qemu-patch-raspberry4/hw/display/exynos4210_fimd.c
Igor Mitsyanko 522fccbe71 exynos4210_fimd.c: fix display resize bug introduced after console revamp
In exynos4210 display update function, we were acquiring DisplaySurface
pointer before calling screen resize function, not paying attention that resize
procedure can replace current DisplaySurface with newly allocated one.
Right thing to do is to initialize DisplaySurface AFTER a call to resize function.

Signed-off-by: Igor Mitsyanko <i.mitsyanko@gmail.com>
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
2013-04-16 09:03:46 +02:00

1932 lines
68 KiB
C

/*
* Samsung exynos4210 Display Controller (FIMD)
*
* Copyright (c) 2000 - 2011 Samsung Electronics Co., Ltd.
* All rights reserved.
* Based on LCD controller for Samsung S5PC1xx-based board emulation
* by Kirill Batuzov <batuzovk@ispras.ru>
*
* Contributed by Mitsyanko Igor <i.mitsyanko@samsung.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu-common.h"
#include "hw/sysbus.h"
#include "ui/console.h"
#include "ui/pixel_ops.h"
#include "qemu/bswap.h"
/* Debug messages configuration */
#define EXYNOS4210_FIMD_DEBUG 0
#define EXYNOS4210_FIMD_MODE_TRACE 0
#if EXYNOS4210_FIMD_DEBUG == 0
#define DPRINT_L1(fmt, args...) do { } while (0)
#define DPRINT_L2(fmt, args...) do { } while (0)
#define DPRINT_ERROR(fmt, args...) do { } while (0)
#elif EXYNOS4210_FIMD_DEBUG == 1
#define DPRINT_L1(fmt, args...) \
do {fprintf(stderr, "QEMU FIMD: "fmt, ## args); } while (0)
#define DPRINT_L2(fmt, args...) do { } while (0)
#define DPRINT_ERROR(fmt, args...) \
do {fprintf(stderr, "QEMU FIMD ERROR: "fmt, ## args); } while (0)
#else
#define DPRINT_L1(fmt, args...) \
do {fprintf(stderr, "QEMU FIMD: "fmt, ## args); } while (0)
#define DPRINT_L2(fmt, args...) \
do {fprintf(stderr, "QEMU FIMD: "fmt, ## args); } while (0)
#define DPRINT_ERROR(fmt, args...) \
do {fprintf(stderr, "QEMU FIMD ERROR: "fmt, ## args); } while (0)
#endif
#if EXYNOS4210_FIMD_MODE_TRACE == 0
#define DPRINT_TRACE(fmt, args...) do { } while (0)
#else
#define DPRINT_TRACE(fmt, args...) \
do {fprintf(stderr, "QEMU FIMD: "fmt, ## args); } while (0)
#endif
#define NUM_OF_WINDOWS 5
#define FIMD_REGS_SIZE 0x4114
/* Video main control registers */
#define FIMD_VIDCON0 0x0000
#define FIMD_VIDCON1 0x0004
#define FIMD_VIDCON2 0x0008
#define FIMD_VIDCON3 0x000C
#define FIMD_VIDCON0_ENVID_F (1 << 0)
#define FIMD_VIDCON0_ENVID (1 << 1)
#define FIMD_VIDCON0_ENVID_MASK ((1 << 0) | (1 << 1))
#define FIMD_VIDCON1_ROMASK 0x07FFE000
/* Video time control registers */
#define FIMD_VIDTCON_START 0x10
#define FIMD_VIDTCON_END 0x1C
#define FIMD_VIDTCON2_SIZE_MASK 0x07FF
#define FIMD_VIDTCON2_HOR_SHIFT 0
#define FIMD_VIDTCON2_VER_SHIFT 11
/* Window control registers */
#define FIMD_WINCON_START 0x0020
#define FIMD_WINCON_END 0x0030
#define FIMD_WINCON_ROMASK 0x82200000
#define FIMD_WINCON_ENWIN (1 << 0)
#define FIMD_WINCON_BLD_PIX (1 << 6)
#define FIMD_WINCON_ALPHA_MUL (1 << 7)
#define FIMD_WINCON_ALPHA_SEL (1 << 1)
#define FIMD_WINCON_SWAP 0x078000
#define FIMD_WINCON_SWAP_SHIFT 15
#define FIMD_WINCON_SWAP_WORD 0x1
#define FIMD_WINCON_SWAP_HWORD 0x2
#define FIMD_WINCON_SWAP_BYTE 0x4
#define FIMD_WINCON_SWAP_BITS 0x8
#define FIMD_WINCON_BUFSTAT_L (1 << 21)
#define FIMD_WINCON_BUFSTAT_H (1 << 31)
#define FIMD_WINCON_BUFSTATUS ((1 << 21) | (1 << 31))
#define FIMD_WINCON_BUF0_STAT ((0 << 21) | (0 << 31))
#define FIMD_WINCON_BUF1_STAT ((1 << 21) | (0 << 31))
#define FIMD_WINCON_BUF2_STAT ((0 << 21) | (1 << 31))
#define FIMD_WINCON_BUFSELECT ((1 << 20) | (1 << 30))
#define FIMD_WINCON_BUF0_SEL ((0 << 20) | (0 << 30))
#define FIMD_WINCON_BUF1_SEL ((1 << 20) | (0 << 30))
#define FIMD_WINCON_BUF2_SEL ((0 << 20) | (1 << 30))
#define FIMD_WINCON_BUFMODE (1 << 14)
#define IS_PALETTIZED_MODE(w) (w->wincon & 0xC)
#define PAL_MODE_WITH_ALPHA(x) ((x) == 7)
#define WIN_BPP_MODE(w) ((w->wincon >> 2) & 0xF)
#define WIN_BPP_MODE_WITH_ALPHA(w) \
(WIN_BPP_MODE(w) == 0xD || WIN_BPP_MODE(w) == 0xE)
/* Shadow control register */
#define FIMD_SHADOWCON 0x0034
#define FIMD_WINDOW_PROTECTED(s, w) ((s) & (1 << (10 + (w))))
/* Channel mapping control register */
#define FIMD_WINCHMAP 0x003C
/* Window position control registers */
#define FIMD_VIDOSD_START 0x0040
#define FIMD_VIDOSD_END 0x0088
#define FIMD_VIDOSD_COORD_MASK 0x07FF
#define FIMD_VIDOSD_HOR_SHIFT 11
#define FIMD_VIDOSD_VER_SHIFT 0
#define FIMD_VIDOSD_ALPHA_AEN0 0xFFF000
#define FIMD_VIDOSD_AEN0_SHIFT 12
#define FIMD_VIDOSD_ALPHA_AEN1 0x000FFF
/* Frame buffer address registers */
#define FIMD_VIDWADD0_START 0x00A0
#define FIMD_VIDWADD0_END 0x00C4
#define FIMD_VIDWADD0_END 0x00C4
#define FIMD_VIDWADD1_START 0x00D0
#define FIMD_VIDWADD1_END 0x00F4
#define FIMD_VIDWADD2_START 0x0100
#define FIMD_VIDWADD2_END 0x0110
#define FIMD_VIDWADD2_PAGEWIDTH 0x1FFF
#define FIMD_VIDWADD2_OFFSIZE 0x1FFF
#define FIMD_VIDWADD2_OFFSIZE_SHIFT 13
#define FIMD_VIDW0ADD0_B2 0x20A0
#define FIMD_VIDW4ADD0_B2 0x20C0
/* Video interrupt control registers */
#define FIMD_VIDINTCON0 0x130
#define FIMD_VIDINTCON1 0x134
/* Window color key registers */
#define FIMD_WKEYCON_START 0x140
#define FIMD_WKEYCON_END 0x15C
#define FIMD_WKEYCON0_COMPKEY 0x00FFFFFF
#define FIMD_WKEYCON0_CTL_SHIFT 24
#define FIMD_WKEYCON0_DIRCON (1 << 24)
#define FIMD_WKEYCON0_KEYEN (1 << 25)
#define FIMD_WKEYCON0_KEYBLEN (1 << 26)
/* Window color key alpha control register */
#define FIMD_WKEYALPHA_START 0x160
#define FIMD_WKEYALPHA_END 0x16C
/* Dithering control register */
#define FIMD_DITHMODE 0x170
/* Window alpha control registers */
#define FIMD_VIDALPHA_ALPHA_LOWER 0x000F0F0F
#define FIMD_VIDALPHA_ALPHA_UPPER 0x00F0F0F0
#define FIMD_VIDWALPHA_START 0x21C
#define FIMD_VIDWALPHA_END 0x240
/* Window color map registers */
#define FIMD_WINMAP_START 0x180
#define FIMD_WINMAP_END 0x190
#define FIMD_WINMAP_EN (1 << 24)
#define FIMD_WINMAP_COLOR_MASK 0x00FFFFFF
/* Window palette control registers */
#define FIMD_WPALCON_HIGH 0x019C
#define FIMD_WPALCON_LOW 0x01A0
#define FIMD_WPALCON_UPDATEEN (1 << 9)
#define FIMD_WPAL_W0PAL_L 0x07
#define FIMD_WPAL_W0PAL_L_SHT 0
#define FIMD_WPAL_W1PAL_L 0x07
#define FIMD_WPAL_W1PAL_L_SHT 3
#define FIMD_WPAL_W2PAL_L 0x01
#define FIMD_WPAL_W2PAL_L_SHT 6
#define FIMD_WPAL_W2PAL_H 0x06
#define FIMD_WPAL_W2PAL_H_SHT 8
#define FIMD_WPAL_W3PAL_L 0x01
#define FIMD_WPAL_W3PAL_L_SHT 7
#define FIMD_WPAL_W3PAL_H 0x06
#define FIMD_WPAL_W3PAL_H_SHT 12
#define FIMD_WPAL_W4PAL_L 0x01
#define FIMD_WPAL_W4PAL_L_SHT 8
#define FIMD_WPAL_W4PAL_H 0x06
#define FIMD_WPAL_W4PAL_H_SHT 16
/* Trigger control registers */
#define FIMD_TRIGCON 0x01A4
#define FIMD_TRIGCON_ROMASK 0x00000004
/* LCD I80 Interface Control */
#define FIMD_I80IFCON_START 0x01B0
#define FIMD_I80IFCON_END 0x01BC
/* Color gain control register */
#define FIMD_COLORGAINCON 0x01C0
/* LCD i80 Interface Command Control */
#define FIMD_LDI_CMDCON0 0x01D0
#define FIMD_LDI_CMDCON1 0x01D4
/* I80 System Interface Manual Command Control */
#define FIMD_SIFCCON0 0x01E0
#define FIMD_SIFCCON2 0x01E8
/* Hue Control Registers */
#define FIMD_HUECOEFCR_START 0x01EC
#define FIMD_HUECOEFCR_END 0x01F4
#define FIMD_HUECOEFCB_START 0x01FC
#define FIMD_HUECOEFCB_END 0x0208
#define FIMD_HUEOFFSET 0x020C
/* Video interrupt control registers */
#define FIMD_VIDINT_INTFIFOPEND (1 << 0)
#define FIMD_VIDINT_INTFRMPEND (1 << 1)
#define FIMD_VIDINT_INTI80PEND (1 << 2)
#define FIMD_VIDINT_INTEN (1 << 0)
#define FIMD_VIDINT_INTFIFOEN (1 << 1)
#define FIMD_VIDINT_INTFRMEN (1 << 12)
#define FIMD_VIDINT_I80IFDONE (1 << 17)
/* Window blend equation control registers */
#define FIMD_BLENDEQ_START 0x0244
#define FIMD_BLENDEQ_END 0x0250
#define FIMD_BLENDCON 0x0260
#define FIMD_ALPHA_8BIT (1 << 0)
#define FIMD_BLENDEQ_COEF_MASK 0xF
/* Window RTQOS Control Registers */
#define FIMD_WRTQOSCON_START 0x0264
#define FIMD_WRTQOSCON_END 0x0274
/* LCD I80 Interface Command */
#define FIMD_I80IFCMD_START 0x0280
#define FIMD_I80IFCMD_END 0x02AC
/* Shadow windows control registers */
#define FIMD_SHD_ADD0_START 0x40A0
#define FIMD_SHD_ADD0_END 0x40C0
#define FIMD_SHD_ADD1_START 0x40D0
#define FIMD_SHD_ADD1_END 0x40F0
#define FIMD_SHD_ADD2_START 0x4100
#define FIMD_SHD_ADD2_END 0x4110
/* Palette memory */
#define FIMD_PAL_MEM_START 0x2400
#define FIMD_PAL_MEM_END 0x37FC
/* Palette memory aliases for windows 0 and 1 */
#define FIMD_PALMEM_AL_START 0x0400
#define FIMD_PALMEM_AL_END 0x0BFC
typedef struct {
uint8_t r, g, b;
/* D[31..24]dummy, D[23..16]rAlpha, D[15..8]gAlpha, D[7..0]bAlpha */
uint32_t a;
} rgba;
#define RGBA_SIZE 7
typedef void pixel_to_rgb_func(uint32_t pixel, rgba *p);
typedef struct Exynos4210fimdWindow Exynos4210fimdWindow;
struct Exynos4210fimdWindow {
uint32_t wincon; /* Window control register */
uint32_t buf_start[3]; /* Start address for video frame buffer */
uint32_t buf_end[3]; /* End address for video frame buffer */
uint32_t keycon[2]; /* Window color key registers */
uint32_t keyalpha; /* Color key alpha control register */
uint32_t winmap; /* Window color map register */
uint32_t blendeq; /* Window blending equation control register */
uint32_t rtqoscon; /* Window RTQOS Control Registers */
uint32_t palette[256]; /* Palette RAM */
uint32_t shadow_buf_start; /* Start address of shadow frame buffer */
uint32_t shadow_buf_end; /* End address of shadow frame buffer */
uint32_t shadow_buf_size; /* Virtual shadow screen width */
pixel_to_rgb_func *pixel_to_rgb;
void (*draw_line)(Exynos4210fimdWindow *w, uint8_t *src, uint8_t *dst,
bool blend);
uint32_t (*get_alpha)(Exynos4210fimdWindow *w, uint32_t pix_a);
uint16_t lefttop_x, lefttop_y; /* VIDOSD0 register */
uint16_t rightbot_x, rightbot_y; /* VIDOSD1 register */
uint32_t osdsize; /* VIDOSD2&3 register */
uint32_t alpha_val[2]; /* VIDOSD2&3, VIDWALPHA registers */
uint16_t virtpage_width; /* VIDWADD2 register */
uint16_t virtpage_offsize; /* VIDWADD2 register */
MemoryRegionSection mem_section; /* RAM fragment containing framebuffer */
uint8_t *host_fb_addr; /* Host pointer to window's framebuffer */
hwaddr fb_len; /* Framebuffer length */
};
typedef struct {
SysBusDevice busdev;
MemoryRegion iomem;
QemuConsole *console;
qemu_irq irq[3];
uint32_t vidcon[4]; /* Video main control registers 0-3 */
uint32_t vidtcon[4]; /* Video time control registers 0-3 */
uint32_t shadowcon; /* Window shadow control register */
uint32_t winchmap; /* Channel mapping control register */
uint32_t vidintcon[2]; /* Video interrupt control registers */
uint32_t dithmode; /* Dithering control register */
uint32_t wpalcon[2]; /* Window palette control registers */
uint32_t trigcon; /* Trigger control register */
uint32_t i80ifcon[4]; /* I80 interface control registers */
uint32_t colorgaincon; /* Color gain control register */
uint32_t ldi_cmdcon[2]; /* LCD I80 interface command control */
uint32_t sifccon[3]; /* I80 System Interface Manual Command Control */
uint32_t huecoef_cr[4]; /* Hue control registers */
uint32_t huecoef_cb[4]; /* Hue control registers */
uint32_t hueoffset; /* Hue offset control register */
uint32_t blendcon; /* Blending control register */
uint32_t i80ifcmd[12]; /* LCD I80 Interface Command */
Exynos4210fimdWindow window[5]; /* Window-specific registers */
uint8_t *ifb; /* Internal frame buffer */
bool invalidate; /* Image needs to be redrawn */
bool enabled; /* Display controller is enabled */
} Exynos4210fimdState;
/* Perform byte/halfword/word swap of data according to WINCON */
static inline void fimd_swap_data(unsigned int swap_ctl, uint64_t *data)
{
int i;
uint64_t res;
uint64_t x = *data;
if (swap_ctl & FIMD_WINCON_SWAP_BITS) {
res = 0;
for (i = 0; i < 64; i++) {
if (x & (1ULL << (64 - i))) {
res |= (1ULL << i);
}
}
x = res;
}
if (swap_ctl & FIMD_WINCON_SWAP_BYTE) {
x = bswap64(x);
}
if (swap_ctl & FIMD_WINCON_SWAP_HWORD) {
x = ((x & 0x000000000000FFFFULL) << 48) |
((x & 0x00000000FFFF0000ULL) << 16) |
((x & 0x0000FFFF00000000ULL) >> 16) |
((x & 0xFFFF000000000000ULL) >> 48);
}
if (swap_ctl & FIMD_WINCON_SWAP_WORD) {
x = ((x & 0x00000000FFFFFFFFULL) << 32) |
((x & 0xFFFFFFFF00000000ULL) >> 32);
}
*data = x;
}
/* Conversion routines of Pixel data from frame buffer area to internal RGBA
* pixel representation.
* Every color component internally represented as 8-bit value. If original
* data has less than 8 bit for component, data is extended to 8 bit. For
* example, if blue component has only two possible values 0 and 1 it will be
* extended to 0 and 0xFF */
/* One bit for alpha representation */
#define DEF_PIXEL_TO_RGB_A1(N, R, G, B) \
static void N(uint32_t pixel, rgba *p) \
{ \
p->b = ((pixel & ((1 << (B)) - 1)) << (8 - (B))) | \
((pixel >> (2 * (B) - 8)) & ((1 << (8 - (B))) - 1)); \
pixel >>= (B); \
p->g = (pixel & ((1 << (G)) - 1)) << (8 - (G)) | \
((pixel >> (2 * (G) - 8)) & ((1 << (8 - (G))) - 1)); \
pixel >>= (G); \
p->r = (pixel & ((1 << (R)) - 1)) << (8 - (R)) | \
((pixel >> (2 * (R) - 8)) & ((1 << (8 - (R))) - 1)); \
pixel >>= (R); \
p->a = (pixel & 0x1); \
}
DEF_PIXEL_TO_RGB_A1(pixel_a444_to_rgb, 4, 4, 4)
DEF_PIXEL_TO_RGB_A1(pixel_a555_to_rgb, 5, 5, 5)
DEF_PIXEL_TO_RGB_A1(pixel_a666_to_rgb, 6, 6, 6)
DEF_PIXEL_TO_RGB_A1(pixel_a665_to_rgb, 6, 6, 5)
DEF_PIXEL_TO_RGB_A1(pixel_a888_to_rgb, 8, 8, 8)
DEF_PIXEL_TO_RGB_A1(pixel_a887_to_rgb, 8, 8, 7)
/* Alpha component is always zero */
#define DEF_PIXEL_TO_RGB_A0(N, R, G, B) \
static void N(uint32_t pixel, rgba *p) \
{ \
p->b = ((pixel & ((1 << (B)) - 1)) << (8 - (B))) | \
((pixel >> (2 * (B) - 8)) & ((1 << (8 - (B))) - 1)); \
pixel >>= (B); \
p->g = (pixel & ((1 << (G)) - 1)) << (8 - (G)) | \
((pixel >> (2 * (G) - 8)) & ((1 << (8 - (G))) - 1)); \
pixel >>= (G); \
p->r = (pixel & ((1 << (R)) - 1)) << (8 - (R)) | \
((pixel >> (2 * (R) - 8)) & ((1 << (8 - (R))) - 1)); \
p->a = 0x0; \
}
DEF_PIXEL_TO_RGB_A0(pixel_565_to_rgb, 5, 6, 5)
DEF_PIXEL_TO_RGB_A0(pixel_555_to_rgb, 5, 5, 5)
DEF_PIXEL_TO_RGB_A0(pixel_666_to_rgb, 6, 6, 6)
DEF_PIXEL_TO_RGB_A0(pixel_888_to_rgb, 8, 8, 8)
/* Alpha component has some meaningful value */
#define DEF_PIXEL_TO_RGB_A(N, R, G, B, A) \
static void N(uint32_t pixel, rgba *p) \
{ \
p->b = ((pixel & ((1 << (B)) - 1)) << (8 - (B))) | \
((pixel >> (2 * (B) - 8)) & ((1 << (8 - (B))) - 1)); \
pixel >>= (B); \
p->g = (pixel & ((1 << (G)) - 1)) << (8 - (G)) | \
((pixel >> (2 * (G) - 8)) & ((1 << (8 - (G))) - 1)); \
pixel >>= (G); \
p->r = (pixel & ((1 << (R)) - 1)) << (8 - (R)) | \
((pixel >> (2 * (R) - 8)) & ((1 << (8 - (R))) - 1)); \
pixel >>= (R); \
p->a = (pixel & ((1 << (A)) - 1)) << (8 - (A)) | \
((pixel >> (2 * (A) - 8)) & ((1 << (8 - (A))) - 1)); \
p->a = p->a | (p->a << 8) | (p->a << 16); \
}
DEF_PIXEL_TO_RGB_A(pixel_4444_to_rgb, 4, 4, 4, 4)
DEF_PIXEL_TO_RGB_A(pixel_8888_to_rgb, 8, 8, 8, 8)
/* Lookup table to extent 2-bit color component to 8 bit */
static const uint8_t pixel_lutable_2b[4] = {
0x0, 0x55, 0xAA, 0xFF
};
/* Lookup table to extent 3-bit color component to 8 bit */
static const uint8_t pixel_lutable_3b[8] = {
0x0, 0x24, 0x49, 0x6D, 0x92, 0xB6, 0xDB, 0xFF
};
/* Special case for a232 bpp mode */
static void pixel_a232_to_rgb(uint32_t pixel, rgba *p)
{
p->b = pixel_lutable_2b[(pixel & 0x3)];
pixel >>= 2;
p->g = pixel_lutable_3b[(pixel & 0x7)];
pixel >>= 3;
p->r = pixel_lutable_2b[(pixel & 0x3)];
pixel >>= 2;
p->a = (pixel & 0x1);
}
/* Special case for (5+1, 5+1, 5+1) mode. Data bit 15 is common LSB
* for all three color components */
static void pixel_1555_to_rgb(uint32_t pixel, rgba *p)
{
uint8_t comm = (pixel >> 15) & 1;
p->b = ((((pixel & 0x1F) << 1) | comm) << 2) | ((pixel >> 3) & 0x3);
pixel >>= 5;
p->g = ((((pixel & 0x1F) << 1) | comm) << 2) | ((pixel >> 3) & 0x3);
pixel >>= 5;
p->r = ((((pixel & 0x1F) << 1) | comm) << 2) | ((pixel >> 3) & 0x3);
p->a = 0x0;
}
/* Put/get pixel to/from internal LCD Controller framebuffer */
static int put_pixel_ifb(const rgba p, uint8_t *d)
{
*(uint8_t *)d++ = p.r;
*(uint8_t *)d++ = p.g;
*(uint8_t *)d++ = p.b;
*(uint32_t *)d = p.a;
return RGBA_SIZE;
}
static int get_pixel_ifb(const uint8_t *s, rgba *p)
{
p->r = *(uint8_t *)s++;
p->g = *(uint8_t *)s++;
p->b = *(uint8_t *)s++;
p->a = (*(uint32_t *)s) & 0x00FFFFFF;
return RGBA_SIZE;
}
static pixel_to_rgb_func *palette_data_format[8] = {
[0] = pixel_565_to_rgb,
[1] = pixel_a555_to_rgb,
[2] = pixel_666_to_rgb,
[3] = pixel_a665_to_rgb,
[4] = pixel_a666_to_rgb,
[5] = pixel_888_to_rgb,
[6] = pixel_a888_to_rgb,
[7] = pixel_8888_to_rgb
};
/* Returns Index in palette data formats table for given window number WINDOW */
static uint32_t
exynos4210_fimd_palette_format(Exynos4210fimdState *s, int window)
{
uint32_t ret;
switch (window) {
case 0:
ret = (s->wpalcon[1] >> FIMD_WPAL_W0PAL_L_SHT) & FIMD_WPAL_W0PAL_L;
if (ret != 7) {
ret = 6 - ret;
}
break;
case 1:
ret = (s->wpalcon[1] >> FIMD_WPAL_W1PAL_L_SHT) & FIMD_WPAL_W1PAL_L;
if (ret != 7) {
ret = 6 - ret;
}
break;
case 2:
ret = ((s->wpalcon[0] >> FIMD_WPAL_W2PAL_H_SHT) & FIMD_WPAL_W2PAL_H) |
((s->wpalcon[1] >> FIMD_WPAL_W2PAL_L_SHT) & FIMD_WPAL_W2PAL_L);
break;
case 3:
ret = ((s->wpalcon[0] >> FIMD_WPAL_W3PAL_H_SHT) & FIMD_WPAL_W3PAL_H) |
((s->wpalcon[1] >> FIMD_WPAL_W3PAL_L_SHT) & FIMD_WPAL_W3PAL_L);
break;
case 4:
ret = ((s->wpalcon[0] >> FIMD_WPAL_W4PAL_H_SHT) & FIMD_WPAL_W4PAL_H) |
((s->wpalcon[1] >> FIMD_WPAL_W4PAL_L_SHT) & FIMD_WPAL_W4PAL_L);
break;
default:
hw_error("exynos4210.fimd: incorrect window number %d\n", window);
ret = 0;
break;
}
return ret;
}
#define FIMD_1_MINUS_COLOR(x) \
((0xFF - ((x) & 0xFF)) | (0xFF00 - ((x) & 0xFF00)) | \
(0xFF0000 - ((x) & 0xFF0000)))
#define EXTEND_LOWER_HALFBYTE(x) (((x) & 0xF0F0F) | (((x) << 4) & 0xF0F0F0))
#define EXTEND_UPPER_HALFBYTE(x) (((x) & 0xF0F0F0) | (((x) >> 4) & 0xF0F0F))
/* Multiply three lower bytes of two 32-bit words with each other.
* Each byte with values 0-255 is considered as a number with possible values
* in a range [0 - 1] */
static inline uint32_t fimd_mult_each_byte(uint32_t a, uint32_t b)
{
uint32_t tmp;
uint32_t ret;
ret = ((tmp = (((a & 0xFF) * (b & 0xFF)) / 0xFF)) > 0xFF) ? 0xFF : tmp;
ret |= ((tmp = ((((a >> 8) & 0xFF) * ((b >> 8) & 0xFF)) / 0xFF)) > 0xFF) ?
0xFF00 : tmp << 8;
ret |= ((tmp = ((((a >> 16) & 0xFF) * ((b >> 16) & 0xFF)) / 0xFF)) > 0xFF) ?
0xFF0000 : tmp << 16;
return ret;
}
/* For each corresponding bytes of two 32-bit words: (a*b + c*d)
* Byte values 0-255 are mapped to a range [0 .. 1] */
static inline uint32_t
fimd_mult_and_sum_each_byte(uint32_t a, uint32_t b, uint32_t c, uint32_t d)
{
uint32_t tmp;
uint32_t ret;
ret = ((tmp = (((a & 0xFF) * (b & 0xFF) + (c & 0xFF) * (d & 0xFF)) / 0xFF))
> 0xFF) ? 0xFF : tmp;
ret |= ((tmp = ((((a >> 8) & 0xFF) * ((b >> 8) & 0xFF) + ((c >> 8) & 0xFF) *
((d >> 8) & 0xFF)) / 0xFF)) > 0xFF) ? 0xFF00 : tmp << 8;
ret |= ((tmp = ((((a >> 16) & 0xFF) * ((b >> 16) & 0xFF) +
((c >> 16) & 0xFF) * ((d >> 16) & 0xFF)) / 0xFF)) > 0xFF) ?
0xFF0000 : tmp << 16;
return ret;
}
/* These routines cover all possible sources of window's transparent factor
* used in blending equation. Choice of routine is affected by WPALCON
* registers, BLENDCON register and window's WINCON register */
static uint32_t fimd_get_alpha_pix(Exynos4210fimdWindow *w, uint32_t pix_a)
{
return pix_a;
}
static uint32_t
fimd_get_alpha_pix_extlow(Exynos4210fimdWindow *w, uint32_t pix_a)
{
return EXTEND_LOWER_HALFBYTE(pix_a);
}
static uint32_t
fimd_get_alpha_pix_exthigh(Exynos4210fimdWindow *w, uint32_t pix_a)
{
return EXTEND_UPPER_HALFBYTE(pix_a);
}
static uint32_t fimd_get_alpha_mult(Exynos4210fimdWindow *w, uint32_t pix_a)
{
return fimd_mult_each_byte(pix_a, w->alpha_val[0]);
}
static uint32_t fimd_get_alpha_mult_ext(Exynos4210fimdWindow *w, uint32_t pix_a)
{
return fimd_mult_each_byte(EXTEND_LOWER_HALFBYTE(pix_a),
EXTEND_UPPER_HALFBYTE(w->alpha_val[0]));
}
static uint32_t fimd_get_alpha_aen(Exynos4210fimdWindow *w, uint32_t pix_a)
{
return w->alpha_val[pix_a];
}
static uint32_t fimd_get_alpha_aen_ext(Exynos4210fimdWindow *w, uint32_t pix_a)
{
return EXTEND_UPPER_HALFBYTE(w->alpha_val[pix_a]);
}
static uint32_t fimd_get_alpha_sel(Exynos4210fimdWindow *w, uint32_t pix_a)
{
return w->alpha_val[(w->wincon & FIMD_WINCON_ALPHA_SEL) ? 1 : 0];
}
static uint32_t fimd_get_alpha_sel_ext(Exynos4210fimdWindow *w, uint32_t pix_a)
{
return EXTEND_UPPER_HALFBYTE(w->alpha_val[(w->wincon &
FIMD_WINCON_ALPHA_SEL) ? 1 : 0]);
}
/* Updates currently active alpha value get function for specified window */
static void fimd_update_get_alpha(Exynos4210fimdState *s, int win)
{
Exynos4210fimdWindow *w = &s->window[win];
const bool alpha_is_8bit = s->blendcon & FIMD_ALPHA_8BIT;
if (w->wincon & FIMD_WINCON_BLD_PIX) {
if ((w->wincon & FIMD_WINCON_ALPHA_SEL) && WIN_BPP_MODE_WITH_ALPHA(w)) {
/* In this case, alpha component contains meaningful value */
if (w->wincon & FIMD_WINCON_ALPHA_MUL) {
w->get_alpha = alpha_is_8bit ?
fimd_get_alpha_mult : fimd_get_alpha_mult_ext;
} else {
w->get_alpha = alpha_is_8bit ?
fimd_get_alpha_pix : fimd_get_alpha_pix_extlow;
}
} else {
if (IS_PALETTIZED_MODE(w) &&
PAL_MODE_WITH_ALPHA(exynos4210_fimd_palette_format(s, win))) {
/* Alpha component has 8-bit numeric value */
w->get_alpha = alpha_is_8bit ?
fimd_get_alpha_pix : fimd_get_alpha_pix_exthigh;
} else {
/* Alpha has only two possible values (AEN) */
w->get_alpha = alpha_is_8bit ?
fimd_get_alpha_aen : fimd_get_alpha_aen_ext;
}
}
} else {
w->get_alpha = alpha_is_8bit ? fimd_get_alpha_sel :
fimd_get_alpha_sel_ext;
}
}
/* Blends current window's (w) pixel (foreground pixel *ret) with background
* window (w_blend) pixel p_bg according to formula:
* NEW_COLOR = a_coef x FG_PIXEL_COLOR + b_coef x BG_PIXEL_COLOR
* NEW_ALPHA = p_coef x FG_ALPHA + q_coef x BG_ALPHA
*/
static void
exynos4210_fimd_blend_pixel(Exynos4210fimdWindow *w, rgba p_bg, rgba *ret)
{
rgba p_fg = *ret;
uint32_t bg_color = ((p_bg.r & 0xFF) << 16) | ((p_bg.g & 0xFF) << 8) |
(p_bg.b & 0xFF);
uint32_t fg_color = ((p_fg.r & 0xFF) << 16) | ((p_fg.g & 0xFF) << 8) |
(p_fg.b & 0xFF);
uint32_t alpha_fg = p_fg.a;
int i;
/* It is possible that blending equation parameters a and b do not
* depend on window BLENEQ register. Account for this with first_coef */
enum { A_COEF = 0, B_COEF = 1, P_COEF = 2, Q_COEF = 3, COEF_NUM = 4};
uint32_t first_coef = A_COEF;
uint32_t blend_param[COEF_NUM];
if (w->keycon[0] & FIMD_WKEYCON0_KEYEN) {
uint32_t colorkey = (w->keycon[1] &
~(w->keycon[0] & FIMD_WKEYCON0_COMPKEY)) & FIMD_WKEYCON0_COMPKEY;
if ((w->keycon[0] & FIMD_WKEYCON0_DIRCON) &&
(bg_color & ~(w->keycon[0] & FIMD_WKEYCON0_COMPKEY)) == colorkey) {
/* Foreground pixel is displayed */
if (w->keycon[0] & FIMD_WKEYCON0_KEYBLEN) {
alpha_fg = w->keyalpha;
blend_param[A_COEF] = alpha_fg;
blend_param[B_COEF] = FIMD_1_MINUS_COLOR(alpha_fg);
} else {
alpha_fg = 0;
blend_param[A_COEF] = 0xFFFFFF;
blend_param[B_COEF] = 0x0;
}
first_coef = P_COEF;
} else if ((w->keycon[0] & FIMD_WKEYCON0_DIRCON) == 0 &&
(fg_color & ~(w->keycon[0] & FIMD_WKEYCON0_COMPKEY)) == colorkey) {
/* Background pixel is displayed */
if (w->keycon[0] & FIMD_WKEYCON0_KEYBLEN) {
alpha_fg = w->keyalpha;
blend_param[A_COEF] = alpha_fg;
blend_param[B_COEF] = FIMD_1_MINUS_COLOR(alpha_fg);
} else {
alpha_fg = 0;
blend_param[A_COEF] = 0x0;
blend_param[B_COEF] = 0xFFFFFF;
}
first_coef = P_COEF;
}
}
for (i = first_coef; i < COEF_NUM; i++) {
switch ((w->blendeq >> i * 6) & FIMD_BLENDEQ_COEF_MASK) {
case 0:
blend_param[i] = 0;
break;
case 1:
blend_param[i] = 0xFFFFFF;
break;
case 2:
blend_param[i] = alpha_fg;
break;
case 3:
blend_param[i] = FIMD_1_MINUS_COLOR(alpha_fg);
break;
case 4:
blend_param[i] = p_bg.a;
break;
case 5:
blend_param[i] = FIMD_1_MINUS_COLOR(p_bg.a);
break;
case 6:
blend_param[i] = w->alpha_val[0];
break;
case 10:
blend_param[i] = fg_color;
break;
case 11:
blend_param[i] = FIMD_1_MINUS_COLOR(fg_color);
break;
case 12:
blend_param[i] = bg_color;
break;
case 13:
blend_param[i] = FIMD_1_MINUS_COLOR(bg_color);
break;
default:
hw_error("exynos4210.fimd: blend equation coef illegal value\n");
break;
}
}
fg_color = fimd_mult_and_sum_each_byte(bg_color, blend_param[B_COEF],
fg_color, blend_param[A_COEF]);
ret->b = fg_color & 0xFF;
fg_color >>= 8;
ret->g = fg_color & 0xFF;
fg_color >>= 8;
ret->r = fg_color & 0xFF;
ret->a = fimd_mult_and_sum_each_byte(alpha_fg, blend_param[P_COEF],
p_bg.a, blend_param[Q_COEF]);
}
/* These routines read data from video frame buffer in system RAM, convert
* this data to display controller internal representation, if necessary,
* perform pixel blending with data, currently presented in internal buffer.
* Result is stored in display controller internal frame buffer. */
/* Draw line with index in palette table in RAM frame buffer data */
#define DEF_DRAW_LINE_PALETTE(N) \
static void glue(draw_line_palette_, N)(Exynos4210fimdWindow *w, uint8_t *src, \
uint8_t *dst, bool blend) \
{ \
int width = w->rightbot_x - w->lefttop_x + 1; \
uint8_t *ifb = dst; \
uint8_t swap = (w->wincon & FIMD_WINCON_SWAP) >> FIMD_WINCON_SWAP_SHIFT; \
uint64_t data; \
rgba p, p_old; \
int i; \
do { \
memcpy(&data, src, sizeof(data)); \
src += 8; \
fimd_swap_data(swap, &data); \
for (i = (64 / (N) - 1); i >= 0; i--) { \
w->pixel_to_rgb(w->palette[(data >> ((N) * i)) & \
((1ULL << (N)) - 1)], &p); \
p.a = w->get_alpha(w, p.a); \
if (blend) { \
ifb += get_pixel_ifb(ifb, &p_old); \
exynos4210_fimd_blend_pixel(w, p_old, &p); \
} \
dst += put_pixel_ifb(p, dst); \
} \
width -= (64 / (N)); \
} while (width > 0); \
}
/* Draw line with direct color value in RAM frame buffer data */
#define DEF_DRAW_LINE_NOPALETTE(N) \
static void glue(draw_line_, N)(Exynos4210fimdWindow *w, uint8_t *src, \
uint8_t *dst, bool blend) \
{ \
int width = w->rightbot_x - w->lefttop_x + 1; \
uint8_t *ifb = dst; \
uint8_t swap = (w->wincon & FIMD_WINCON_SWAP) >> FIMD_WINCON_SWAP_SHIFT; \
uint64_t data; \
rgba p, p_old; \
int i; \
do { \
memcpy(&data, src, sizeof(data)); \
src += 8; \
fimd_swap_data(swap, &data); \
for (i = (64 / (N) - 1); i >= 0; i--) { \
w->pixel_to_rgb((data >> ((N) * i)) & ((1ULL << (N)) - 1), &p); \
p.a = w->get_alpha(w, p.a); \
if (blend) { \
ifb += get_pixel_ifb(ifb, &p_old); \
exynos4210_fimd_blend_pixel(w, p_old, &p); \
} \
dst += put_pixel_ifb(p, dst); \
} \
width -= (64 / (N)); \
} while (width > 0); \
}
DEF_DRAW_LINE_PALETTE(1)
DEF_DRAW_LINE_PALETTE(2)
DEF_DRAW_LINE_PALETTE(4)
DEF_DRAW_LINE_PALETTE(8)
DEF_DRAW_LINE_NOPALETTE(8) /* 8bpp mode has palette and non-palette versions */
DEF_DRAW_LINE_NOPALETTE(16)
DEF_DRAW_LINE_NOPALETTE(32)
/* Special draw line routine for window color map case */
static void draw_line_mapcolor(Exynos4210fimdWindow *w, uint8_t *src,
uint8_t *dst, bool blend)
{
rgba p, p_old;
uint8_t *ifb = dst;
int width = w->rightbot_x - w->lefttop_x + 1;
uint32_t map_color = w->winmap & FIMD_WINMAP_COLOR_MASK;
do {
pixel_888_to_rgb(map_color, &p);
p.a = w->get_alpha(w, p.a);
if (blend) {
ifb += get_pixel_ifb(ifb, &p_old);
exynos4210_fimd_blend_pixel(w, p_old, &p);
}
dst += put_pixel_ifb(p, dst);
} while (--width);
}
/* Write RGB to QEMU's GraphicConsole framebuffer */
static int put_to_qemufb_pixel8(const rgba p, uint8_t *d)
{
uint32_t pixel = rgb_to_pixel8(p.r, p.g, p.b);
*(uint8_t *)d = pixel;
return 1;
}
static int put_to_qemufb_pixel15(const rgba p, uint8_t *d)
{
uint32_t pixel = rgb_to_pixel15(p.r, p.g, p.b);
*(uint16_t *)d = pixel;
return 2;
}
static int put_to_qemufb_pixel16(const rgba p, uint8_t *d)
{
uint32_t pixel = rgb_to_pixel16(p.r, p.g, p.b);
*(uint16_t *)d = pixel;
return 2;
}
static int put_to_qemufb_pixel24(const rgba p, uint8_t *d)
{
uint32_t pixel = rgb_to_pixel24(p.r, p.g, p.b);
*(uint8_t *)d++ = (pixel >> 0) & 0xFF;
*(uint8_t *)d++ = (pixel >> 8) & 0xFF;
*(uint8_t *)d++ = (pixel >> 16) & 0xFF;
return 3;
}
static int put_to_qemufb_pixel32(const rgba p, uint8_t *d)
{
uint32_t pixel = rgb_to_pixel24(p.r, p.g, p.b);
*(uint32_t *)d = pixel;
return 4;
}
/* Routine to copy pixel from internal buffer to QEMU buffer */
static int (*put_pixel_toqemu)(const rgba p, uint8_t *pixel);
static inline void fimd_update_putpix_qemu(int bpp)
{
switch (bpp) {
case 8:
put_pixel_toqemu = put_to_qemufb_pixel8;
break;
case 15:
put_pixel_toqemu = put_to_qemufb_pixel15;
break;
case 16:
put_pixel_toqemu = put_to_qemufb_pixel16;
break;
case 24:
put_pixel_toqemu = put_to_qemufb_pixel24;
break;
case 32:
put_pixel_toqemu = put_to_qemufb_pixel32;
break;
default:
hw_error("exynos4210.fimd: unsupported BPP (%d)", bpp);
break;
}
}
/* Routine to copy a line from internal frame buffer to QEMU display */
static void fimd_copy_line_toqemu(int width, uint8_t *src, uint8_t *dst)
{
rgba p;
do {
src += get_pixel_ifb(src, &p);
dst += put_pixel_toqemu(p, dst);
} while (--width);
}
/* Parse BPPMODE_F = WINCON1[5:2] bits */
static void exynos4210_fimd_update_win_bppmode(Exynos4210fimdState *s, int win)
{
Exynos4210fimdWindow *w = &s->window[win];
if (w->winmap & FIMD_WINMAP_EN) {
w->draw_line = draw_line_mapcolor;
return;
}
switch (WIN_BPP_MODE(w)) {
case 0:
w->draw_line = draw_line_palette_1;
w->pixel_to_rgb =
palette_data_format[exynos4210_fimd_palette_format(s, win)];
break;
case 1:
w->draw_line = draw_line_palette_2;
w->pixel_to_rgb =
palette_data_format[exynos4210_fimd_palette_format(s, win)];
break;
case 2:
w->draw_line = draw_line_palette_4;
w->pixel_to_rgb =
palette_data_format[exynos4210_fimd_palette_format(s, win)];
break;
case 3:
w->draw_line = draw_line_palette_8;
w->pixel_to_rgb =
palette_data_format[exynos4210_fimd_palette_format(s, win)];
break;
case 4:
w->draw_line = draw_line_8;
w->pixel_to_rgb = pixel_a232_to_rgb;
break;
case 5:
w->draw_line = draw_line_16;
w->pixel_to_rgb = pixel_565_to_rgb;
break;
case 6:
w->draw_line = draw_line_16;
w->pixel_to_rgb = pixel_a555_to_rgb;
break;
case 7:
w->draw_line = draw_line_16;
w->pixel_to_rgb = pixel_1555_to_rgb;
break;
case 8:
w->draw_line = draw_line_32;
w->pixel_to_rgb = pixel_666_to_rgb;
break;
case 9:
w->draw_line = draw_line_32;
w->pixel_to_rgb = pixel_a665_to_rgb;
break;
case 10:
w->draw_line = draw_line_32;
w->pixel_to_rgb = pixel_a666_to_rgb;
break;
case 11:
w->draw_line = draw_line_32;
w->pixel_to_rgb = pixel_888_to_rgb;
break;
case 12:
w->draw_line = draw_line_32;
w->pixel_to_rgb = pixel_a887_to_rgb;
break;
case 13:
w->draw_line = draw_line_32;
if ((w->wincon & FIMD_WINCON_BLD_PIX) && (w->wincon &
FIMD_WINCON_ALPHA_SEL)) {
w->pixel_to_rgb = pixel_8888_to_rgb;
} else {
w->pixel_to_rgb = pixel_a888_to_rgb;
}
break;
case 14:
w->draw_line = draw_line_16;
if ((w->wincon & FIMD_WINCON_BLD_PIX) && (w->wincon &
FIMD_WINCON_ALPHA_SEL)) {
w->pixel_to_rgb = pixel_4444_to_rgb;
} else {
w->pixel_to_rgb = pixel_a444_to_rgb;
}
break;
case 15:
w->draw_line = draw_line_16;
w->pixel_to_rgb = pixel_555_to_rgb;
break;
}
}
#if EXYNOS4210_FIMD_MODE_TRACE > 0
static const char *exynos4210_fimd_get_bppmode(int mode_code)
{
switch (mode_code) {
case 0:
return "1 bpp";
case 1:
return "2 bpp";
case 2:
return "4 bpp";
case 3:
return "8 bpp (palettized)";
case 4:
return "8 bpp (non-palettized, A: 1-R:2-G:3-B:2)";
case 5:
return "16 bpp (non-palettized, R:5-G:6-B:5)";
case 6:
return "16 bpp (non-palettized, A:1-R:5-G:5-B:5)";
case 7:
return "16 bpp (non-palettized, I :1-R:5-G:5-B:5)";
case 8:
return "Unpacked 18 bpp (non-palettized, R:6-G:6-B:6)";
case 9:
return "Unpacked 18bpp (non-palettized,A:1-R:6-G:6-B:5)";
case 10:
return "Unpacked 19bpp (non-palettized,A:1-R:6-G:6-B:6)";
case 11:
return "Unpacked 24 bpp (non-palettized R:8-G:8-B:8)";
case 12:
return "Unpacked 24 bpp (non-palettized A:1-R:8-G:8-B:7)";
case 13:
return "Unpacked 25 bpp (non-palettized A:1-R:8-G:8-B:8)";
case 14:
return "Unpacked 13 bpp (non-palettized A:1-R:4-G:4-B:4)";
case 15:
return "Unpacked 15 bpp (non-palettized R:5-G:5-B:5)";
default:
return "Non-existing bpp mode";
}
}
static inline void exynos4210_fimd_trace_bppmode(Exynos4210fimdState *s,
int win_num, uint32_t val)
{
Exynos4210fimdWindow *w = &s->window[win_num];
if (w->winmap & FIMD_WINMAP_EN) {
printf("QEMU FIMD: Window %d is mapped with MAPCOLOR=0x%x\n",
win_num, w->winmap & 0xFFFFFF);
return;
}
if ((val != 0xFFFFFFFF) && ((w->wincon >> 2) & 0xF) == ((val >> 2) & 0xF)) {
return;
}
printf("QEMU FIMD: Window %d BPP mode set to %s\n", win_num,
exynos4210_fimd_get_bppmode((val >> 2) & 0xF));
}
#else
static inline void exynos4210_fimd_trace_bppmode(Exynos4210fimdState *s,
int win_num, uint32_t val)
{
}
#endif
static inline int fimd_get_buffer_id(Exynos4210fimdWindow *w)
{
switch (w->wincon & FIMD_WINCON_BUFSTATUS) {
case FIMD_WINCON_BUF0_STAT:
return 0;
case FIMD_WINCON_BUF1_STAT:
return 1;
case FIMD_WINCON_BUF2_STAT:
return 2;
default:
DPRINT_ERROR("Non-existent buffer index\n");
return 0;
}
}
/* Updates specified window's MemorySection based on values of WINCON,
* VIDOSDA, VIDOSDB, VIDWADDx and SHADOWCON registers */
static void fimd_update_memory_section(Exynos4210fimdState *s, unsigned win)
{
Exynos4210fimdWindow *w = &s->window[win];
hwaddr fb_start_addr, fb_mapped_len;
if (!s->enabled || !(w->wincon & FIMD_WINCON_ENWIN) ||
FIMD_WINDOW_PROTECTED(s->shadowcon, win)) {
return;
}
if (w->host_fb_addr) {
cpu_physical_memory_unmap(w->host_fb_addr, w->fb_len, 0, 0);
w->host_fb_addr = NULL;
w->fb_len = 0;
}
fb_start_addr = w->buf_start[fimd_get_buffer_id(w)];
/* Total number of bytes of virtual screen used by current window */
w->fb_len = fb_mapped_len = (w->virtpage_width + w->virtpage_offsize) *
(w->rightbot_y - w->lefttop_y + 1);
w->mem_section = memory_region_find(sysbus_address_space(&s->busdev),
fb_start_addr, w->fb_len);
assert(w->mem_section.mr);
assert(w->mem_section.offset_within_address_space == fb_start_addr);
DPRINT_TRACE("Window %u framebuffer changed: address=0x%08x, len=0x%x\n",
win, fb_start_addr, w->fb_len);
if (w->mem_section.size != w->fb_len ||
!memory_region_is_ram(w->mem_section.mr)) {
DPRINT_ERROR("Failed to find window %u framebuffer region\n", win);
goto error_return;
}
w->host_fb_addr = cpu_physical_memory_map(fb_start_addr, &fb_mapped_len, 0);
if (!w->host_fb_addr) {
DPRINT_ERROR("Failed to map window %u framebuffer\n", win);
goto error_return;
}
if (fb_mapped_len != w->fb_len) {
DPRINT_ERROR("Window %u mapped framebuffer length is less then "
"expected\n", win);
cpu_physical_memory_unmap(w->host_fb_addr, fb_mapped_len, 0, 0);
goto error_return;
}
return;
error_return:
w->mem_section.mr = NULL;
w->mem_section.size = 0;
w->host_fb_addr = NULL;
w->fb_len = 0;
}
static void exynos4210_fimd_enable(Exynos4210fimdState *s, bool enabled)
{
if (enabled && !s->enabled) {
unsigned w;
s->enabled = true;
for (w = 0; w < NUM_OF_WINDOWS; w++) {
fimd_update_memory_section(s, w);
}
}
s->enabled = enabled;
DPRINT_TRACE("display controller %s\n", enabled ? "enabled" : "disabled");
}
static inline uint32_t unpack_upper_4(uint32_t x)
{
return ((x & 0xF00) << 12) | ((x & 0xF0) << 8) | ((x & 0xF) << 4);
}
static inline uint32_t pack_upper_4(uint32_t x)
{
return (((x & 0xF00000) >> 12) | ((x & 0xF000) >> 8) |
((x & 0xF0) >> 4)) & 0xFFF;
}
static void exynos4210_fimd_update_irq(Exynos4210fimdState *s)
{
if (!(s->vidintcon[0] & FIMD_VIDINT_INTEN)) {
qemu_irq_lower(s->irq[0]);
qemu_irq_lower(s->irq[1]);
qemu_irq_lower(s->irq[2]);
return;
}
if ((s->vidintcon[0] & FIMD_VIDINT_INTFIFOEN) &&
(s->vidintcon[1] & FIMD_VIDINT_INTFIFOPEND)) {
qemu_irq_raise(s->irq[0]);
} else {
qemu_irq_lower(s->irq[0]);
}
if ((s->vidintcon[0] & FIMD_VIDINT_INTFRMEN) &&
(s->vidintcon[1] & FIMD_VIDINT_INTFRMPEND)) {
qemu_irq_raise(s->irq[1]);
} else {
qemu_irq_lower(s->irq[1]);
}
if ((s->vidintcon[0] & FIMD_VIDINT_I80IFDONE) &&
(s->vidintcon[1] & FIMD_VIDINT_INTI80PEND)) {
qemu_irq_raise(s->irq[2]);
} else {
qemu_irq_lower(s->irq[2]);
}
}
static void exynos4210_fimd_invalidate(void *opaque)
{
Exynos4210fimdState *s = (Exynos4210fimdState *)opaque;
s->invalidate = true;
}
static void exynos4210_update_resolution(Exynos4210fimdState *s)
{
DisplaySurface *surface = qemu_console_surface(s->console);
/* LCD resolution is stored in VIDEO TIME CONTROL REGISTER 2 */
uint32_t width = ((s->vidtcon[2] >> FIMD_VIDTCON2_HOR_SHIFT) &
FIMD_VIDTCON2_SIZE_MASK) + 1;
uint32_t height = ((s->vidtcon[2] >> FIMD_VIDTCON2_VER_SHIFT) &
FIMD_VIDTCON2_SIZE_MASK) + 1;
if (s->ifb == NULL || surface_width(surface) != width ||
surface_height(surface) != height) {
DPRINT_L1("Resolution changed from %ux%u to %ux%u\n",
surface_width(surface), surface_height(surface), width, height);
qemu_console_resize(s->console, width, height);
s->ifb = g_realloc(s->ifb, width * height * RGBA_SIZE + 1);
memset(s->ifb, 0, width * height * RGBA_SIZE + 1);
exynos4210_fimd_invalidate(s);
}
}
static void exynos4210_fimd_update(void *opaque)
{
Exynos4210fimdState *s = (Exynos4210fimdState *)opaque;
DisplaySurface *surface;
Exynos4210fimdWindow *w;
int i, line;
hwaddr fb_line_addr, inc_size;
int scrn_height;
int first_line = -1, last_line = -1, scrn_width;
bool blend = false;
uint8_t *host_fb_addr;
bool is_dirty = false;
const int global_width = (s->vidtcon[2] & FIMD_VIDTCON2_SIZE_MASK) + 1;
const int global_height = ((s->vidtcon[2] >> FIMD_VIDTCON2_VER_SHIFT) &
FIMD_VIDTCON2_SIZE_MASK) + 1;
if (!s || !s->console || !s->enabled ||
surface_bits_per_pixel(qemu_console_surface(s->console)) == 0) {
return;
}
exynos4210_update_resolution(s);
surface = qemu_console_surface(s->console);
for (i = 0; i < NUM_OF_WINDOWS; i++) {
w = &s->window[i];
if ((w->wincon & FIMD_WINCON_ENWIN) && w->host_fb_addr) {
scrn_height = w->rightbot_y - w->lefttop_y + 1;
scrn_width = w->virtpage_width;
/* Total width of virtual screen page in bytes */
inc_size = scrn_width + w->virtpage_offsize;
memory_region_sync_dirty_bitmap(w->mem_section.mr);
host_fb_addr = w->host_fb_addr;
fb_line_addr = w->mem_section.offset_within_region;
for (line = 0; line < scrn_height; line++) {
is_dirty = memory_region_get_dirty(w->mem_section.mr,
fb_line_addr, scrn_width, DIRTY_MEMORY_VGA);
if (s->invalidate || is_dirty) {
if (first_line == -1) {
first_line = line;
}
last_line = line;
w->draw_line(w, host_fb_addr, s->ifb +
w->lefttop_x * RGBA_SIZE + (w->lefttop_y + line) *
global_width * RGBA_SIZE, blend);
}
host_fb_addr += inc_size;
fb_line_addr += inc_size;
is_dirty = false;
}
memory_region_reset_dirty(w->mem_section.mr,
w->mem_section.offset_within_region,
w->fb_len, DIRTY_MEMORY_VGA);
blend = true;
}
}
/* Copy resulting image to QEMU_CONSOLE. */
if (first_line >= 0) {
uint8_t *d;
int bpp;
bpp = surface_bits_per_pixel(surface);
fimd_update_putpix_qemu(bpp);
bpp = (bpp + 1) >> 3;
d = surface_data(surface);
for (line = first_line; line <= last_line; line++) {
fimd_copy_line_toqemu(global_width, s->ifb + global_width * line *
RGBA_SIZE, d + global_width * line * bpp);
}
dpy_gfx_update(s->console, 0, 0, global_width, global_height);
}
s->invalidate = false;
s->vidintcon[1] |= FIMD_VIDINT_INTFRMPEND;
if ((s->vidcon[0] & FIMD_VIDCON0_ENVID_F) == 0) {
exynos4210_fimd_enable(s, false);
}
exynos4210_fimd_update_irq(s);
}
static void exynos4210_fimd_reset(DeviceState *d)
{
Exynos4210fimdState *s = DO_UPCAST(Exynos4210fimdState, busdev.qdev, d);
unsigned w;
DPRINT_TRACE("Display controller reset\n");
/* Set all display controller registers to 0 */
memset(&s->vidcon, 0, (uint8_t *)&s->window - (uint8_t *)&s->vidcon);
for (w = 0; w < NUM_OF_WINDOWS; w++) {
memset(&s->window[w], 0, sizeof(Exynos4210fimdWindow));
s->window[w].blendeq = 0xC2;
exynos4210_fimd_update_win_bppmode(s, w);
exynos4210_fimd_trace_bppmode(s, w, 0xFFFFFFFF);
fimd_update_get_alpha(s, w);
}
if (s->ifb != NULL) {
g_free(s->ifb);
}
s->ifb = NULL;
exynos4210_fimd_invalidate(s);
exynos4210_fimd_enable(s, false);
/* Some registers have non-zero initial values */
s->winchmap = 0x7D517D51;
s->colorgaincon = 0x10040100;
s->huecoef_cr[0] = s->huecoef_cr[3] = 0x01000100;
s->huecoef_cb[0] = s->huecoef_cb[3] = 0x01000100;
s->hueoffset = 0x01800080;
}
static void exynos4210_fimd_write(void *opaque, hwaddr offset,
uint64_t val, unsigned size)
{
Exynos4210fimdState *s = (Exynos4210fimdState *)opaque;
unsigned w, i;
uint32_t old_value;
DPRINT_L2("write offset 0x%08x, value=%llu(0x%08llx)\n", offset,
(long long unsigned int)val, (long long unsigned int)val);
switch (offset) {
case FIMD_VIDCON0:
if ((val & FIMD_VIDCON0_ENVID_MASK) == FIMD_VIDCON0_ENVID_MASK) {
exynos4210_fimd_enable(s, true);
} else {
if ((val & FIMD_VIDCON0_ENVID) == 0) {
exynos4210_fimd_enable(s, false);
}
}
s->vidcon[0] = val;
break;
case FIMD_VIDCON1:
/* Leave read-only bits as is */
val = (val & (~FIMD_VIDCON1_ROMASK)) |
(s->vidcon[1] & FIMD_VIDCON1_ROMASK);
s->vidcon[1] = val;
break;
case FIMD_VIDCON2 ... FIMD_VIDCON3:
s->vidcon[(offset) >> 2] = val;
break;
case FIMD_VIDTCON_START ... FIMD_VIDTCON_END:
s->vidtcon[(offset - FIMD_VIDTCON_START) >> 2] = val;
break;
case FIMD_WINCON_START ... FIMD_WINCON_END:
w = (offset - FIMD_WINCON_START) >> 2;
/* Window's current buffer ID */
i = fimd_get_buffer_id(&s->window[w]);
old_value = s->window[w].wincon;
val = (val & ~FIMD_WINCON_ROMASK) |
(s->window[w].wincon & FIMD_WINCON_ROMASK);
if (w == 0) {
/* Window 0 wincon ALPHA_MUL bit must always be 0 */
val &= ~FIMD_WINCON_ALPHA_MUL;
}
exynos4210_fimd_trace_bppmode(s, w, val);
switch (val & FIMD_WINCON_BUFSELECT) {
case FIMD_WINCON_BUF0_SEL:
val &= ~FIMD_WINCON_BUFSTATUS;
break;
case FIMD_WINCON_BUF1_SEL:
val = (val & ~FIMD_WINCON_BUFSTAT_H) | FIMD_WINCON_BUFSTAT_L;
break;
case FIMD_WINCON_BUF2_SEL:
if (val & FIMD_WINCON_BUFMODE) {
val = (val & ~FIMD_WINCON_BUFSTAT_L) | FIMD_WINCON_BUFSTAT_H;
}
break;
default:
break;
}
s->window[w].wincon = val;
exynos4210_fimd_update_win_bppmode(s, w);
fimd_update_get_alpha(s, w);
if ((i != fimd_get_buffer_id(&s->window[w])) ||
(!(old_value & FIMD_WINCON_ENWIN) && (s->window[w].wincon &
FIMD_WINCON_ENWIN))) {
fimd_update_memory_section(s, w);
}
break;
case FIMD_SHADOWCON:
old_value = s->shadowcon;
s->shadowcon = val;
for (w = 0; w < NUM_OF_WINDOWS; w++) {
if (FIMD_WINDOW_PROTECTED(old_value, w) &&
!FIMD_WINDOW_PROTECTED(s->shadowcon, w)) {
fimd_update_memory_section(s, w);
}
}
break;
case FIMD_WINCHMAP:
s->winchmap = val;
break;
case FIMD_VIDOSD_START ... FIMD_VIDOSD_END:
w = (offset - FIMD_VIDOSD_START) >> 4;
i = ((offset - FIMD_VIDOSD_START) & 0xF) >> 2;
switch (i) {
case 0:
old_value = s->window[w].lefttop_y;
s->window[w].lefttop_x = (val >> FIMD_VIDOSD_HOR_SHIFT) &
FIMD_VIDOSD_COORD_MASK;
s->window[w].lefttop_y = (val >> FIMD_VIDOSD_VER_SHIFT) &
FIMD_VIDOSD_COORD_MASK;
if (s->window[w].lefttop_y != old_value) {
fimd_update_memory_section(s, w);
}
break;
case 1:
old_value = s->window[w].rightbot_y;
s->window[w].rightbot_x = (val >> FIMD_VIDOSD_HOR_SHIFT) &
FIMD_VIDOSD_COORD_MASK;
s->window[w].rightbot_y = (val >> FIMD_VIDOSD_VER_SHIFT) &
FIMD_VIDOSD_COORD_MASK;
if (s->window[w].rightbot_y != old_value) {
fimd_update_memory_section(s, w);
}
break;
case 2:
if (w == 0) {
s->window[w].osdsize = val;
} else {
s->window[w].alpha_val[0] =
unpack_upper_4((val & FIMD_VIDOSD_ALPHA_AEN0) >>
FIMD_VIDOSD_AEN0_SHIFT) |
(s->window[w].alpha_val[0] & FIMD_VIDALPHA_ALPHA_LOWER);
s->window[w].alpha_val[1] =
unpack_upper_4(val & FIMD_VIDOSD_ALPHA_AEN1) |
(s->window[w].alpha_val[1] & FIMD_VIDALPHA_ALPHA_LOWER);
}
break;
case 3:
if (w != 1 && w != 2) {
DPRINT_ERROR("Bad write offset 0x%08x\n", offset);
return;
}
s->window[w].osdsize = val;
break;
}
break;
case FIMD_VIDWADD0_START ... FIMD_VIDWADD0_END:
w = (offset - FIMD_VIDWADD0_START) >> 3;
i = ((offset - FIMD_VIDWADD0_START) >> 2) & 1;
if (i == fimd_get_buffer_id(&s->window[w]) &&
s->window[w].buf_start[i] != val) {
s->window[w].buf_start[i] = val;
fimd_update_memory_section(s, w);
break;
}
s->window[w].buf_start[i] = val;
break;
case FIMD_VIDWADD1_START ... FIMD_VIDWADD1_END:
w = (offset - FIMD_VIDWADD1_START) >> 3;
i = ((offset - FIMD_VIDWADD1_START) >> 2) & 1;
s->window[w].buf_end[i] = val;
break;
case FIMD_VIDWADD2_START ... FIMD_VIDWADD2_END:
w = (offset - FIMD_VIDWADD2_START) >> 2;
if (((val & FIMD_VIDWADD2_PAGEWIDTH) != s->window[w].virtpage_width) ||
(((val >> FIMD_VIDWADD2_OFFSIZE_SHIFT) & FIMD_VIDWADD2_OFFSIZE) !=
s->window[w].virtpage_offsize)) {
s->window[w].virtpage_width = val & FIMD_VIDWADD2_PAGEWIDTH;
s->window[w].virtpage_offsize =
(val >> FIMD_VIDWADD2_OFFSIZE_SHIFT) & FIMD_VIDWADD2_OFFSIZE;
fimd_update_memory_section(s, w);
}
break;
case FIMD_VIDINTCON0:
s->vidintcon[0] = val;
break;
case FIMD_VIDINTCON1:
s->vidintcon[1] &= ~(val & 7);
exynos4210_fimd_update_irq(s);
break;
case FIMD_WKEYCON_START ... FIMD_WKEYCON_END:
w = ((offset - FIMD_WKEYCON_START) >> 3) + 1;
i = ((offset - FIMD_WKEYCON_START) >> 2) & 1;
s->window[w].keycon[i] = val;
break;
case FIMD_WKEYALPHA_START ... FIMD_WKEYALPHA_END:
w = ((offset - FIMD_WKEYALPHA_START) >> 2) + 1;
s->window[w].keyalpha = val;
break;
case FIMD_DITHMODE:
s->dithmode = val;
break;
case FIMD_WINMAP_START ... FIMD_WINMAP_END:
w = (offset - FIMD_WINMAP_START) >> 2;
old_value = s->window[w].winmap;
s->window[w].winmap = val;
if ((val & FIMD_WINMAP_EN) ^ (old_value & FIMD_WINMAP_EN)) {
exynos4210_fimd_invalidate(s);
exynos4210_fimd_update_win_bppmode(s, w);
exynos4210_fimd_trace_bppmode(s, w, 0xFFFFFFFF);
exynos4210_fimd_update(s);
}
break;
case FIMD_WPALCON_HIGH ... FIMD_WPALCON_LOW:
i = (offset - FIMD_WPALCON_HIGH) >> 2;
s->wpalcon[i] = val;
if (s->wpalcon[1] & FIMD_WPALCON_UPDATEEN) {
for (w = 0; w < NUM_OF_WINDOWS; w++) {
exynos4210_fimd_update_win_bppmode(s, w);
fimd_update_get_alpha(s, w);
}
}
break;
case FIMD_TRIGCON:
val = (val & ~FIMD_TRIGCON_ROMASK) | (s->trigcon & FIMD_TRIGCON_ROMASK);
s->trigcon = val;
break;
case FIMD_I80IFCON_START ... FIMD_I80IFCON_END:
s->i80ifcon[(offset - FIMD_I80IFCON_START) >> 2] = val;
break;
case FIMD_COLORGAINCON:
s->colorgaincon = val;
break;
case FIMD_LDI_CMDCON0 ... FIMD_LDI_CMDCON1:
s->ldi_cmdcon[(offset - FIMD_LDI_CMDCON0) >> 2] = val;
break;
case FIMD_SIFCCON0 ... FIMD_SIFCCON2:
i = (offset - FIMD_SIFCCON0) >> 2;
if (i != 2) {
s->sifccon[i] = val;
}
break;
case FIMD_HUECOEFCR_START ... FIMD_HUECOEFCR_END:
i = (offset - FIMD_HUECOEFCR_START) >> 2;
s->huecoef_cr[i] = val;
break;
case FIMD_HUECOEFCB_START ... FIMD_HUECOEFCB_END:
i = (offset - FIMD_HUECOEFCB_START) >> 2;
s->huecoef_cb[i] = val;
break;
case FIMD_HUEOFFSET:
s->hueoffset = val;
break;
case FIMD_VIDWALPHA_START ... FIMD_VIDWALPHA_END:
w = ((offset - FIMD_VIDWALPHA_START) >> 3);
i = ((offset - FIMD_VIDWALPHA_START) >> 2) & 1;
if (w == 0) {
s->window[w].alpha_val[i] = val;
} else {
s->window[w].alpha_val[i] = (val & FIMD_VIDALPHA_ALPHA_LOWER) |
(s->window[w].alpha_val[i] & FIMD_VIDALPHA_ALPHA_UPPER);
}
break;
case FIMD_BLENDEQ_START ... FIMD_BLENDEQ_END:
s->window[(offset - FIMD_BLENDEQ_START) >> 2].blendeq = val;
break;
case FIMD_BLENDCON:
old_value = s->blendcon;
s->blendcon = val;
if ((s->blendcon & FIMD_ALPHA_8BIT) != (old_value & FIMD_ALPHA_8BIT)) {
for (w = 0; w < NUM_OF_WINDOWS; w++) {
fimd_update_get_alpha(s, w);
}
}
break;
case FIMD_WRTQOSCON_START ... FIMD_WRTQOSCON_END:
s->window[(offset - FIMD_WRTQOSCON_START) >> 2].rtqoscon = val;
break;
case FIMD_I80IFCMD_START ... FIMD_I80IFCMD_END:
s->i80ifcmd[(offset - FIMD_I80IFCMD_START) >> 2] = val;
break;
case FIMD_VIDW0ADD0_B2 ... FIMD_VIDW4ADD0_B2:
if (offset & 0x0004) {
DPRINT_ERROR("bad write offset 0x%08x\n", offset);
break;
}
w = (offset - FIMD_VIDW0ADD0_B2) >> 3;
if (fimd_get_buffer_id(&s->window[w]) == 2 &&
s->window[w].buf_start[2] != val) {
s->window[w].buf_start[2] = val;
fimd_update_memory_section(s, w);
break;
}
s->window[w].buf_start[2] = val;
break;
case FIMD_SHD_ADD0_START ... FIMD_SHD_ADD0_END:
if (offset & 0x0004) {
DPRINT_ERROR("bad write offset 0x%08x\n", offset);
break;
}
s->window[(offset - FIMD_SHD_ADD0_START) >> 3].shadow_buf_start = val;
break;
case FIMD_SHD_ADD1_START ... FIMD_SHD_ADD1_END:
if (offset & 0x0004) {
DPRINT_ERROR("bad write offset 0x%08x\n", offset);
break;
}
s->window[(offset - FIMD_SHD_ADD1_START) >> 3].shadow_buf_end = val;
break;
case FIMD_SHD_ADD2_START ... FIMD_SHD_ADD2_END:
s->window[(offset - FIMD_SHD_ADD2_START) >> 2].shadow_buf_size = val;
break;
case FIMD_PAL_MEM_START ... FIMD_PAL_MEM_END:
w = (offset - FIMD_PAL_MEM_START) >> 10;
i = ((offset - FIMD_PAL_MEM_START) >> 2) & 0xFF;
s->window[w].palette[i] = val;
break;
case FIMD_PALMEM_AL_START ... FIMD_PALMEM_AL_END:
/* Palette memory aliases for windows 0 and 1 */
w = (offset - FIMD_PALMEM_AL_START) >> 10;
i = ((offset - FIMD_PALMEM_AL_START) >> 2) & 0xFF;
s->window[w].palette[i] = val;
break;
default:
DPRINT_ERROR("bad write offset 0x%08x\n", offset);
break;
}
}
static uint64_t exynos4210_fimd_read(void *opaque, hwaddr offset,
unsigned size)
{
Exynos4210fimdState *s = (Exynos4210fimdState *)opaque;
int w, i;
uint32_t ret = 0;
DPRINT_L2("read offset 0x%08x\n", offset);
switch (offset) {
case FIMD_VIDCON0 ... FIMD_VIDCON3:
return s->vidcon[(offset - FIMD_VIDCON0) >> 2];
case FIMD_VIDTCON_START ... FIMD_VIDTCON_END:
return s->vidtcon[(offset - FIMD_VIDTCON_START) >> 2];
case FIMD_WINCON_START ... FIMD_WINCON_END:
return s->window[(offset - FIMD_WINCON_START) >> 2].wincon;
case FIMD_SHADOWCON:
return s->shadowcon;
case FIMD_WINCHMAP:
return s->winchmap;
case FIMD_VIDOSD_START ... FIMD_VIDOSD_END:
w = (offset - FIMD_VIDOSD_START) >> 4;
i = ((offset - FIMD_VIDOSD_START) & 0xF) >> 2;
switch (i) {
case 0:
ret = ((s->window[w].lefttop_x & FIMD_VIDOSD_COORD_MASK) <<
FIMD_VIDOSD_HOR_SHIFT) |
(s->window[w].lefttop_y & FIMD_VIDOSD_COORD_MASK);
break;
case 1:
ret = ((s->window[w].rightbot_x & FIMD_VIDOSD_COORD_MASK) <<
FIMD_VIDOSD_HOR_SHIFT) |
(s->window[w].rightbot_y & FIMD_VIDOSD_COORD_MASK);
break;
case 2:
if (w == 0) {
ret = s->window[w].osdsize;
} else {
ret = (pack_upper_4(s->window[w].alpha_val[0]) <<
FIMD_VIDOSD_AEN0_SHIFT) |
pack_upper_4(s->window[w].alpha_val[1]);
}
break;
case 3:
if (w != 1 && w != 2) {
DPRINT_ERROR("bad read offset 0x%08x\n", offset);
return 0xBAADBAAD;
}
ret = s->window[w].osdsize;
break;
}
return ret;
case FIMD_VIDWADD0_START ... FIMD_VIDWADD0_END:
w = (offset - FIMD_VIDWADD0_START) >> 3;
i = ((offset - FIMD_VIDWADD0_START) >> 2) & 1;
return s->window[w].buf_start[i];
case FIMD_VIDWADD1_START ... FIMD_VIDWADD1_END:
w = (offset - FIMD_VIDWADD1_START) >> 3;
i = ((offset - FIMD_VIDWADD1_START) >> 2) & 1;
return s->window[w].buf_end[i];
case FIMD_VIDWADD2_START ... FIMD_VIDWADD2_END:
w = (offset - FIMD_VIDWADD2_START) >> 2;
return s->window[w].virtpage_width | (s->window[w].virtpage_offsize <<
FIMD_VIDWADD2_OFFSIZE_SHIFT);
case FIMD_VIDINTCON0 ... FIMD_VIDINTCON1:
return s->vidintcon[(offset - FIMD_VIDINTCON0) >> 2];
case FIMD_WKEYCON_START ... FIMD_WKEYCON_END:
w = ((offset - FIMD_WKEYCON_START) >> 3) + 1;
i = ((offset - FIMD_WKEYCON_START) >> 2) & 1;
return s->window[w].keycon[i];
case FIMD_WKEYALPHA_START ... FIMD_WKEYALPHA_END:
w = ((offset - FIMD_WKEYALPHA_START) >> 2) + 1;
return s->window[w].keyalpha;
case FIMD_DITHMODE:
return s->dithmode;
case FIMD_WINMAP_START ... FIMD_WINMAP_END:
return s->window[(offset - FIMD_WINMAP_START) >> 2].winmap;
case FIMD_WPALCON_HIGH ... FIMD_WPALCON_LOW:
return s->wpalcon[(offset - FIMD_WPALCON_HIGH) >> 2];
case FIMD_TRIGCON:
return s->trigcon;
case FIMD_I80IFCON_START ... FIMD_I80IFCON_END:
return s->i80ifcon[(offset - FIMD_I80IFCON_START) >> 2];
case FIMD_COLORGAINCON:
return s->colorgaincon;
case FIMD_LDI_CMDCON0 ... FIMD_LDI_CMDCON1:
return s->ldi_cmdcon[(offset - FIMD_LDI_CMDCON0) >> 2];
case FIMD_SIFCCON0 ... FIMD_SIFCCON2:
i = (offset - FIMD_SIFCCON0) >> 2;
return s->sifccon[i];
case FIMD_HUECOEFCR_START ... FIMD_HUECOEFCR_END:
i = (offset - FIMD_HUECOEFCR_START) >> 2;
return s->huecoef_cr[i];
case FIMD_HUECOEFCB_START ... FIMD_HUECOEFCB_END:
i = (offset - FIMD_HUECOEFCB_START) >> 2;
return s->huecoef_cb[i];
case FIMD_HUEOFFSET:
return s->hueoffset;
case FIMD_VIDWALPHA_START ... FIMD_VIDWALPHA_END:
w = ((offset - FIMD_VIDWALPHA_START) >> 3);
i = ((offset - FIMD_VIDWALPHA_START) >> 2) & 1;
return s->window[w].alpha_val[i] &
(w == 0 ? 0xFFFFFF : FIMD_VIDALPHA_ALPHA_LOWER);
case FIMD_BLENDEQ_START ... FIMD_BLENDEQ_END:
return s->window[(offset - FIMD_BLENDEQ_START) >> 2].blendeq;
case FIMD_BLENDCON:
return s->blendcon;
case FIMD_WRTQOSCON_START ... FIMD_WRTQOSCON_END:
return s->window[(offset - FIMD_WRTQOSCON_START) >> 2].rtqoscon;
case FIMD_I80IFCMD_START ... FIMD_I80IFCMD_END:
return s->i80ifcmd[(offset - FIMD_I80IFCMD_START) >> 2];
case FIMD_VIDW0ADD0_B2 ... FIMD_VIDW4ADD0_B2:
if (offset & 0x0004) {
break;
}
return s->window[(offset - FIMD_VIDW0ADD0_B2) >> 3].buf_start[2];
case FIMD_SHD_ADD0_START ... FIMD_SHD_ADD0_END:
if (offset & 0x0004) {
break;
}
return s->window[(offset - FIMD_SHD_ADD0_START) >> 3].shadow_buf_start;
case FIMD_SHD_ADD1_START ... FIMD_SHD_ADD1_END:
if (offset & 0x0004) {
break;
}
return s->window[(offset - FIMD_SHD_ADD1_START) >> 3].shadow_buf_end;
case FIMD_SHD_ADD2_START ... FIMD_SHD_ADD2_END:
return s->window[(offset - FIMD_SHD_ADD2_START) >> 2].shadow_buf_size;
case FIMD_PAL_MEM_START ... FIMD_PAL_MEM_END:
w = (offset - FIMD_PAL_MEM_START) >> 10;
i = ((offset - FIMD_PAL_MEM_START) >> 2) & 0xFF;
return s->window[w].palette[i];
case FIMD_PALMEM_AL_START ... FIMD_PALMEM_AL_END:
/* Palette aliases for win 0,1 */
w = (offset - FIMD_PALMEM_AL_START) >> 10;
i = ((offset - FIMD_PALMEM_AL_START) >> 2) & 0xFF;
return s->window[w].palette[i];
}
DPRINT_ERROR("bad read offset 0x%08x\n", offset);
return 0xBAADBAAD;
}
static const MemoryRegionOps exynos4210_fimd_mmio_ops = {
.read = exynos4210_fimd_read,
.write = exynos4210_fimd_write,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
.unaligned = false
},
.endianness = DEVICE_NATIVE_ENDIAN,
};
static int exynos4210_fimd_load(void *opaque, int version_id)
{
Exynos4210fimdState *s = (Exynos4210fimdState *)opaque;
int w;
if (version_id != 1) {
return -EINVAL;
}
for (w = 0; w < NUM_OF_WINDOWS; w++) {
exynos4210_fimd_update_win_bppmode(s, w);
fimd_update_get_alpha(s, w);
fimd_update_memory_section(s, w);
}
/* Redraw the whole screen */
exynos4210_update_resolution(s);
exynos4210_fimd_invalidate(s);
exynos4210_fimd_enable(s, (s->vidcon[0] & FIMD_VIDCON0_ENVID_MASK) ==
FIMD_VIDCON0_ENVID_MASK);
return 0;
}
static const VMStateDescription exynos4210_fimd_window_vmstate = {
.name = "exynos4210.fimd_window",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(wincon, Exynos4210fimdWindow),
VMSTATE_UINT32_ARRAY(buf_start, Exynos4210fimdWindow, 3),
VMSTATE_UINT32_ARRAY(buf_end, Exynos4210fimdWindow, 3),
VMSTATE_UINT32_ARRAY(keycon, Exynos4210fimdWindow, 2),
VMSTATE_UINT32(keyalpha, Exynos4210fimdWindow),
VMSTATE_UINT32(winmap, Exynos4210fimdWindow),
VMSTATE_UINT32(blendeq, Exynos4210fimdWindow),
VMSTATE_UINT32(rtqoscon, Exynos4210fimdWindow),
VMSTATE_UINT32_ARRAY(palette, Exynos4210fimdWindow, 256),
VMSTATE_UINT32(shadow_buf_start, Exynos4210fimdWindow),
VMSTATE_UINT32(shadow_buf_end, Exynos4210fimdWindow),
VMSTATE_UINT32(shadow_buf_size, Exynos4210fimdWindow),
VMSTATE_UINT16(lefttop_x, Exynos4210fimdWindow),
VMSTATE_UINT16(lefttop_y, Exynos4210fimdWindow),
VMSTATE_UINT16(rightbot_x, Exynos4210fimdWindow),
VMSTATE_UINT16(rightbot_y, Exynos4210fimdWindow),
VMSTATE_UINT32(osdsize, Exynos4210fimdWindow),
VMSTATE_UINT32_ARRAY(alpha_val, Exynos4210fimdWindow, 2),
VMSTATE_UINT16(virtpage_width, Exynos4210fimdWindow),
VMSTATE_UINT16(virtpage_offsize, Exynos4210fimdWindow),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription exynos4210_fimd_vmstate = {
.name = "exynos4210.fimd",
.version_id = 1,
.minimum_version_id = 1,
.post_load = exynos4210_fimd_load,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(vidcon, Exynos4210fimdState, 4),
VMSTATE_UINT32_ARRAY(vidtcon, Exynos4210fimdState, 4),
VMSTATE_UINT32(shadowcon, Exynos4210fimdState),
VMSTATE_UINT32(winchmap, Exynos4210fimdState),
VMSTATE_UINT32_ARRAY(vidintcon, Exynos4210fimdState, 2),
VMSTATE_UINT32(dithmode, Exynos4210fimdState),
VMSTATE_UINT32_ARRAY(wpalcon, Exynos4210fimdState, 2),
VMSTATE_UINT32(trigcon, Exynos4210fimdState),
VMSTATE_UINT32_ARRAY(i80ifcon, Exynos4210fimdState, 4),
VMSTATE_UINT32(colorgaincon, Exynos4210fimdState),
VMSTATE_UINT32_ARRAY(ldi_cmdcon, Exynos4210fimdState, 2),
VMSTATE_UINT32_ARRAY(sifccon, Exynos4210fimdState, 3),
VMSTATE_UINT32_ARRAY(huecoef_cr, Exynos4210fimdState, 4),
VMSTATE_UINT32_ARRAY(huecoef_cb, Exynos4210fimdState, 4),
VMSTATE_UINT32(hueoffset, Exynos4210fimdState),
VMSTATE_UINT32_ARRAY(i80ifcmd, Exynos4210fimdState, 12),
VMSTATE_UINT32(blendcon, Exynos4210fimdState),
VMSTATE_STRUCT_ARRAY(window, Exynos4210fimdState, 5, 1,
exynos4210_fimd_window_vmstate, Exynos4210fimdWindow),
VMSTATE_END_OF_LIST()
}
};
static int exynos4210_fimd_init(SysBusDevice *dev)
{
Exynos4210fimdState *s = FROM_SYSBUS(Exynos4210fimdState, dev);
s->ifb = NULL;
sysbus_init_irq(dev, &s->irq[0]);
sysbus_init_irq(dev, &s->irq[1]);
sysbus_init_irq(dev, &s->irq[2]);
memory_region_init_io(&s->iomem, &exynos4210_fimd_mmio_ops, s,
"exynos4210.fimd", FIMD_REGS_SIZE);
sysbus_init_mmio(dev, &s->iomem);
s->console = graphic_console_init(exynos4210_fimd_update,
exynos4210_fimd_invalidate, NULL, NULL, s);
return 0;
}
static void exynos4210_fimd_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
dc->vmsd = &exynos4210_fimd_vmstate;
dc->reset = exynos4210_fimd_reset;
k->init = exynos4210_fimd_init;
}
static const TypeInfo exynos4210_fimd_info = {
.name = "exynos4210.fimd",
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(Exynos4210fimdState),
.class_init = exynos4210_fimd_class_init,
};
static void exynos4210_fimd_register_types(void)
{
type_register_static(&exynos4210_fimd_info);
}
type_init(exynos4210_fimd_register_types)