writel_set(s->cpu, val, s->intreg_pending);
break;
default:
break;
}
}
static CPUReadMemoryFunc * const slavio_intctl_mem_read[3] = {
NULL,
NULL,
slavio_intctl_mem_readl,
};
static CPUWriteMemoryFunc * const slavio_intctl_mem_write[3] = {
NULL,
NULL,
slavio_intctl_mem_writel,
};
// master system interrupt controller
static uint32_t slavio_intctlm_mem_readl(void *opaque, target_phys_addr_t addr)
{
SLAVIO_INTCTLState *s = opaque;
uint32_t saddr, ret;
saddr = addr >> 2;
switch (saddr) {
case 0:
ret = s->intregm_pending & ~MASTER_DISABLE;
break;
case 1:
ret = s->intregm_disabled & MASTER_IRQ_MASK;
break;
case 4:
ret = s->target_cpu;
break;
default:
ret = 0;
break;
}
trace_slavio_intctlm_mem_readl(addr, ret);
return ret;
}
static void slavio_intctlm_mem_writel(void *opaque, target_phys_addr_t addr,
uint32_t val)
{
SLAVIO_INTCTLState *s = opaque;
uint32_t saddr;
saddr = addr >> 2;
trace_slavio_intctlm_mem_writel(addr, val);
switch (saddr) {
case 2: // clear (enable)
// Force clear unused bits
val &= MASTER_IRQ_MASK;
s->intregm_disabled &= ~val;
trace_slavio_intctlm_mem_writel_enable(val, s->intregm_disabled);
slavio_check_interrupts(s, 1);
break;
case 3: // set (disable; doesn't affect pending)
// Force clear unused bits
val &= MASTER_IRQ_MASK;
s->intregm_disabled |= val;
slavio_check_interrupts(s, 1);
trace_slavio_intctlm_mem_writel_disable(val, s->intregm_disabled);
break;
case 4:
s->target_cpu = val & (MAX_CPUS - 1);
slavio_check_interrupts(s, 1);
trace_slavio_intctlm_mem_writel_target(s->target_cpu);
break;
default:
break;
}
}
static CPUReadMemoryFunc * const slavio_intctlm_mem_read[3] = {
NULL,
NULL,
slavio_intctlm_mem_readl,
};
static CPUWriteMemoryFunc * const slavio_intctlm_mem_write[3] = {
NULL,
NULL,
slavio_intctlm_mem_writel,
};
void slavio_pic_info(Monitor *mon, DeviceState *dev)
{
SysBusDevice *sd;
SLAVIO_INTCTLState *s;
int i;
sd = sysbus_from_qdev(dev);
s = FROM_SYSBUS(SLAVIO_INTCTLState, sd);
for (i = 0; i < MAX_CPUS; i++) {
monitor_printf(mon, "per-cpu %d: pending 0x%08x\n", i,
s->slaves[i].intreg_pending);
}
monitor_printf(mon, "master: pending 0x%08x, disabled 0x%08x\n",
s->intregm_pending, s->intregm_disabled);
}
void slavio_irq_info(Monitor *mon, DeviceState *dev)
{
#ifndef DEBUG_IRQ_COUNT
monitor_printf(mon, "irq statistic code not compiled.\n");
#else
SysBusDevice *sd;
SLAVIO_INTCTLState *s;
int i;
int64_t count;
sd = sysbus_from_qdev(dev);
s = FROM_SYSBUS(SLAVIO_INTCTLState, sd);
monitor_printf(mon, "IRQ statistics:\n");
for (i = 0; i < 32; i++) {
count = s->irq_count[i];
if (count > 0)
monitor_printf(mon, "%2d: %" PRId64 "\n", i, count);
}
#endif
}
static const uint32_t intbit_to_level[] = {
2, 3, 5, 7, 9, 11, 13, 2, 3, 5, 7, 9, 11, 13, 12, 12,
6, 13, 4, 10, 8, 9, 11, 0, 0, 0, 0, 15, 15, 15, 15, 0,
};
static void slavio_check_interrupts(SLAVIO_INTCTLState *s, int set_irqs)
{
uint32_t pending = s->intregm_pending, pil_pending;
unsigned int i, j;
pending &= ~s->intregm_disabled;
trace_slavio_check_interrupts(pending, s->intregm_disabled);
for (i = 0; i < MAX_CPUS; i++) {
pil_pending = 0;
/* If we are the current interrupt target, get hard interrupts */
if (pending && !(s->intregm_disabled & MASTER_DISABLE) &&
(i == s->target_cpu)) {
for (j = 0; j < 32; j++) {
if ((pending & (1 << j)) && intbit_to_level[j]) {
pil_pending |= 1 << intbit_to_level[j];
}
}
}
/* Calculate current pending hard interrupts for display */
s->slaves[i].intreg_pending &= CPU_SOFTIRQ_MASK | CPU_IRQ_INT15_IN |
CPU_IRQ_TIMER_IN;
if (i == s->target_cpu) {
for (j = 0; j < 32; j++) {
if ((s->intregm_pending & (1 << j)) && intbit_to_level[j]) {
s->slaves[i].intreg_pending |= 1 << intbit_to_level[j];
}
}
}
/* Level 15 and CPU timer interrupts are only masked when
the MASTER_DISABLE bit is set */
if (!(s->intregm_disabled & MASTER_DISABLE)) {
pil_pending |= s->slaves[i].intreg_pending &
(CPU_IRQ_INT15_IN | CPU_IRQ_TIMER_IN);
}
/* Add soft interrupts */
pil_pending |= (s->slaves[i].intreg_pending & CPU_SOFTIRQ_MASK) >> 16;
if (set_irqs) {
for (j = MAX_PILS; j > 0; j--) {
if (pil_pending & (1 << j)) {
if (!(s->slaves[i].irl_out & (1 << j))) {
qemu_irq_raise(s->cpu_irqs[i][j]);
}
} else {
if (s->slaves[i].irl_out & (1 << j)) {
qemu_irq_lower(s->cpu_irqs[i][j]);
}
}
}
}
s->slaves[i].irl_out = pil_pending;
}
}
/*
* "irq" here is the bit number in the system interrupt register to
* separate serial and keyboard interrupts sharing a level.
*/
static void slavio_set_irq(void *opaque, int irq, int level)
{
SLAVIO_INTCTLState *s = opaque;
uint32_t mask = 1 << irq;
uint32_t pil = intbit_to_level[irq];
unsigned int i;
trace_slavio_set_irq(s->target_cpu, irq, pil, level);
if (pil > 0) {
if (level) {
#ifdef DEBUG_IRQ_COUNT
s->irq_count[pil]++;
#endif
s->intregm_pending |= mask;
if (pil == 15) {
for (i = 0; i < MAX_CPUS; i++) {
s->slaves[i].intreg_pending |= 1 << pil;
}
}
} else {
s->intregm_pending &= ~mask;
if (pil == 15) {
for (i = 0; i < MAX_CPUS; i++) {
s->slaves[i].intreg_pending &= ~(1 << pil);
}
}
}
slavio_check_interrupts(s, 1);
}
}
static void slavio_set_timer_irq_cpu(void *opaque, int cpu, int level)
{
SLAVIO_INTCTLState *s = opaque;
trace_slavio_set_timer_irq_cpu(cpu, level);
if (level) {
s->slaves[cpu].intreg_pending |= CPU_IRQ_TIMER_IN;
} else {
s->slaves[cpu].intreg_pending &= ~CPU_IRQ_TIMER_IN;
}
slavio_check_interrupts(s, 1);
}
static void slavio_set_irq_all(void *opaque, int irq, int level)
{
if (irq < 32) {
slavio_set_irq(opaque, irq, level);
} else {
slavio_set_timer_irq_cpu(opaque, irq - 32, level);
}
}
static int vmstate_intctl_post_load(void *opaque, int version_id)
{
SLAVIO_INTCTLState *s = opaque;
slavio_check_interrupts(s, 0);
return 0;
}
static const VMStateDescription vmstate_intctl_cpu = {
.name ="slavio_intctl_cpu",
.version_id = 1,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.fields = (VMStateField []) {
VMSTATE_UINT32(intreg_pending, SLAVIO_CPUINTCTLState),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_intctl = {
.name ="slavio_intctl",
.version_id = 1,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.post_load = vmstate_intctl_post_load,
.fields = (VMStateField []) {
VMSTATE_STRUCT_ARRAY(slaves, SLAVIO_INTCTLState, MAX_CPUS, 1,
vmstate_intctl_cpu, SLAVIO_CPUINTCTLState),
VMSTATE_UINT32(intregm_pending, SLAVIO_INTCTLState),
VMSTATE_UINT32(intregm_disabled, SLAVIO_INTCTLState),
VMSTATE_UINT32(target_cpu, SLAVIO_INTCTLState),
VMSTATE_END_OF_LIST()
}
};
static void slavio_intctl_reset(DeviceState *d)
{
SLAVIO_INTCTLState *s = container_of(d, SLAVIO_INTCTLState, busdev.qdev);
int i;
for (i = 0; i < MAX_CPUS; i++) {
s->slaves[i].intreg_pending = 0;
s->slaves[i].irl_out = 0;
}
s->intregm_disabled = ~MASTER_IRQ_MASK;
s->intregm_pending = 0;
s->target_cpu = 0;
slavio_check_interrupts(s, 0);
}
static int slavio_intctl_init1(SysBusDevice *dev)
{
SLAVIO_INTCTLState *s = FROM_SYSBUS(SLAVIO_INTCTLState, dev);
int io_memory;
unsigned int i, j;
qdev_init_gpio_in(&dev->qdev, slavio_set_irq_all, 32 + MAX_CPUS);
io_memory = cpu_register_io_memory(slavio_intctlm_mem_read,
slavio_intctlm_mem_write, s,
DEVICE_NATIVE_ENDIAN);
sysbus_init_mmio(dev, INTCTLM_SIZE, io_memory);
for (i = 0; i < MAX_CPUS; i++) {
for (j = 0; j < MAX_PILS; j++) {
sysbus_init_irq(dev, &s->cpu_irqs[i][j]);
}
io_memory = cpu_register_io_memory(slavio_intctl_mem_read,
slavio_intctl_mem_write,
&s->slaves[i],
DEVICE_NATIVE_ENDIAN);
sysbus_init_mmio(dev, INTCTL_SIZE, io_memory);
s->slaves[i].cpu = i;
s->slaves[i].master = s;
}
return 0;
}
static SysBusDeviceInfo slavio_intctl_info = {
.init = slavio_intctl_init1,
.qdev.name = "slavio_intctl",
.qdev.size = sizeof(SLAVIO_INTCTLState),
.qdev.vmsd = &vmstate_intctl,
.qdev.reset = slavio_intctl_reset,
};
static void slavio_intctl_register_devices(void)
{
sysbus_register_withprop(&slavio_intctl_info);
}
device_init(slavio_intctl_register_devices)