qemu-patch-raspberry4/include/block/block_int.h
Fam Zheng 67a0fd2a9b block: Add "file" output parameter to block status query functions
The added parameter can be used to return the BDS pointer which the
valid offset is referring to. Its value should be ignored unless
BDRV_BLOCK_OFFSET_VALID in ret is set.

Until block drivers fill in the right value, let's clear it explicitly
right before calling .bdrv_get_block_status.

The "bs->file" condition in bdrv_co_get_block_status is kept now to keep iotest
case 102 passing, and will be fixed once all drivers return the right file
pointer.

Signed-off-by: Fam Zheng <famz@redhat.com>
Message-id: 1453780743-16806-2-git-send-email-famz@redhat.com
Reviewed-by: Max Reitz <mreitz@redhat.com>
Signed-off-by: Max Reitz <mreitz@redhat.com>
2016-02-02 17:50:47 +01:00

716 lines
27 KiB
C

/*
* QEMU System Emulator block driver
*
* Copyright (c) 2003 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef BLOCK_INT_H
#define BLOCK_INT_H
#include "block/accounting.h"
#include "block/block.h"
#include "block/throttle-groups.h"
#include "qemu/option.h"
#include "qemu/queue.h"
#include "qemu/coroutine.h"
#include "qemu/timer.h"
#include "qapi-types.h"
#include "qemu/hbitmap.h"
#include "block/snapshot.h"
#include "qemu/main-loop.h"
#include "qemu/throttle.h"
#define BLOCK_FLAG_ENCRYPT 1
#define BLOCK_FLAG_COMPAT6 4
#define BLOCK_FLAG_LAZY_REFCOUNTS 8
#define BLOCK_OPT_SIZE "size"
#define BLOCK_OPT_ENCRYPT "encryption"
#define BLOCK_OPT_COMPAT6 "compat6"
#define BLOCK_OPT_BACKING_FILE "backing_file"
#define BLOCK_OPT_BACKING_FMT "backing_fmt"
#define BLOCK_OPT_CLUSTER_SIZE "cluster_size"
#define BLOCK_OPT_TABLE_SIZE "table_size"
#define BLOCK_OPT_PREALLOC "preallocation"
#define BLOCK_OPT_SUBFMT "subformat"
#define BLOCK_OPT_COMPAT_LEVEL "compat"
#define BLOCK_OPT_LAZY_REFCOUNTS "lazy_refcounts"
#define BLOCK_OPT_ADAPTER_TYPE "adapter_type"
#define BLOCK_OPT_REDUNDANCY "redundancy"
#define BLOCK_OPT_NOCOW "nocow"
#define BLOCK_OPT_OBJECT_SIZE "object_size"
#define BLOCK_OPT_REFCOUNT_BITS "refcount_bits"
#define BLOCK_PROBE_BUF_SIZE 512
enum BdrvTrackedRequestType {
BDRV_TRACKED_READ,
BDRV_TRACKED_WRITE,
BDRV_TRACKED_FLUSH,
BDRV_TRACKED_IOCTL,
BDRV_TRACKED_DISCARD,
};
typedef struct BdrvTrackedRequest {
BlockDriverState *bs;
int64_t offset;
unsigned int bytes;
enum BdrvTrackedRequestType type;
bool serialising;
int64_t overlap_offset;
unsigned int overlap_bytes;
QLIST_ENTRY(BdrvTrackedRequest) list;
Coroutine *co; /* owner, used for deadlock detection */
CoQueue wait_queue; /* coroutines blocked on this request */
struct BdrvTrackedRequest *waiting_for;
} BdrvTrackedRequest;
struct BlockDriver {
const char *format_name;
int instance_size;
/* set to true if the BlockDriver is a block filter */
bool is_filter;
/* for snapshots block filter like Quorum can implement the
* following recursive callback.
* It's purpose is to recurse on the filter children while calling
* bdrv_recurse_is_first_non_filter on them.
* For a sample implementation look in the future Quorum block filter.
*/
bool (*bdrv_recurse_is_first_non_filter)(BlockDriverState *bs,
BlockDriverState *candidate);
int (*bdrv_probe)(const uint8_t *buf, int buf_size, const char *filename);
int (*bdrv_probe_device)(const char *filename);
/* Any driver implementing this callback is expected to be able to handle
* NULL file names in its .bdrv_open() implementation */
void (*bdrv_parse_filename)(const char *filename, QDict *options, Error **errp);
/* Drivers not implementing bdrv_parse_filename nor bdrv_open should have
* this field set to true, except ones that are defined only by their
* child's bs.
* An example of the last type will be the quorum block driver.
*/
bool bdrv_needs_filename;
/* Set if a driver can support backing files */
bool supports_backing;
/* For handling image reopen for split or non-split files */
int (*bdrv_reopen_prepare)(BDRVReopenState *reopen_state,
BlockReopenQueue *queue, Error **errp);
void (*bdrv_reopen_commit)(BDRVReopenState *reopen_state);
void (*bdrv_reopen_abort)(BDRVReopenState *reopen_state);
void (*bdrv_join_options)(QDict *options, QDict *old_options);
int (*bdrv_open)(BlockDriverState *bs, QDict *options, int flags,
Error **errp);
int (*bdrv_file_open)(BlockDriverState *bs, QDict *options, int flags,
Error **errp);
int (*bdrv_read)(BlockDriverState *bs, int64_t sector_num,
uint8_t *buf, int nb_sectors);
int (*bdrv_write)(BlockDriverState *bs, int64_t sector_num,
const uint8_t *buf, int nb_sectors);
void (*bdrv_close)(BlockDriverState *bs);
int (*bdrv_create)(const char *filename, QemuOpts *opts, Error **errp);
int (*bdrv_set_key)(BlockDriverState *bs, const char *key);
int (*bdrv_make_empty)(BlockDriverState *bs);
void (*bdrv_refresh_filename)(BlockDriverState *bs, QDict *options);
/* aio */
BlockAIOCB *(*bdrv_aio_readv)(BlockDriverState *bs,
int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
BlockCompletionFunc *cb, void *opaque);
BlockAIOCB *(*bdrv_aio_writev)(BlockDriverState *bs,
int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
BlockCompletionFunc *cb, void *opaque);
BlockAIOCB *(*bdrv_aio_flush)(BlockDriverState *bs,
BlockCompletionFunc *cb, void *opaque);
BlockAIOCB *(*bdrv_aio_discard)(BlockDriverState *bs,
int64_t sector_num, int nb_sectors,
BlockCompletionFunc *cb, void *opaque);
int coroutine_fn (*bdrv_co_readv)(BlockDriverState *bs,
int64_t sector_num, int nb_sectors, QEMUIOVector *qiov);
int coroutine_fn (*bdrv_co_writev)(BlockDriverState *bs,
int64_t sector_num, int nb_sectors, QEMUIOVector *qiov);
/*
* Efficiently zero a region of the disk image. Typically an image format
* would use a compact metadata representation to implement this. This
* function pointer may be NULL and .bdrv_co_writev() will be called
* instead.
*/
int coroutine_fn (*bdrv_co_write_zeroes)(BlockDriverState *bs,
int64_t sector_num, int nb_sectors, BdrvRequestFlags flags);
int coroutine_fn (*bdrv_co_discard)(BlockDriverState *bs,
int64_t sector_num, int nb_sectors);
int64_t coroutine_fn (*bdrv_co_get_block_status)(BlockDriverState *bs,
int64_t sector_num, int nb_sectors, int *pnum,
BlockDriverState **file);
/*
* Invalidate any cached meta-data.
*/
void (*bdrv_invalidate_cache)(BlockDriverState *bs, Error **errp);
int (*bdrv_inactivate)(BlockDriverState *bs);
/*
* Flushes all data that was already written to the OS all the way down to
* the disk (for example raw-posix calls fsync()).
*/
int coroutine_fn (*bdrv_co_flush_to_disk)(BlockDriverState *bs);
/*
* Flushes all internal caches to the OS. The data may still sit in a
* writeback cache of the host OS, but it will survive a crash of the qemu
* process.
*/
int coroutine_fn (*bdrv_co_flush_to_os)(BlockDriverState *bs);
const char *protocol_name;
int (*bdrv_truncate)(BlockDriverState *bs, int64_t offset);
int64_t (*bdrv_getlength)(BlockDriverState *bs);
bool has_variable_length;
int64_t (*bdrv_get_allocated_file_size)(BlockDriverState *bs);
int (*bdrv_write_compressed)(BlockDriverState *bs, int64_t sector_num,
const uint8_t *buf, int nb_sectors);
int (*bdrv_snapshot_create)(BlockDriverState *bs,
QEMUSnapshotInfo *sn_info);
int (*bdrv_snapshot_goto)(BlockDriverState *bs,
const char *snapshot_id);
int (*bdrv_snapshot_delete)(BlockDriverState *bs,
const char *snapshot_id,
const char *name,
Error **errp);
int (*bdrv_snapshot_list)(BlockDriverState *bs,
QEMUSnapshotInfo **psn_info);
int (*bdrv_snapshot_load_tmp)(BlockDriverState *bs,
const char *snapshot_id,
const char *name,
Error **errp);
int (*bdrv_get_info)(BlockDriverState *bs, BlockDriverInfo *bdi);
ImageInfoSpecific *(*bdrv_get_specific_info)(BlockDriverState *bs);
int (*bdrv_save_vmstate)(BlockDriverState *bs, QEMUIOVector *qiov,
int64_t pos);
int (*bdrv_load_vmstate)(BlockDriverState *bs, uint8_t *buf,
int64_t pos, int size);
int (*bdrv_change_backing_file)(BlockDriverState *bs,
const char *backing_file, const char *backing_fmt);
/* removable device specific */
bool (*bdrv_is_inserted)(BlockDriverState *bs);
int (*bdrv_media_changed)(BlockDriverState *bs);
void (*bdrv_eject)(BlockDriverState *bs, bool eject_flag);
void (*bdrv_lock_medium)(BlockDriverState *bs, bool locked);
/* to control generic scsi devices */
BlockAIOCB *(*bdrv_aio_ioctl)(BlockDriverState *bs,
unsigned long int req, void *buf,
BlockCompletionFunc *cb, void *opaque);
/* List of options for creating images, terminated by name == NULL */
QemuOptsList *create_opts;
/*
* Returns 0 for completed check, -errno for internal errors.
* The check results are stored in result.
*/
int (*bdrv_check)(BlockDriverState* bs, BdrvCheckResult *result,
BdrvCheckMode fix);
int (*bdrv_amend_options)(BlockDriverState *bs, QemuOpts *opts,
BlockDriverAmendStatusCB *status_cb,
void *cb_opaque);
void (*bdrv_debug_event)(BlockDriverState *bs, BlkdebugEvent event);
/* TODO Better pass a option string/QDict/QemuOpts to add any rule? */
int (*bdrv_debug_breakpoint)(BlockDriverState *bs, const char *event,
const char *tag);
int (*bdrv_debug_remove_breakpoint)(BlockDriverState *bs,
const char *tag);
int (*bdrv_debug_resume)(BlockDriverState *bs, const char *tag);
bool (*bdrv_debug_is_suspended)(BlockDriverState *bs, const char *tag);
void (*bdrv_refresh_limits)(BlockDriverState *bs, Error **errp);
/*
* Returns 1 if newly created images are guaranteed to contain only
* zeros, 0 otherwise.
*/
int (*bdrv_has_zero_init)(BlockDriverState *bs);
/* Remove fd handlers, timers, and other event loop callbacks so the event
* loop is no longer in use. Called with no in-flight requests and in
* depth-first traversal order with parents before child nodes.
*/
void (*bdrv_detach_aio_context)(BlockDriverState *bs);
/* Add fd handlers, timers, and other event loop callbacks so I/O requests
* can be processed again. Called with no in-flight requests and in
* depth-first traversal order with child nodes before parent nodes.
*/
void (*bdrv_attach_aio_context)(BlockDriverState *bs,
AioContext *new_context);
/* io queue for linux-aio */
void (*bdrv_io_plug)(BlockDriverState *bs);
void (*bdrv_io_unplug)(BlockDriverState *bs);
void (*bdrv_flush_io_queue)(BlockDriverState *bs);
/**
* Try to get @bs's logical and physical block size.
* On success, store them in @bsz and return zero.
* On failure, return negative errno.
*/
int (*bdrv_probe_blocksizes)(BlockDriverState *bs, BlockSizes *bsz);
/**
* Try to get @bs's geometry (cyls, heads, sectors)
* On success, store them in @geo and return 0.
* On failure return -errno.
* Only drivers that want to override guest geometry implement this
* callback; see hd_geometry_guess().
*/
int (*bdrv_probe_geometry)(BlockDriverState *bs, HDGeometry *geo);
/**
* Drain and stop any internal sources of requests in the driver, and
* remain so until next I/O callback (e.g. bdrv_co_writev) is called.
*/
void (*bdrv_drain)(BlockDriverState *bs);
QLIST_ENTRY(BlockDriver) list;
};
typedef struct BlockLimits {
/* maximum number of sectors that can be discarded at once */
int max_discard;
/* optimal alignment for discard requests in sectors */
int64_t discard_alignment;
/* maximum number of sectors that can zeroized at once */
int max_write_zeroes;
/* optimal alignment for write zeroes requests in sectors */
int64_t write_zeroes_alignment;
/* optimal transfer length in sectors */
int opt_transfer_length;
/* maximal transfer length in sectors */
int max_transfer_length;
/* memory alignment so that no bounce buffer is needed */
size_t min_mem_alignment;
/* memory alignment for bounce buffer */
size_t opt_mem_alignment;
/* maximum number of iovec elements */
int max_iov;
} BlockLimits;
typedef struct BdrvOpBlocker BdrvOpBlocker;
typedef struct BdrvAioNotifier {
void (*attached_aio_context)(AioContext *new_context, void *opaque);
void (*detach_aio_context)(void *opaque);
void *opaque;
QLIST_ENTRY(BdrvAioNotifier) list;
} BdrvAioNotifier;
struct BdrvChildRole {
void (*inherit_options)(int *child_flags, QDict *child_options,
int parent_flags, QDict *parent_options);
};
extern const BdrvChildRole child_file;
extern const BdrvChildRole child_format;
struct BdrvChild {
BlockDriverState *bs;
char *name;
const BdrvChildRole *role;
QLIST_ENTRY(BdrvChild) next;
QLIST_ENTRY(BdrvChild) next_parent;
};
/*
* Note: the function bdrv_append() copies and swaps contents of
* BlockDriverStates, so if you add new fields to this struct, please
* inspect bdrv_append() to determine if the new fields need to be
* copied as well.
*/
struct BlockDriverState {
int64_t total_sectors; /* if we are reading a disk image, give its
size in sectors */
int read_only; /* if true, the media is read only */
int open_flags; /* flags used to open the file, re-used for re-open */
int encrypted; /* if true, the media is encrypted */
int valid_key; /* if true, a valid encryption key has been set */
int sg; /* if true, the device is a /dev/sg* */
int copy_on_read; /* if true, copy read backing sectors into image
note this is a reference count */
bool probed;
BlockDriver *drv; /* NULL means no media */
void *opaque;
BlockBackend *blk; /* owning backend, if any */
AioContext *aio_context; /* event loop used for fd handlers, timers, etc */
/* long-running tasks intended to always use the same AioContext as this
* BDS may register themselves in this list to be notified of changes
* regarding this BDS's context */
QLIST_HEAD(, BdrvAioNotifier) aio_notifiers;
char filename[PATH_MAX];
char backing_file[PATH_MAX]; /* if non zero, the image is a diff of
this file image */
char backing_format[16]; /* if non-zero and backing_file exists */
QDict *full_open_options;
char exact_filename[PATH_MAX];
BdrvChild *backing;
BdrvChild *file;
/* Callback before write request is processed */
NotifierWithReturnList before_write_notifiers;
/* number of in-flight serialising requests */
unsigned int serialising_in_flight;
/* I/O throttling.
* throttle_state tells us if this BDS has I/O limits configured.
* io_limits_enabled tells us if they are currently being
* enforced, but it can be temporarily set to false */
CoQueue throttled_reqs[2];
bool io_limits_enabled;
/* The following fields are protected by the ThrottleGroup lock.
* See the ThrottleGroup documentation for details. */
ThrottleState *throttle_state;
ThrottleTimers throttle_timers;
unsigned pending_reqs[2];
QLIST_ENTRY(BlockDriverState) round_robin;
/* Offset after the highest byte written to */
uint64_t wr_highest_offset;
/* I/O Limits */
BlockLimits bl;
/* Whether produces zeros when read beyond eof */
bool zero_beyond_eof;
/* Alignment requirement for offset/length of I/O requests */
unsigned int request_alignment;
/* do we need to tell the quest if we have a volatile write cache? */
int enable_write_cache;
/* the following member gives a name to every node on the bs graph. */
char node_name[32];
/* element of the list of named nodes building the graph */
QTAILQ_ENTRY(BlockDriverState) node_list;
/* element of the list of "drives" the guest sees */
QTAILQ_ENTRY(BlockDriverState) device_list;
/* element of the list of all BlockDriverStates (all_bdrv_states) */
QTAILQ_ENTRY(BlockDriverState) bs_list;
/* element of the list of monitor-owned BDS */
QTAILQ_ENTRY(BlockDriverState) monitor_list;
QLIST_HEAD(, BdrvDirtyBitmap) dirty_bitmaps;
int refcnt;
QLIST_HEAD(, BdrvTrackedRequest) tracked_requests;
/* operation blockers */
QLIST_HEAD(, BdrvOpBlocker) op_blockers[BLOCK_OP_TYPE_MAX];
/* long-running background operation */
BlockJob *job;
/* The node that this node inherited default options from (and a reopen on
* which can affect this node by changing these defaults). This is always a
* parent node of this node. */
BlockDriverState *inherits_from;
QLIST_HEAD(, BdrvChild) children;
QLIST_HEAD(, BdrvChild) parents;
QDict *options;
QDict *explicit_options;
BlockdevDetectZeroesOptions detect_zeroes;
/* The error object in use for blocking operations on backing_hd */
Error *backing_blocker;
/* threshold limit for writes, in bytes. "High water mark". */
uint64_t write_threshold_offset;
NotifierWithReturn write_threshold_notifier;
int quiesce_counter;
};
struct BlockBackendRootState {
int open_flags;
bool read_only;
BlockdevDetectZeroesOptions detect_zeroes;
char *throttle_group;
ThrottleState *throttle_state;
};
static inline BlockDriverState *backing_bs(BlockDriverState *bs)
{
return bs->backing ? bs->backing->bs : NULL;
}
/* Essential block drivers which must always be statically linked into qemu, and
* which therefore can be accessed without using bdrv_find_format() */
extern BlockDriver bdrv_file;
extern BlockDriver bdrv_raw;
extern BlockDriver bdrv_qcow2;
extern QTAILQ_HEAD(BdrvStates, BlockDriverState) bdrv_states;
/**
* bdrv_setup_io_funcs:
*
* Prepare a #BlockDriver for I/O request processing by populating
* unimplemented coroutine and AIO interfaces with generic wrapper functions
* that fall back to implemented interfaces.
*/
void bdrv_setup_io_funcs(BlockDriver *bdrv);
int get_tmp_filename(char *filename, int size);
BlockDriver *bdrv_probe_all(const uint8_t *buf, int buf_size,
const char *filename);
void bdrv_set_io_limits(BlockDriverState *bs,
ThrottleConfig *cfg);
/**
* bdrv_add_before_write_notifier:
*
* Register a callback that is invoked before write requests are processed but
* after any throttling or waiting for overlapping requests.
*/
void bdrv_add_before_write_notifier(BlockDriverState *bs,
NotifierWithReturn *notifier);
/**
* bdrv_detach_aio_context:
*
* May be called from .bdrv_detach_aio_context() to detach children from the
* current #AioContext. This is only needed by block drivers that manage their
* own children. Both ->file and ->backing are automatically handled and
* block drivers should not call this function on them explicitly.
*/
void bdrv_detach_aio_context(BlockDriverState *bs);
/**
* bdrv_attach_aio_context:
*
* May be called from .bdrv_attach_aio_context() to attach children to the new
* #AioContext. This is only needed by block drivers that manage their own
* children. Both ->file and ->backing are automatically handled and block
* drivers should not call this function on them explicitly.
*/
void bdrv_attach_aio_context(BlockDriverState *bs,
AioContext *new_context);
/**
* bdrv_add_aio_context_notifier:
*
* If a long-running job intends to be always run in the same AioContext as a
* certain BDS, it may use this function to be notified of changes regarding the
* association of the BDS to an AioContext.
*
* attached_aio_context() is called after the target BDS has been attached to a
* new AioContext; detach_aio_context() is called before the target BDS is being
* detached from its old AioContext.
*/
void bdrv_add_aio_context_notifier(BlockDriverState *bs,
void (*attached_aio_context)(AioContext *new_context, void *opaque),
void (*detach_aio_context)(void *opaque), void *opaque);
/**
* bdrv_remove_aio_context_notifier:
*
* Unsubscribe of change notifications regarding the BDS's AioContext. The
* parameters given here have to be the same as those given to
* bdrv_add_aio_context_notifier().
*/
void bdrv_remove_aio_context_notifier(BlockDriverState *bs,
void (*aio_context_attached)(AioContext *,
void *),
void (*aio_context_detached)(void *),
void *opaque);
#ifdef _WIN32
int is_windows_drive(const char *filename);
#endif
/**
* stream_start:
* @bs: Block device to operate on.
* @base: Block device that will become the new base, or %NULL to
* flatten the whole backing file chain onto @bs.
* @base_id: The file name that will be written to @bs as the new
* backing file if the job completes. Ignored if @base is %NULL.
* @speed: The maximum speed, in bytes per second, or 0 for unlimited.
* @on_error: The action to take upon error.
* @cb: Completion function for the job.
* @opaque: Opaque pointer value passed to @cb.
* @errp: Error object.
*
* Start a streaming operation on @bs. Clusters that are unallocated
* in @bs, but allocated in any image between @base and @bs (both
* exclusive) will be written to @bs. At the end of a successful
* streaming job, the backing file of @bs will be changed to
* @base_id in the written image and to @base in the live BlockDriverState.
*/
void stream_start(BlockDriverState *bs, BlockDriverState *base,
const char *base_id, int64_t speed, BlockdevOnError on_error,
BlockCompletionFunc *cb,
void *opaque, Error **errp);
/**
* commit_start:
* @bs: Active block device.
* @top: Top block device to be committed.
* @base: Block device that will be written into, and become the new top.
* @speed: The maximum speed, in bytes per second, or 0 for unlimited.
* @on_error: The action to take upon error.
* @cb: Completion function for the job.
* @opaque: Opaque pointer value passed to @cb.
* @backing_file_str: String to use as the backing file in @top's overlay
* @errp: Error object.
*
*/
void commit_start(BlockDriverState *bs, BlockDriverState *base,
BlockDriverState *top, int64_t speed,
BlockdevOnError on_error, BlockCompletionFunc *cb,
void *opaque, const char *backing_file_str, Error **errp);
/**
* commit_active_start:
* @bs: Active block device to be committed.
* @base: Block device that will be written into, and become the new top.
* @speed: The maximum speed, in bytes per second, or 0 for unlimited.
* @on_error: The action to take upon error.
* @cb: Completion function for the job.
* @opaque: Opaque pointer value passed to @cb.
* @errp: Error object.
*
*/
void commit_active_start(BlockDriverState *bs, BlockDriverState *base,
int64_t speed,
BlockdevOnError on_error,
BlockCompletionFunc *cb,
void *opaque, Error **errp);
/*
* mirror_start:
* @bs: Block device to operate on.
* @target: Block device to write to.
* @replaces: Block graph node name to replace once the mirror is done. Can
* only be used when full mirroring is selected.
* @speed: The maximum speed, in bytes per second, or 0 for unlimited.
* @granularity: The chosen granularity for the dirty bitmap.
* @buf_size: The amount of data that can be in flight at one time.
* @mode: Whether to collapse all images in the chain to the target.
* @on_source_error: The action to take upon error reading from the source.
* @on_target_error: The action to take upon error writing to the target.
* @unmap: Whether to unmap target where source sectors only contain zeroes.
* @cb: Completion function for the job.
* @opaque: Opaque pointer value passed to @cb.
* @errp: Error object.
*
* Start a mirroring operation on @bs. Clusters that are allocated
* in @bs will be written to @bs until the job is cancelled or
* manually completed. At the end of a successful mirroring job,
* @bs will be switched to read from @target.
*/
void mirror_start(BlockDriverState *bs, BlockDriverState *target,
const char *replaces,
int64_t speed, uint32_t granularity, int64_t buf_size,
MirrorSyncMode mode, BlockdevOnError on_source_error,
BlockdevOnError on_target_error,
bool unmap,
BlockCompletionFunc *cb,
void *opaque, Error **errp);
/*
* backup_start:
* @bs: Block device to operate on.
* @target: Block device to write to.
* @speed: The maximum speed, in bytes per second, or 0 for unlimited.
* @sync_mode: What parts of the disk image should be copied to the destination.
* @sync_bitmap: The dirty bitmap if sync_mode is MIRROR_SYNC_MODE_INCREMENTAL.
* @on_source_error: The action to take upon error reading from the source.
* @on_target_error: The action to take upon error writing to the target.
* @cb: Completion function for the job.
* @opaque: Opaque pointer value passed to @cb.
* @txn: Transaction that this job is part of (may be NULL).
*
* Start a backup operation on @bs. Clusters in @bs are written to @target
* until the job is cancelled or manually completed.
*/
void backup_start(BlockDriverState *bs, BlockDriverState *target,
int64_t speed, MirrorSyncMode sync_mode,
BdrvDirtyBitmap *sync_bitmap,
BlockdevOnError on_source_error,
BlockdevOnError on_target_error,
BlockCompletionFunc *cb, void *opaque,
BlockJobTxn *txn, Error **errp);
void blk_set_bs(BlockBackend *blk, BlockDriverState *bs);
void blk_dev_change_media_cb(BlockBackend *blk, bool load);
bool blk_dev_has_removable_media(BlockBackend *blk);
bool blk_dev_has_tray(BlockBackend *blk);
void blk_dev_eject_request(BlockBackend *blk, bool force);
bool blk_dev_is_tray_open(BlockBackend *blk);
bool blk_dev_is_medium_locked(BlockBackend *blk);
void blk_dev_resize_cb(BlockBackend *blk);
void bdrv_set_dirty(BlockDriverState *bs, int64_t cur_sector, int nr_sectors);
bool bdrv_requests_pending(BlockDriverState *bs);
void bdrv_clear_dirty_bitmap(BdrvDirtyBitmap *bitmap, HBitmap **out);
void bdrv_undo_clear_dirty_bitmap(BdrvDirtyBitmap *bitmap, HBitmap *in);
void blockdev_close_all_bdrv_states(void);
#endif /* BLOCK_INT_H */