qemu-patch-raspberry4/hw/rdma/rdma_backend.c
Yuval Shaia 605ec1663b hw/rdma: Add support for MAD packets
MAD (Management Datagram) packets are widely used by various modules
both in kernel and in user space for example the rdma_* API which is
used to create and maintain "connection" layer on top of RDMA uses
several types of MAD packets.

For more information please refer to chapter 13.4 in Volume 1
Architecture Specification, Release 1.1 available here:
https://www.infinibandta.org/ibta-specifications-download/

To support MAD packets the device uses an external utility
(contrib/rdmacm-mux) to relay packets from and to the guest driver.

Signed-off-by: Yuval Shaia <yuval.shaia@oracle.com>
Reviewed-by: Marcel Apfelbaum<marcel.apfelbaum@gmail.com>
Signed-off-by: Marcel Apfelbaum <marcel.apfelbaum@gmail.com>
2018-12-22 11:09:56 +02:00

1133 lines
33 KiB
C

/*
* QEMU paravirtual RDMA - Generic RDMA backend
*
* Copyright (C) 2018 Oracle
* Copyright (C) 2018 Red Hat Inc
*
* Authors:
* Yuval Shaia <yuval.shaia@oracle.com>
* Marcel Apfelbaum <marcel@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#include "qemu/osdep.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "qapi/qmp/qlist.h"
#include "qapi/qmp/qnum.h"
#include <infiniband/verbs.h>
#include <infiniband/umad_types.h>
#include <infiniband/umad.h>
#include <rdma/rdma_user_cm.h>
#include "trace.h"
#include "rdma_utils.h"
#include "rdma_rm.h"
#include "rdma_backend.h"
/* Vendor Errors */
#define VENDOR_ERR_FAIL_BACKEND 0x201
#define VENDOR_ERR_TOO_MANY_SGES 0x202
#define VENDOR_ERR_NOMEM 0x203
#define VENDOR_ERR_QP0 0x204
#define VENDOR_ERR_NO_SGE 0x205
#define VENDOR_ERR_MAD_SEND 0x206
#define VENDOR_ERR_INVLKEY 0x207
#define VENDOR_ERR_MR_SMALL 0x208
#define VENDOR_ERR_INV_MAD_BUFF 0x209
#define VENDOR_ERR_INV_NUM_SGE 0x210
#define THR_NAME_LEN 16
#define THR_POLL_TO 5000
#define MAD_HDR_SIZE sizeof(struct ibv_grh)
typedef struct BackendCtx {
void *up_ctx;
bool is_tx_req;
struct ibv_sge sge; /* Used to save MAD recv buffer */
} BackendCtx;
struct backend_umad {
struct ib_user_mad hdr;
char mad[RDMA_MAX_PRIVATE_DATA];
};
static void (*comp_handler)(int status, unsigned int vendor_err, void *ctx);
static void dummy_comp_handler(int status, unsigned int vendor_err, void *ctx)
{
pr_err("No completion handler is registered\n");
}
static void poll_cq(RdmaDeviceResources *rdma_dev_res, struct ibv_cq *ibcq)
{
int i, ne;
BackendCtx *bctx;
struct ibv_wc wc[2];
pr_dbg("Entering poll_cq loop on cq %p\n", ibcq);
do {
ne = ibv_poll_cq(ibcq, ARRAY_SIZE(wc), wc);
pr_dbg("Got %d completion(s) from cq %p\n", ne, ibcq);
for (i = 0; i < ne; i++) {
pr_dbg("wr_id=0x%" PRIx64 "\n", wc[i].wr_id);
pr_dbg("status=%d\n", wc[i].status);
bctx = rdma_rm_get_cqe_ctx(rdma_dev_res, wc[i].wr_id);
if (unlikely(!bctx)) {
pr_dbg("Error: Failed to find ctx for req %" PRId64 "\n",
wc[i].wr_id);
continue;
}
pr_dbg("Processing %s CQE\n", bctx->is_tx_req ? "send" : "recv");
comp_handler(wc[i].status, wc[i].vendor_err, bctx->up_ctx);
rdma_rm_dealloc_cqe_ctx(rdma_dev_res, wc[i].wr_id);
g_free(bctx);
}
} while (ne > 0);
if (ne < 0) {
pr_dbg("Got error %d from ibv_poll_cq\n", ne);
}
}
static void *comp_handler_thread(void *arg)
{
RdmaBackendDev *backend_dev = (RdmaBackendDev *)arg;
int rc;
struct ibv_cq *ev_cq;
void *ev_ctx;
int flags;
GPollFD pfds[1];
/* Change to non-blocking mode */
flags = fcntl(backend_dev->channel->fd, F_GETFL);
rc = fcntl(backend_dev->channel->fd, F_SETFL, flags | O_NONBLOCK);
if (rc < 0) {
pr_dbg("Fail to change to non-blocking mode\n");
return NULL;
}
pr_dbg("Starting\n");
pfds[0].fd = backend_dev->channel->fd;
pfds[0].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
backend_dev->comp_thread.is_running = true;
while (backend_dev->comp_thread.run) {
do {
rc = qemu_poll_ns(pfds, 1, THR_POLL_TO * (int64_t)SCALE_MS);
} while (!rc && backend_dev->comp_thread.run);
if (backend_dev->comp_thread.run) {
pr_dbg("Waiting for completion on channel %p\n", backend_dev->channel);
rc = ibv_get_cq_event(backend_dev->channel, &ev_cq, &ev_ctx);
pr_dbg("ibv_get_cq_event=%d\n", rc);
if (unlikely(rc)) {
pr_dbg("---> ibv_get_cq_event (%d)\n", rc);
continue;
}
rc = ibv_req_notify_cq(ev_cq, 0);
if (unlikely(rc)) {
pr_dbg("Error %d from ibv_req_notify_cq\n", rc);
}
poll_cq(backend_dev->rdma_dev_res, ev_cq);
ibv_ack_cq_events(ev_cq, 1);
}
}
pr_dbg("Going down\n");
/* TODO: Post cqe for all remaining buffs that were posted */
backend_dev->comp_thread.is_running = false;
qemu_thread_exit(0);
return NULL;
}
static void stop_backend_thread(RdmaBackendThread *thread)
{
thread->run = false;
while (thread->is_running) {
pr_dbg("Waiting for thread to complete\n");
sleep(THR_POLL_TO / SCALE_US / 2);
}
}
static void start_comp_thread(RdmaBackendDev *backend_dev)
{
char thread_name[THR_NAME_LEN] = {0};
stop_backend_thread(&backend_dev->comp_thread);
snprintf(thread_name, sizeof(thread_name), "rdma_comp_%s",
ibv_get_device_name(backend_dev->ib_dev));
backend_dev->comp_thread.run = true;
qemu_thread_create(&backend_dev->comp_thread.thread, thread_name,
comp_handler_thread, backend_dev, QEMU_THREAD_DETACHED);
}
void rdma_backend_register_comp_handler(void (*handler)(int status,
unsigned int vendor_err, void *ctx))
{
comp_handler = handler;
}
void rdma_backend_unregister_comp_handler(void)
{
rdma_backend_register_comp_handler(dummy_comp_handler);
}
int rdma_backend_query_port(RdmaBackendDev *backend_dev,
struct ibv_port_attr *port_attr)
{
int rc;
rc = ibv_query_port(backend_dev->context, backend_dev->port_num, port_attr);
if (rc) {
pr_dbg("Error %d from ibv_query_port\n", rc);
return -EIO;
}
return 0;
}
void rdma_backend_poll_cq(RdmaDeviceResources *rdma_dev_res, RdmaBackendCQ *cq)
{
poll_cq(rdma_dev_res, cq->ibcq);
}
static GHashTable *ah_hash;
static struct ibv_ah *create_ah(RdmaBackendDev *backend_dev, struct ibv_pd *pd,
uint8_t sgid_idx, union ibv_gid *dgid)
{
GBytes *ah_key = g_bytes_new(dgid, sizeof(*dgid));
struct ibv_ah *ah = g_hash_table_lookup(ah_hash, ah_key);
if (ah) {
trace_create_ah_cache_hit(be64_to_cpu(dgid->global.subnet_prefix),
be64_to_cpu(dgid->global.interface_id));
g_bytes_unref(ah_key);
} else {
struct ibv_ah_attr ah_attr = {
.is_global = 1,
.port_num = backend_dev->port_num,
.grh.hop_limit = 1,
};
ah_attr.grh.dgid = *dgid;
ah_attr.grh.sgid_index = sgid_idx;
ah = ibv_create_ah(pd, &ah_attr);
if (ah) {
g_hash_table_insert(ah_hash, ah_key, ah);
} else {
g_bytes_unref(ah_key);
pr_dbg("Fail to create AH for gid <0x%" PRIx64 ", 0x%" PRIx64 ">\n",
be64_to_cpu(dgid->global.subnet_prefix),
be64_to_cpu(dgid->global.interface_id));
}
trace_create_ah_cache_miss(be64_to_cpu(dgid->global.subnet_prefix),
be64_to_cpu(dgid->global.interface_id));
}
return ah;
}
static void destroy_ah_hash_key(gpointer data)
{
g_bytes_unref(data);
}
static void destroy_ah_hast_data(gpointer data)
{
struct ibv_ah *ah = data;
ibv_destroy_ah(ah);
}
static void ah_cache_init(void)
{
ah_hash = g_hash_table_new_full(g_bytes_hash, g_bytes_equal,
destroy_ah_hash_key, destroy_ah_hast_data);
}
static int build_host_sge_array(RdmaDeviceResources *rdma_dev_res,
struct ibv_sge *dsge, struct ibv_sge *ssge,
uint8_t num_sge)
{
RdmaRmMR *mr;
int ssge_idx;
pr_dbg("num_sge=%d\n", num_sge);
for (ssge_idx = 0; ssge_idx < num_sge; ssge_idx++) {
mr = rdma_rm_get_mr(rdma_dev_res, ssge[ssge_idx].lkey);
if (unlikely(!mr)) {
pr_dbg("Invalid lkey 0x%x\n", ssge[ssge_idx].lkey);
return VENDOR_ERR_INVLKEY | ssge[ssge_idx].lkey;
}
dsge->addr = (uintptr_t)mr->virt + ssge[ssge_idx].addr - mr->start;
dsge->length = ssge[ssge_idx].length;
dsge->lkey = rdma_backend_mr_lkey(&mr->backend_mr);
pr_dbg("ssge->addr=0x%" PRIx64 "\n", ssge[ssge_idx].addr);
pr_dbg("dsge->addr=0x%" PRIx64 "\n", dsge->addr);
pr_dbg("dsge->length=%d\n", dsge->length);
pr_dbg("dsge->lkey=0x%x\n", dsge->lkey);
dsge++;
}
return 0;
}
static int mad_send(RdmaBackendDev *backend_dev, struct ibv_sge *sge,
uint32_t num_sge)
{
struct backend_umad umad = {0};
char *hdr, *msg;
int ret;
pr_dbg("num_sge=%d\n", num_sge);
if (num_sge != 2) {
return -EINVAL;
}
umad.hdr.length = sge[0].length + sge[1].length;
pr_dbg("msg_len=%d\n", umad.hdr.length);
if (umad.hdr.length > sizeof(umad.mad)) {
return -ENOMEM;
}
umad.hdr.addr.qpn = htobe32(1);
umad.hdr.addr.grh_present = 1;
umad.hdr.addr.gid_index = backend_dev->backend_gid_idx;
memcpy(umad.hdr.addr.gid, backend_dev->gid.raw, sizeof(umad.hdr.addr.gid));
umad.hdr.addr.hop_limit = 0xFF;
hdr = rdma_pci_dma_map(backend_dev->dev, sge[0].addr, sge[0].length);
if (!hdr) {
pr_dbg("Fail to map to sge[0]\n");
return -ENOMEM;
}
msg = rdma_pci_dma_map(backend_dev->dev, sge[1].addr, sge[1].length);
if (!msg) {
pr_dbg("Fail to map to sge[1]\n");
rdma_pci_dma_unmap(backend_dev->dev, hdr, sge[0].length);
return -ENOMEM;
}
pr_dbg_buf("mad_hdr", hdr, sge[0].length);
pr_dbg_buf("mad_data", data, sge[1].length);
memcpy(&umad.mad[0], hdr, sge[0].length);
memcpy(&umad.mad[sge[0].length], msg, sge[1].length);
rdma_pci_dma_unmap(backend_dev->dev, msg, sge[1].length);
rdma_pci_dma_unmap(backend_dev->dev, hdr, sge[0].length);
ret = qemu_chr_fe_write(backend_dev->mad_chr_be, (const uint8_t *)&umad,
sizeof(umad));
pr_dbg("qemu_chr_fe_write=%d\n", ret);
return (ret != sizeof(umad));
}
void rdma_backend_post_send(RdmaBackendDev *backend_dev,
RdmaBackendQP *qp, uint8_t qp_type,
struct ibv_sge *sge, uint32_t num_sge,
union ibv_gid *dgid, uint32_t dqpn,
uint32_t dqkey, void *ctx)
{
BackendCtx *bctx;
struct ibv_sge new_sge[MAX_SGE];
uint32_t bctx_id;
int rc;
struct ibv_send_wr wr = {0}, *bad_wr;
if (!qp->ibqp) { /* This field does not get initialized for QP0 and QP1 */
if (qp_type == IBV_QPT_SMI) {
pr_dbg("QP0 unsupported\n");
comp_handler(IBV_WC_GENERAL_ERR, VENDOR_ERR_QP0, ctx);
} else if (qp_type == IBV_QPT_GSI) {
pr_dbg("QP1\n");
rc = mad_send(backend_dev, sge, num_sge);
if (rc) {
comp_handler(IBV_WC_GENERAL_ERR, VENDOR_ERR_MAD_SEND, ctx);
} else {
comp_handler(IBV_WC_SUCCESS, 0, ctx);
}
}
return;
}
pr_dbg("num_sge=%d\n", num_sge);
if (!num_sge) {
pr_dbg("num_sge=0\n");
comp_handler(IBV_WC_GENERAL_ERR, VENDOR_ERR_NO_SGE, ctx);
return;
}
bctx = g_malloc0(sizeof(*bctx));
bctx->up_ctx = ctx;
bctx->is_tx_req = 1;
rc = rdma_rm_alloc_cqe_ctx(backend_dev->rdma_dev_res, &bctx_id, bctx);
if (unlikely(rc)) {
pr_dbg("Failed to allocate cqe_ctx\n");
comp_handler(IBV_WC_GENERAL_ERR, VENDOR_ERR_NOMEM, ctx);
goto out_free_bctx;
}
rc = build_host_sge_array(backend_dev->rdma_dev_res, new_sge, sge, num_sge);
if (rc) {
pr_dbg("Error: Failed to build host SGE array\n");
comp_handler(IBV_WC_GENERAL_ERR, rc, ctx);
goto out_dealloc_cqe_ctx;
}
if (qp_type == IBV_QPT_UD) {
wr.wr.ud.ah = create_ah(backend_dev, qp->ibpd,
backend_dev->backend_gid_idx, dgid);
if (!wr.wr.ud.ah) {
comp_handler(IBV_WC_GENERAL_ERR, VENDOR_ERR_FAIL_BACKEND, ctx);
goto out_dealloc_cqe_ctx;
}
wr.wr.ud.remote_qpn = dqpn;
wr.wr.ud.remote_qkey = dqkey;
}
wr.num_sge = num_sge;
wr.opcode = IBV_WR_SEND;
wr.send_flags = IBV_SEND_SIGNALED;
wr.sg_list = new_sge;
wr.wr_id = bctx_id;
rc = ibv_post_send(qp->ibqp, &wr, &bad_wr);
pr_dbg("ibv_post_send=%d\n", rc);
if (rc) {
pr_dbg("Fail (%d, %d) to post send WQE to qpn %d\n", rc, errno,
qp->ibqp->qp_num);
comp_handler(IBV_WC_GENERAL_ERR, VENDOR_ERR_FAIL_BACKEND, ctx);
goto out_dealloc_cqe_ctx;
}
return;
out_dealloc_cqe_ctx:
rdma_rm_dealloc_cqe_ctx(backend_dev->rdma_dev_res, bctx_id);
out_free_bctx:
g_free(bctx);
}
static unsigned int save_mad_recv_buffer(RdmaBackendDev *backend_dev,
struct ibv_sge *sge, uint32_t num_sge,
void *ctx)
{
BackendCtx *bctx;
int rc;
uint32_t bctx_id;
if (num_sge != 1) {
pr_dbg("Invalid num_sge (%d), expecting 1\n", num_sge);
return VENDOR_ERR_INV_NUM_SGE;
}
if (sge[0].length < RDMA_MAX_PRIVATE_DATA + sizeof(struct ibv_grh)) {
pr_dbg("Too small buffer for MAD\n");
return VENDOR_ERR_INV_MAD_BUFF;
}
pr_dbg("addr=0x%" PRIx64"\n", sge[0].addr);
pr_dbg("length=%d\n", sge[0].length);
pr_dbg("lkey=%d\n", sge[0].lkey);
bctx = g_malloc0(sizeof(*bctx));
rc = rdma_rm_alloc_cqe_ctx(backend_dev->rdma_dev_res, &bctx_id, bctx);
if (unlikely(rc)) {
g_free(bctx);
pr_dbg("Fail to allocate cqe_ctx\n");
return VENDOR_ERR_NOMEM;
}
pr_dbg("bctx_id %d, bctx %p, ctx %p\n", bctx_id, bctx, ctx);
bctx->up_ctx = ctx;
bctx->sge = *sge;
qemu_mutex_lock(&backend_dev->recv_mads_list.lock);
qlist_append_int(backend_dev->recv_mads_list.list, bctx_id);
qemu_mutex_unlock(&backend_dev->recv_mads_list.lock);
return 0;
}
void rdma_backend_post_recv(RdmaBackendDev *backend_dev,
RdmaDeviceResources *rdma_dev_res,
RdmaBackendQP *qp, uint8_t qp_type,
struct ibv_sge *sge, uint32_t num_sge, void *ctx)
{
BackendCtx *bctx;
struct ibv_sge new_sge[MAX_SGE];
uint32_t bctx_id;
int rc;
struct ibv_recv_wr wr = {0}, *bad_wr;
if (!qp->ibqp) { /* This field does not get initialized for QP0 and QP1 */
if (qp_type == IBV_QPT_SMI) {
pr_dbg("QP0 unsupported\n");
comp_handler(IBV_WC_GENERAL_ERR, VENDOR_ERR_QP0, ctx);
}
if (qp_type == IBV_QPT_GSI) {
pr_dbg("QP1\n");
rc = save_mad_recv_buffer(backend_dev, sge, num_sge, ctx);
if (rc) {
comp_handler(IBV_WC_GENERAL_ERR, rc, ctx);
}
}
return;
}
pr_dbg("num_sge=%d\n", num_sge);
if (!num_sge) {
pr_dbg("num_sge=0\n");
comp_handler(IBV_WC_GENERAL_ERR, VENDOR_ERR_NO_SGE, ctx);
return;
}
bctx = g_malloc0(sizeof(*bctx));
bctx->up_ctx = ctx;
bctx->is_tx_req = 0;
rc = rdma_rm_alloc_cqe_ctx(rdma_dev_res, &bctx_id, bctx);
if (unlikely(rc)) {
pr_dbg("Failed to allocate cqe_ctx\n");
comp_handler(IBV_WC_GENERAL_ERR, VENDOR_ERR_NOMEM, ctx);
goto out_free_bctx;
}
rc = build_host_sge_array(rdma_dev_res, new_sge, sge, num_sge);
if (rc) {
pr_dbg("Error: Failed to build host SGE array\n");
comp_handler(IBV_WC_GENERAL_ERR, rc, ctx);
goto out_dealloc_cqe_ctx;
}
wr.num_sge = num_sge;
wr.sg_list = new_sge;
wr.wr_id = bctx_id;
rc = ibv_post_recv(qp->ibqp, &wr, &bad_wr);
pr_dbg("ibv_post_recv=%d\n", rc);
if (rc) {
pr_dbg("Fail (%d, %d) to post recv WQE to qpn %d\n", rc, errno,
qp->ibqp->qp_num);
comp_handler(IBV_WC_GENERAL_ERR, VENDOR_ERR_FAIL_BACKEND, ctx);
goto out_dealloc_cqe_ctx;
}
return;
out_dealloc_cqe_ctx:
rdma_rm_dealloc_cqe_ctx(rdma_dev_res, bctx_id);
out_free_bctx:
g_free(bctx);
}
int rdma_backend_create_pd(RdmaBackendDev *backend_dev, RdmaBackendPD *pd)
{
pd->ibpd = ibv_alloc_pd(backend_dev->context);
return pd->ibpd ? 0 : -EIO;
}
void rdma_backend_destroy_pd(RdmaBackendPD *pd)
{
if (pd->ibpd) {
ibv_dealloc_pd(pd->ibpd);
}
}
int rdma_backend_create_mr(RdmaBackendMR *mr, RdmaBackendPD *pd, void *addr,
size_t length, int access)
{
pr_dbg("addr=0x%p\n", addr);
pr_dbg("len=%zu\n", length);
mr->ibmr = ibv_reg_mr(pd->ibpd, addr, length, access);
if (mr->ibmr) {
pr_dbg("lkey=0x%x\n", mr->ibmr->lkey);
pr_dbg("rkey=0x%x\n", mr->ibmr->rkey);
mr->ibpd = pd->ibpd;
}
return mr->ibmr ? 0 : -EIO;
}
void rdma_backend_destroy_mr(RdmaBackendMR *mr)
{
if (mr->ibmr) {
ibv_dereg_mr(mr->ibmr);
}
}
int rdma_backend_create_cq(RdmaBackendDev *backend_dev, RdmaBackendCQ *cq,
int cqe)
{
int rc;
pr_dbg("cqe=%d\n", cqe);
pr_dbg("dev->channel=%p\n", backend_dev->channel);
cq->ibcq = ibv_create_cq(backend_dev->context, cqe + 1, NULL,
backend_dev->channel, 0);
if (cq->ibcq) {
rc = ibv_req_notify_cq(cq->ibcq, 0);
if (rc) {
pr_dbg("Error %d from ibv_req_notify_cq\n", rc);
}
cq->backend_dev = backend_dev;
}
return cq->ibcq ? 0 : -EIO;
}
void rdma_backend_destroy_cq(RdmaBackendCQ *cq)
{
if (cq->ibcq) {
ibv_destroy_cq(cq->ibcq);
}
}
int rdma_backend_create_qp(RdmaBackendQP *qp, uint8_t qp_type,
RdmaBackendPD *pd, RdmaBackendCQ *scq,
RdmaBackendCQ *rcq, uint32_t max_send_wr,
uint32_t max_recv_wr, uint32_t max_send_sge,
uint32_t max_recv_sge)
{
struct ibv_qp_init_attr attr = {0};
qp->ibqp = 0;
pr_dbg("qp_type=%d\n", qp_type);
switch (qp_type) {
case IBV_QPT_GSI:
return 0;
case IBV_QPT_RC:
/* fall through */
case IBV_QPT_UD:
/* do nothing */
break;
default:
pr_dbg("Unsupported QP type %d\n", qp_type);
return -EIO;
}
attr.qp_type = qp_type;
attr.send_cq = scq->ibcq;
attr.recv_cq = rcq->ibcq;
attr.cap.max_send_wr = max_send_wr;
attr.cap.max_recv_wr = max_recv_wr;
attr.cap.max_send_sge = max_send_sge;
attr.cap.max_recv_sge = max_recv_sge;
pr_dbg("max_send_wr=%d\n", max_send_wr);
pr_dbg("max_recv_wr=%d\n", max_recv_wr);
pr_dbg("max_send_sge=%d\n", max_send_sge);
pr_dbg("max_recv_sge=%d\n", max_recv_sge);
qp->ibqp = ibv_create_qp(pd->ibpd, &attr);
if (likely(!qp->ibqp)) {
pr_dbg("Error from ibv_create_qp\n");
return -EIO;
}
qp->ibpd = pd->ibpd;
/* TODO: Query QP to get max_inline_data and save it to be used in send */
pr_dbg("qpn=0x%x\n", qp->ibqp->qp_num);
return 0;
}
int rdma_backend_qp_state_init(RdmaBackendDev *backend_dev, RdmaBackendQP *qp,
uint8_t qp_type, uint32_t qkey)
{
struct ibv_qp_attr attr = {0};
int rc, attr_mask;
pr_dbg("qpn=0x%x\n", qp->ibqp->qp_num);
pr_dbg("sport_num=%d\n", backend_dev->port_num);
attr_mask = IBV_QP_STATE | IBV_QP_PKEY_INDEX | IBV_QP_PORT;
attr.qp_state = IBV_QPS_INIT;
attr.pkey_index = 0;
attr.port_num = backend_dev->port_num;
switch (qp_type) {
case IBV_QPT_RC:
attr_mask |= IBV_QP_ACCESS_FLAGS;
break;
case IBV_QPT_UD:
attr.qkey = qkey;
attr_mask |= IBV_QP_QKEY;
break;
default:
pr_dbg("Unsupported QP type %d\n", qp_type);
return -EIO;
}
rc = ibv_modify_qp(qp->ibqp, &attr, attr_mask);
if (rc) {
pr_dbg("Error %d from ibv_modify_qp\n", rc);
return -EIO;
}
return 0;
}
int rdma_backend_qp_state_rtr(RdmaBackendDev *backend_dev, RdmaBackendQP *qp,
uint8_t qp_type, union ibv_gid *dgid,
uint32_t dqpn, uint32_t rq_psn, uint32_t qkey,
bool use_qkey)
{
struct ibv_qp_attr attr = {0};
union ibv_gid ibv_gid = {
.global.interface_id = dgid->global.interface_id,
.global.subnet_prefix = dgid->global.subnet_prefix
};
int rc, attr_mask;
attr.qp_state = IBV_QPS_RTR;
attr_mask = IBV_QP_STATE;
switch (qp_type) {
case IBV_QPT_RC:
pr_dbg("dgid=0x%" PRIx64 ",%" PRIx64 "\n",
be64_to_cpu(ibv_gid.global.subnet_prefix),
be64_to_cpu(ibv_gid.global.interface_id));
pr_dbg("dqpn=0x%x\n", dqpn);
pr_dbg("sgid_idx=%d\n", backend_dev->backend_gid_idx);
pr_dbg("sport_num=%d\n", backend_dev->port_num);
pr_dbg("rq_psn=0x%x\n", rq_psn);
attr.path_mtu = IBV_MTU_1024;
attr.dest_qp_num = dqpn;
attr.max_dest_rd_atomic = 1;
attr.min_rnr_timer = 12;
attr.ah_attr.port_num = backend_dev->port_num;
attr.ah_attr.is_global = 1;
attr.ah_attr.grh.hop_limit = 1;
attr.ah_attr.grh.dgid = ibv_gid;
attr.ah_attr.grh.sgid_index = backend_dev->backend_gid_idx;
attr.rq_psn = rq_psn;
attr_mask |= IBV_QP_AV | IBV_QP_PATH_MTU | IBV_QP_DEST_QPN |
IBV_QP_RQ_PSN | IBV_QP_MAX_DEST_RD_ATOMIC |
IBV_QP_MIN_RNR_TIMER;
break;
case IBV_QPT_UD:
if (use_qkey) {
pr_dbg("qkey=0x%x\n", qkey);
attr.qkey = qkey;
attr_mask |= IBV_QP_QKEY;
}
break;
}
rc = ibv_modify_qp(qp->ibqp, &attr, attr_mask);
if (rc) {
pr_dbg("Error %d from ibv_modify_qp\n", rc);
return -EIO;
}
return 0;
}
int rdma_backend_qp_state_rts(RdmaBackendQP *qp, uint8_t qp_type,
uint32_t sq_psn, uint32_t qkey, bool use_qkey)
{
struct ibv_qp_attr attr = {0};
int rc, attr_mask;
pr_dbg("qpn=0x%x\n", qp->ibqp->qp_num);
pr_dbg("sq_psn=0x%x\n", sq_psn);
attr.qp_state = IBV_QPS_RTS;
attr.sq_psn = sq_psn;
attr_mask = IBV_QP_STATE | IBV_QP_SQ_PSN;
switch (qp_type) {
case IBV_QPT_RC:
attr.timeout = 14;
attr.retry_cnt = 7;
attr.rnr_retry = 7;
attr.max_rd_atomic = 1;
attr_mask |= IBV_QP_TIMEOUT | IBV_QP_RETRY_CNT | IBV_QP_RNR_RETRY |
IBV_QP_MAX_QP_RD_ATOMIC;
break;
case IBV_QPT_UD:
if (use_qkey) {
pr_dbg("qkey=0x%x\n", qkey);
attr.qkey = qkey;
attr_mask |= IBV_QP_QKEY;
}
break;
}
rc = ibv_modify_qp(qp->ibqp, &attr, attr_mask);
if (rc) {
pr_dbg("Error %d from ibv_modify_qp\n", rc);
return -EIO;
}
return 0;
}
int rdma_backend_query_qp(RdmaBackendQP *qp, struct ibv_qp_attr *attr,
int attr_mask, struct ibv_qp_init_attr *init_attr)
{
if (!qp->ibqp) {
pr_dbg("QP1\n");
attr->qp_state = IBV_QPS_RTS;
return 0;
}
return ibv_query_qp(qp->ibqp, attr, attr_mask, init_attr);
}
void rdma_backend_destroy_qp(RdmaBackendQP *qp)
{
if (qp->ibqp) {
ibv_destroy_qp(qp->ibqp);
}
}
#define CHK_ATTR(req, dev, member, fmt) ({ \
pr_dbg("%s="fmt","fmt"\n", #member, dev.member, req->member); \
if (req->member > dev.member) { \
warn_report("%s = "fmt" is higher than host device capability "fmt, \
#member, req->member, dev.member); \
req->member = dev.member; \
} \
pr_dbg("%s="fmt"\n", #member, req->member); })
static int init_device_caps(RdmaBackendDev *backend_dev,
struct ibv_device_attr *dev_attr)
{
if (ibv_query_device(backend_dev->context, &backend_dev->dev_attr)) {
return -EIO;
}
CHK_ATTR(dev_attr, backend_dev->dev_attr, max_mr_size, "%" PRId64);
CHK_ATTR(dev_attr, backend_dev->dev_attr, max_qp, "%d");
CHK_ATTR(dev_attr, backend_dev->dev_attr, max_sge, "%d");
CHK_ATTR(dev_attr, backend_dev->dev_attr, max_qp_wr, "%d");
CHK_ATTR(dev_attr, backend_dev->dev_attr, max_cq, "%d");
CHK_ATTR(dev_attr, backend_dev->dev_attr, max_cqe, "%d");
CHK_ATTR(dev_attr, backend_dev->dev_attr, max_mr, "%d");
CHK_ATTR(dev_attr, backend_dev->dev_attr, max_pd, "%d");
CHK_ATTR(dev_attr, backend_dev->dev_attr, max_qp_rd_atom, "%d");
CHK_ATTR(dev_attr, backend_dev->dev_attr, max_qp_init_rd_atom, "%d");
CHK_ATTR(dev_attr, backend_dev->dev_attr, max_ah, "%d");
return 0;
}
static inline void build_mad_hdr(struct ibv_grh *grh, union ibv_gid *sgid,
union ibv_gid *my_gid, int paylen)
{
grh->paylen = htons(paylen);
grh->sgid = *sgid;
grh->dgid = *my_gid;
pr_dbg("paylen=%d (net=0x%x)\n", paylen, grh->paylen);
pr_dbg("my_gid=0x%llx\n", my_gid->global.interface_id);
pr_dbg("gid=0x%llx\n", sgid->global.interface_id);
}
static inline int mad_can_receieve(void *opaque)
{
return sizeof(struct backend_umad);
}
static void mad_read(void *opaque, const uint8_t *buf, int size)
{
RdmaBackendDev *backend_dev = (RdmaBackendDev *)opaque;
QObject *o_ctx_id;
unsigned long cqe_ctx_id;
BackendCtx *bctx;
char *mad;
struct backend_umad *umad;
assert(size != sizeof(umad));
umad = (struct backend_umad *)buf;
pr_dbg("Got %d bytes\n", size);
pr_dbg("umad->hdr.length=%d\n", umad->hdr.length);
#ifdef PVRDMA_DEBUG
struct umad_hdr *hdr = (struct umad_hdr *)&msg->umad.mad;
pr_dbg("bv %x cls %x cv %x mtd %x st %d tid %" PRIx64 " at %x atm %x\n",
hdr->base_version, hdr->mgmt_class, hdr->class_version,
hdr->method, hdr->status, be64toh(hdr->tid),
hdr->attr_id, hdr->attr_mod);
#endif
qemu_mutex_lock(&backend_dev->recv_mads_list.lock);
o_ctx_id = qlist_pop(backend_dev->recv_mads_list.list);
qemu_mutex_unlock(&backend_dev->recv_mads_list.lock);
if (!o_ctx_id) {
pr_dbg("No more free MADs buffers, waiting for a while\n");
sleep(THR_POLL_TO);
return;
}
cqe_ctx_id = qnum_get_uint(qobject_to(QNum, o_ctx_id));
bctx = rdma_rm_get_cqe_ctx(backend_dev->rdma_dev_res, cqe_ctx_id);
if (unlikely(!bctx)) {
pr_dbg("Error: Fail to find ctx for %ld\n", cqe_ctx_id);
return;
}
pr_dbg("id %ld, bctx %p, ctx %p\n", cqe_ctx_id, bctx, bctx->up_ctx);
mad = rdma_pci_dma_map(backend_dev->dev, bctx->sge.addr,
bctx->sge.length);
if (!mad || bctx->sge.length < umad->hdr.length + MAD_HDR_SIZE) {
comp_handler(IBV_WC_GENERAL_ERR, VENDOR_ERR_INV_MAD_BUFF,
bctx->up_ctx);
} else {
memset(mad, 0, bctx->sge.length);
build_mad_hdr((struct ibv_grh *)mad,
(union ibv_gid *)&umad->hdr.addr.gid,
&backend_dev->gid, umad->hdr.length);
memcpy(&mad[MAD_HDR_SIZE], umad->mad, umad->hdr.length);
rdma_pci_dma_unmap(backend_dev->dev, mad, bctx->sge.length);
comp_handler(IBV_WC_SUCCESS, 0, bctx->up_ctx);
}
g_free(bctx);
rdma_rm_dealloc_cqe_ctx(backend_dev->rdma_dev_res, cqe_ctx_id);
}
static int mad_init(RdmaBackendDev *backend_dev)
{
struct backend_umad umad = {0};
int ret;
if (!qemu_chr_fe_backend_connected(backend_dev->mad_chr_be)) {
pr_dbg("Missing chardev for MAD multiplexer\n");
return -EIO;
}
qemu_chr_fe_set_handlers(backend_dev->mad_chr_be, mad_can_receieve,
mad_read, NULL, NULL, backend_dev, NULL, true);
/* Register ourself */
memcpy(umad.hdr.addr.gid, backend_dev->gid.raw, sizeof(umad.hdr.addr.gid));
ret = qemu_chr_fe_write(backend_dev->mad_chr_be, (const uint8_t *)&umad,
sizeof(umad.hdr));
if (ret != sizeof(umad.hdr)) {
pr_dbg("Fail to register to rdma_umadmux (%d)\n", ret);
}
qemu_mutex_init(&backend_dev->recv_mads_list.lock);
backend_dev->recv_mads_list.list = qlist_new();
return 0;
}
static void mad_fini(RdmaBackendDev *backend_dev)
{
qlist_destroy_obj(QOBJECT(backend_dev->recv_mads_list.list));
qemu_mutex_destroy(&backend_dev->recv_mads_list.lock);
}
int rdma_backend_init(RdmaBackendDev *backend_dev, PCIDevice *pdev,
RdmaDeviceResources *rdma_dev_res,
const char *backend_device_name, uint8_t port_num,
uint8_t backend_gid_idx, struct ibv_device_attr *dev_attr,
CharBackend *mad_chr_be, Error **errp)
{
int i;
int ret = 0;
int num_ibv_devices;
struct ibv_device **dev_list;
struct ibv_port_attr port_attr;
memset(backend_dev, 0, sizeof(*backend_dev));
backend_dev->dev = pdev;
backend_dev->mad_chr_be = mad_chr_be;
backend_dev->backend_gid_idx = backend_gid_idx;
backend_dev->port_num = port_num;
backend_dev->rdma_dev_res = rdma_dev_res;
rdma_backend_register_comp_handler(dummy_comp_handler);
dev_list = ibv_get_device_list(&num_ibv_devices);
if (!dev_list) {
error_setg(errp, "Failed to get IB devices list");
return -EIO;
}
if (num_ibv_devices == 0) {
error_setg(errp, "No IB devices were found");
ret = -ENXIO;
goto out_free_dev_list;
}
if (backend_device_name) {
for (i = 0; dev_list[i]; ++i) {
if (!strcmp(ibv_get_device_name(dev_list[i]),
backend_device_name)) {
break;
}
}
backend_dev->ib_dev = dev_list[i];
if (!backend_dev->ib_dev) {
error_setg(errp, "Failed to find IB device %s",
backend_device_name);
ret = -EIO;
goto out_free_dev_list;
}
} else {
backend_dev->ib_dev = *dev_list;
}
pr_dbg("Using backend device %s, port %d, gid_idx %d\n",
ibv_get_device_name(backend_dev->ib_dev),
backend_dev->port_num, backend_dev->backend_gid_idx);
backend_dev->context = ibv_open_device(backend_dev->ib_dev);
if (!backend_dev->context) {
error_setg(errp, "Failed to open IB device");
ret = -EIO;
goto out;
}
backend_dev->channel = ibv_create_comp_channel(backend_dev->context);
if (!backend_dev->channel) {
error_setg(errp, "Failed to create IB communication channel");
ret = -EIO;
goto out_close_device;
}
pr_dbg("dev->backend_dev.channel=%p\n", backend_dev->channel);
ret = ibv_query_port(backend_dev->context, backend_dev->port_num,
&port_attr);
if (ret) {
error_setg(errp, "Error %d from ibv_query_port", ret);
ret = -EIO;
goto out_destroy_comm_channel;
}
if (backend_dev->backend_gid_idx >= port_attr.gid_tbl_len) {
error_setg(errp, "Invalid backend_gid_idx, should be less than %d",
port_attr.gid_tbl_len);
goto out_destroy_comm_channel;
}
ret = init_device_caps(backend_dev, dev_attr);
if (ret) {
error_setg(errp, "Failed to initialize device capabilities");
ret = -EIO;
goto out_destroy_comm_channel;
}
ret = ibv_query_gid(backend_dev->context, backend_dev->port_num,
backend_dev->backend_gid_idx, &backend_dev->gid);
if (ret) {
error_setg(errp, "Failed to query gid %d",
backend_dev->backend_gid_idx);
ret = -EIO;
goto out_destroy_comm_channel;
}
pr_dbg("subnet_prefix=0x%" PRIx64 "\n",
be64_to_cpu(backend_dev->gid.global.subnet_prefix));
pr_dbg("interface_id=0x%" PRIx64 "\n",
be64_to_cpu(backend_dev->gid.global.interface_id));
ret = mad_init(backend_dev);
if (ret) {
error_setg(errp, "Fail to initialize mad");
ret = -EIO;
goto out_destroy_comm_channel;
}
backend_dev->comp_thread.run = false;
backend_dev->comp_thread.is_running = false;
ah_cache_init();
goto out_free_dev_list;
out_destroy_comm_channel:
ibv_destroy_comp_channel(backend_dev->channel);
out_close_device:
ibv_close_device(backend_dev->context);
out_free_dev_list:
ibv_free_device_list(dev_list);
out:
return ret;
}
void rdma_backend_start(RdmaBackendDev *backend_dev)
{
pr_dbg("Starting rdma_backend\n");
start_comp_thread(backend_dev);
}
void rdma_backend_stop(RdmaBackendDev *backend_dev)
{
pr_dbg("Stopping rdma_backend\n");
stop_backend_thread(&backend_dev->comp_thread);
}
void rdma_backend_fini(RdmaBackendDev *backend_dev)
{
rdma_backend_stop(backend_dev);
mad_fini(backend_dev);
g_hash_table_destroy(ah_hash);
ibv_destroy_comp_channel(backend_dev->channel);
ibv_close_device(backend_dev->context);
}