qemu-patch-raspberry4/hw/i386/pc.c
Andreas Färber cd7b87ffe9 target-i386: Fix X86CPU error handling
Error **errp argument is not for emitting warnings, it means an error
has occurred and the caller should not make any assumptions about the
state of other return values (unless otherwise documented).

Therefore cpu_x86_create() must unref the new X86CPU itself, and
pc_new_cpu() must check for an Error rather than NULL return value.

While at it, clean up a superfluous NULL check.

Reported-by: Jan Kiszka <jan.kiszka@siemens.com>
Cc: qemu-stable@nongnu.org
Cc: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: Andreas Färber <afaerber@suse.de>
2013-08-06 19:27:20 +02:00

1365 lines
39 KiB
C

/*
* QEMU PC System Emulator
*
* Copyright (c) 2003-2004 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw/hw.h"
#include "hw/i386/pc.h"
#include "hw/char/serial.h"
#include "hw/i386/apic.h"
#include "hw/block/fdc.h"
#include "hw/ide.h"
#include "hw/pci/pci.h"
#include "monitor/monitor.h"
#include "hw/nvram/fw_cfg.h"
#include "hw/timer/hpet.h"
#include "hw/i386/smbios.h"
#include "hw/loader.h"
#include "elf.h"
#include "multiboot.h"
#include "hw/timer/mc146818rtc.h"
#include "hw/timer/i8254.h"
#include "hw/audio/pcspk.h"
#include "hw/pci/msi.h"
#include "hw/sysbus.h"
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
#include "kvm_i386.h"
#include "hw/xen/xen.h"
#include "sysemu/blockdev.h"
#include "hw/block/block.h"
#include "ui/qemu-spice.h"
#include "exec/memory.h"
#include "exec/address-spaces.h"
#include "sysemu/arch_init.h"
#include "qemu/bitmap.h"
#include "qemu/config-file.h"
#include "hw/acpi/acpi.h"
#include "hw/cpu/icc_bus.h"
#include "hw/boards.h"
#include "hw/pci/pci_host.h"
/* debug PC/ISA interrupts */
//#define DEBUG_IRQ
#ifdef DEBUG_IRQ
#define DPRINTF(fmt, ...) \
do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
#else
#define DPRINTF(fmt, ...)
#endif
/* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables. */
#define ACPI_DATA_SIZE 0x10000
#define BIOS_CFG_IOPORT 0x510
#define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
#define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
#define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
#define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
#define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
#define E820_NR_ENTRIES 16
struct e820_entry {
uint64_t address;
uint64_t length;
uint32_t type;
} QEMU_PACKED __attribute((__aligned__(4)));
struct e820_table {
uint32_t count;
struct e820_entry entry[E820_NR_ENTRIES];
} QEMU_PACKED __attribute((__aligned__(4)));
static struct e820_table e820_table;
struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
void gsi_handler(void *opaque, int n, int level)
{
GSIState *s = opaque;
DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
if (n < ISA_NUM_IRQS) {
qemu_set_irq(s->i8259_irq[n], level);
}
qemu_set_irq(s->ioapic_irq[n], level);
}
static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
unsigned size)
{
}
static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
{
return 0xffffffffffffffffULL;
}
/* MSDOS compatibility mode FPU exception support */
static qemu_irq ferr_irq;
void pc_register_ferr_irq(qemu_irq irq)
{
ferr_irq = irq;
}
/* XXX: add IGNNE support */
void cpu_set_ferr(CPUX86State *s)
{
qemu_irq_raise(ferr_irq);
}
static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
unsigned size)
{
qemu_irq_lower(ferr_irq);
}
static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
{
return 0xffffffffffffffffULL;
}
/* TSC handling */
uint64_t cpu_get_tsc(CPUX86State *env)
{
return cpu_get_ticks();
}
/* SMM support */
static cpu_set_smm_t smm_set;
static void *smm_arg;
void cpu_smm_register(cpu_set_smm_t callback, void *arg)
{
assert(smm_set == NULL);
assert(smm_arg == NULL);
smm_set = callback;
smm_arg = arg;
}
void cpu_smm_update(CPUX86State *env)
{
if (smm_set && smm_arg && CPU(x86_env_get_cpu(env)) == first_cpu) {
smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg);
}
}
/* IRQ handling */
int cpu_get_pic_interrupt(CPUX86State *env)
{
int intno;
intno = apic_get_interrupt(env->apic_state);
if (intno >= 0) {
return intno;
}
/* read the irq from the PIC */
if (!apic_accept_pic_intr(env->apic_state)) {
return -1;
}
intno = pic_read_irq(isa_pic);
return intno;
}
static void pic_irq_request(void *opaque, int irq, int level)
{
CPUState *cs = first_cpu;
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
if (env->apic_state) {
while (cs) {
cpu = X86_CPU(cs);
env = &cpu->env;
if (apic_accept_pic_intr(env->apic_state)) {
apic_deliver_pic_intr(env->apic_state, level);
}
cs = cs->next_cpu;
}
} else {
if (level) {
cpu_interrupt(cs, CPU_INTERRUPT_HARD);
} else {
cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
}
}
}
/* PC cmos mappings */
#define REG_EQUIPMENT_BYTE 0x14
static int cmos_get_fd_drive_type(FDriveType fd0)
{
int val;
switch (fd0) {
case FDRIVE_DRV_144:
/* 1.44 Mb 3"5 drive */
val = 4;
break;
case FDRIVE_DRV_288:
/* 2.88 Mb 3"5 drive */
val = 5;
break;
case FDRIVE_DRV_120:
/* 1.2 Mb 5"5 drive */
val = 2;
break;
case FDRIVE_DRV_NONE:
default:
val = 0;
break;
}
return val;
}
static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
int16_t cylinders, int8_t heads, int8_t sectors)
{
rtc_set_memory(s, type_ofs, 47);
rtc_set_memory(s, info_ofs, cylinders);
rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
rtc_set_memory(s, info_ofs + 2, heads);
rtc_set_memory(s, info_ofs + 3, 0xff);
rtc_set_memory(s, info_ofs + 4, 0xff);
rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
rtc_set_memory(s, info_ofs + 6, cylinders);
rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
rtc_set_memory(s, info_ofs + 8, sectors);
}
/* convert boot_device letter to something recognizable by the bios */
static int boot_device2nibble(char boot_device)
{
switch(boot_device) {
case 'a':
case 'b':
return 0x01; /* floppy boot */
case 'c':
return 0x02; /* hard drive boot */
case 'd':
return 0x03; /* CD-ROM boot */
case 'n':
return 0x04; /* Network boot */
}
return 0;
}
static int set_boot_dev(ISADevice *s, const char *boot_device)
{
#define PC_MAX_BOOT_DEVICES 3
int nbds, bds[3] = { 0, };
int i;
nbds = strlen(boot_device);
if (nbds > PC_MAX_BOOT_DEVICES) {
error_report("Too many boot devices for PC");
return(1);
}
for (i = 0; i < nbds; i++) {
bds[i] = boot_device2nibble(boot_device[i]);
if (bds[i] == 0) {
error_report("Invalid boot device for PC: '%c'",
boot_device[i]);
return(1);
}
}
rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
return(0);
}
static int pc_boot_set(void *opaque, const char *boot_device)
{
return set_boot_dev(opaque, boot_device);
}
typedef struct pc_cmos_init_late_arg {
ISADevice *rtc_state;
BusState *idebus[2];
} pc_cmos_init_late_arg;
static void pc_cmos_init_late(void *opaque)
{
pc_cmos_init_late_arg *arg = opaque;
ISADevice *s = arg->rtc_state;
int16_t cylinders;
int8_t heads, sectors;
int val;
int i, trans;
val = 0;
if (ide_get_geometry(arg->idebus[0], 0,
&cylinders, &heads, &sectors) >= 0) {
cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
val |= 0xf0;
}
if (ide_get_geometry(arg->idebus[0], 1,
&cylinders, &heads, &sectors) >= 0) {
cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
val |= 0x0f;
}
rtc_set_memory(s, 0x12, val);
val = 0;
for (i = 0; i < 4; i++) {
/* NOTE: ide_get_geometry() returns the physical
geometry. It is always such that: 1 <= sects <= 63, 1
<= heads <= 16, 1 <= cylinders <= 16383. The BIOS
geometry can be different if a translation is done. */
if (ide_get_geometry(arg->idebus[i / 2], i % 2,
&cylinders, &heads, &sectors) >= 0) {
trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
assert((trans & ~3) == 0);
val |= trans << (i * 2);
}
}
rtc_set_memory(s, 0x39, val);
qemu_unregister_reset(pc_cmos_init_late, opaque);
}
typedef struct RTCCPUHotplugArg {
Notifier cpu_added_notifier;
ISADevice *rtc_state;
} RTCCPUHotplugArg;
static void rtc_notify_cpu_added(Notifier *notifier, void *data)
{
RTCCPUHotplugArg *arg = container_of(notifier, RTCCPUHotplugArg,
cpu_added_notifier);
ISADevice *s = arg->rtc_state;
/* increment the number of CPUs */
rtc_set_memory(s, 0x5f, rtc_get_memory(s, 0x5f) + 1);
}
void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
const char *boot_device,
ISADevice *floppy, BusState *idebus0, BusState *idebus1,
ISADevice *s)
{
int val, nb, i;
FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
static pc_cmos_init_late_arg arg;
static RTCCPUHotplugArg cpu_hotplug_cb;
/* various important CMOS locations needed by PC/Bochs bios */
/* memory size */
/* base memory (first MiB) */
val = MIN(ram_size / 1024, 640);
rtc_set_memory(s, 0x15, val);
rtc_set_memory(s, 0x16, val >> 8);
/* extended memory (next 64MiB) */
if (ram_size > 1024 * 1024) {
val = (ram_size - 1024 * 1024) / 1024;
} else {
val = 0;
}
if (val > 65535)
val = 65535;
rtc_set_memory(s, 0x17, val);
rtc_set_memory(s, 0x18, val >> 8);
rtc_set_memory(s, 0x30, val);
rtc_set_memory(s, 0x31, val >> 8);
/* memory between 16MiB and 4GiB */
if (ram_size > 16 * 1024 * 1024) {
val = (ram_size - 16 * 1024 * 1024) / 65536;
} else {
val = 0;
}
if (val > 65535)
val = 65535;
rtc_set_memory(s, 0x34, val);
rtc_set_memory(s, 0x35, val >> 8);
/* memory above 4GiB */
val = above_4g_mem_size / 65536;
rtc_set_memory(s, 0x5b, val);
rtc_set_memory(s, 0x5c, val >> 8);
rtc_set_memory(s, 0x5d, val >> 16);
/* set the number of CPU */
rtc_set_memory(s, 0x5f, smp_cpus - 1);
/* init CPU hotplug notifier */
cpu_hotplug_cb.rtc_state = s;
cpu_hotplug_cb.cpu_added_notifier.notify = rtc_notify_cpu_added;
qemu_register_cpu_added_notifier(&cpu_hotplug_cb.cpu_added_notifier);
if (set_boot_dev(s, boot_device)) {
exit(1);
}
/* floppy type */
if (floppy) {
for (i = 0; i < 2; i++) {
fd_type[i] = isa_fdc_get_drive_type(floppy, i);
}
}
val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
cmos_get_fd_drive_type(fd_type[1]);
rtc_set_memory(s, 0x10, val);
val = 0;
nb = 0;
if (fd_type[0] < FDRIVE_DRV_NONE) {
nb++;
}
if (fd_type[1] < FDRIVE_DRV_NONE) {
nb++;
}
switch (nb) {
case 0:
break;
case 1:
val |= 0x01; /* 1 drive, ready for boot */
break;
case 2:
val |= 0x41; /* 2 drives, ready for boot */
break;
}
val |= 0x02; /* FPU is there */
val |= 0x04; /* PS/2 mouse installed */
rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
/* hard drives */
arg.rtc_state = s;
arg.idebus[0] = idebus0;
arg.idebus[1] = idebus1;
qemu_register_reset(pc_cmos_init_late, &arg);
}
#define TYPE_PORT92 "port92"
#define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
/* port 92 stuff: could be split off */
typedef struct Port92State {
ISADevice parent_obj;
MemoryRegion io;
uint8_t outport;
qemu_irq *a20_out;
} Port92State;
static void port92_write(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
Port92State *s = opaque;
DPRINTF("port92: write 0x%02x\n", val);
s->outport = val;
qemu_set_irq(*s->a20_out, (val >> 1) & 1);
if (val & 1) {
qemu_system_reset_request();
}
}
static uint64_t port92_read(void *opaque, hwaddr addr,
unsigned size)
{
Port92State *s = opaque;
uint32_t ret;
ret = s->outport;
DPRINTF("port92: read 0x%02x\n", ret);
return ret;
}
static void port92_init(ISADevice *dev, qemu_irq *a20_out)
{
Port92State *s = PORT92(dev);
s->a20_out = a20_out;
}
static const VMStateDescription vmstate_port92_isa = {
.name = "port92",
.version_id = 1,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.fields = (VMStateField []) {
VMSTATE_UINT8(outport, Port92State),
VMSTATE_END_OF_LIST()
}
};
static void port92_reset(DeviceState *d)
{
Port92State *s = PORT92(d);
s->outport &= ~1;
}
static const MemoryRegionOps port92_ops = {
.read = port92_read,
.write = port92_write,
.impl = {
.min_access_size = 1,
.max_access_size = 1,
},
.endianness = DEVICE_LITTLE_ENDIAN,
};
static void port92_initfn(Object *obj)
{
Port92State *s = PORT92(obj);
memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
s->outport = 0;
}
static void port92_realizefn(DeviceState *dev, Error **errp)
{
ISADevice *isadev = ISA_DEVICE(dev);
Port92State *s = PORT92(dev);
isa_register_ioport(isadev, &s->io, 0x92);
}
static void port92_class_initfn(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->no_user = 1;
dc->realize = port92_realizefn;
dc->reset = port92_reset;
dc->vmsd = &vmstate_port92_isa;
}
static const TypeInfo port92_info = {
.name = TYPE_PORT92,
.parent = TYPE_ISA_DEVICE,
.instance_size = sizeof(Port92State),
.instance_init = port92_initfn,
.class_init = port92_class_initfn,
};
static void port92_register_types(void)
{
type_register_static(&port92_info);
}
type_init(port92_register_types)
static void handle_a20_line_change(void *opaque, int irq, int level)
{
X86CPU *cpu = opaque;
/* XXX: send to all CPUs ? */
/* XXX: add logic to handle multiple A20 line sources */
x86_cpu_set_a20(cpu, level);
}
int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
{
int index = le32_to_cpu(e820_table.count);
struct e820_entry *entry;
if (index >= E820_NR_ENTRIES)
return -EBUSY;
entry = &e820_table.entry[index++];
entry->address = cpu_to_le64(address);
entry->length = cpu_to_le64(length);
entry->type = cpu_to_le32(type);
e820_table.count = cpu_to_le32(index);
return index;
}
/* Calculates the limit to CPU APIC ID values
*
* This function returns the limit for the APIC ID value, so that all
* CPU APIC IDs are < pc_apic_id_limit().
*
* This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
*/
static unsigned int pc_apic_id_limit(unsigned int max_cpus)
{
return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
}
static FWCfgState *bochs_bios_init(void)
{
FWCfgState *fw_cfg;
uint8_t *smbios_table;
size_t smbios_len;
uint64_t *numa_fw_cfg;
int i, j;
unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
/* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
*
* SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
* QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
* ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
* "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
* may see".
*
* So, this means we must not use max_cpus, here, but the maximum possible
* APIC ID value, plus one.
*
* [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
* the APIC ID, not the "CPU index"
*/
fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
acpi_tables, acpi_tables_len);
fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
smbios_table = smbios_get_table(&smbios_len);
if (smbios_table)
fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
smbios_table, smbios_len);
fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
&e820_table, sizeof(e820_table));
fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
/* allocate memory for the NUMA channel: one (64bit) word for the number
* of nodes, one word for each VCPU->node and one word for each node to
* hold the amount of memory.
*/
numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
for (i = 0; i < max_cpus; i++) {
unsigned int apic_id = x86_cpu_apic_id_from_index(i);
assert(apic_id < apic_id_limit);
for (j = 0; j < nb_numa_nodes; j++) {
if (test_bit(i, node_cpumask[j])) {
numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
break;
}
}
}
for (i = 0; i < nb_numa_nodes; i++) {
numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(node_mem[i]);
}
fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
(1 + apic_id_limit + nb_numa_nodes) *
sizeof(*numa_fw_cfg));
return fw_cfg;
}
static long get_file_size(FILE *f)
{
long where, size;
/* XXX: on Unix systems, using fstat() probably makes more sense */
where = ftell(f);
fseek(f, 0, SEEK_END);
size = ftell(f);
fseek(f, where, SEEK_SET);
return size;
}
static void load_linux(FWCfgState *fw_cfg,
const char *kernel_filename,
const char *initrd_filename,
const char *kernel_cmdline,
hwaddr max_ram_size)
{
uint16_t protocol;
int setup_size, kernel_size, initrd_size = 0, cmdline_size;
uint32_t initrd_max;
uint8_t header[8192], *setup, *kernel, *initrd_data;
hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
FILE *f;
char *vmode;
/* Align to 16 bytes as a paranoia measure */
cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
/* load the kernel header */
f = fopen(kernel_filename, "rb");
if (!f || !(kernel_size = get_file_size(f)) ||
fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
MIN(ARRAY_SIZE(header), kernel_size)) {
fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
kernel_filename, strerror(errno));
exit(1);
}
/* kernel protocol version */
#if 0
fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
#endif
if (ldl_p(header+0x202) == 0x53726448) {
protocol = lduw_p(header+0x206);
} else {
/* This looks like a multiboot kernel. If it is, let's stop
treating it like a Linux kernel. */
if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
kernel_cmdline, kernel_size, header)) {
return;
}
protocol = 0;
}
if (protocol < 0x200 || !(header[0x211] & 0x01)) {
/* Low kernel */
real_addr = 0x90000;
cmdline_addr = 0x9a000 - cmdline_size;
prot_addr = 0x10000;
} else if (protocol < 0x202) {
/* High but ancient kernel */
real_addr = 0x90000;
cmdline_addr = 0x9a000 - cmdline_size;
prot_addr = 0x100000;
} else {
/* High and recent kernel */
real_addr = 0x10000;
cmdline_addr = 0x20000;
prot_addr = 0x100000;
}
#if 0
fprintf(stderr,
"qemu: real_addr = 0x" TARGET_FMT_plx "\n"
"qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
"qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
real_addr,
cmdline_addr,
prot_addr);
#endif
/* highest address for loading the initrd */
if (protocol >= 0x203) {
initrd_max = ldl_p(header+0x22c);
} else {
initrd_max = 0x37ffffff;
}
if (initrd_max >= max_ram_size-ACPI_DATA_SIZE)
initrd_max = max_ram_size-ACPI_DATA_SIZE-1;
fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
if (protocol >= 0x202) {
stl_p(header+0x228, cmdline_addr);
} else {
stw_p(header+0x20, 0xA33F);
stw_p(header+0x22, cmdline_addr-real_addr);
}
/* handle vga= parameter */
vmode = strstr(kernel_cmdline, "vga=");
if (vmode) {
unsigned int video_mode;
/* skip "vga=" */
vmode += 4;
if (!strncmp(vmode, "normal", 6)) {
video_mode = 0xffff;
} else if (!strncmp(vmode, "ext", 3)) {
video_mode = 0xfffe;
} else if (!strncmp(vmode, "ask", 3)) {
video_mode = 0xfffd;
} else {
video_mode = strtol(vmode, NULL, 0);
}
stw_p(header+0x1fa, video_mode);
}
/* loader type */
/* High nybble = B reserved for QEMU; low nybble is revision number.
If this code is substantially changed, you may want to consider
incrementing the revision. */
if (protocol >= 0x200) {
header[0x210] = 0xB0;
}
/* heap */
if (protocol >= 0x201) {
header[0x211] |= 0x80; /* CAN_USE_HEAP */
stw_p(header+0x224, cmdline_addr-real_addr-0x200);
}
/* load initrd */
if (initrd_filename) {
if (protocol < 0x200) {
fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
exit(1);
}
initrd_size = get_image_size(initrd_filename);
if (initrd_size < 0) {
fprintf(stderr, "qemu: error reading initrd %s\n",
initrd_filename);
exit(1);
}
initrd_addr = (initrd_max-initrd_size) & ~4095;
initrd_data = g_malloc(initrd_size);
load_image(initrd_filename, initrd_data);
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
stl_p(header+0x218, initrd_addr);
stl_p(header+0x21c, initrd_size);
}
/* load kernel and setup */
setup_size = header[0x1f1];
if (setup_size == 0) {
setup_size = 4;
}
setup_size = (setup_size+1)*512;
kernel_size -= setup_size;
setup = g_malloc(setup_size);
kernel = g_malloc(kernel_size);
fseek(f, 0, SEEK_SET);
if (fread(setup, 1, setup_size, f) != setup_size) {
fprintf(stderr, "fread() failed\n");
exit(1);
}
if (fread(kernel, 1, kernel_size, f) != kernel_size) {
fprintf(stderr, "fread() failed\n");
exit(1);
}
fclose(f);
memcpy(setup, header, MIN(sizeof(header), setup_size));
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
option_rom[nb_option_roms].name = "linuxboot.bin";
option_rom[nb_option_roms].bootindex = 0;
nb_option_roms++;
}
#define NE2000_NB_MAX 6
static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
0x280, 0x380 };
static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
static const int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc };
static const int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 };
void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
{
static int nb_ne2k = 0;
if (nb_ne2k == NE2000_NB_MAX)
return;
isa_ne2000_init(bus, ne2000_io[nb_ne2k],
ne2000_irq[nb_ne2k], nd);
nb_ne2k++;
}
DeviceState *cpu_get_current_apic(void)
{
if (current_cpu) {
X86CPU *cpu = X86_CPU(current_cpu);
return cpu->env.apic_state;
} else {
return NULL;
}
}
void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
{
X86CPU *cpu = opaque;
if (level) {
cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
}
}
static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
DeviceState *icc_bridge, Error **errp)
{
X86CPU *cpu;
Error *local_err = NULL;
cpu = cpu_x86_create(cpu_model, icc_bridge, &local_err);
if (local_err != NULL) {
error_propagate(errp, local_err);
return NULL;
}
object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
if (local_err) {
error_propagate(errp, local_err);
object_unref(OBJECT(cpu));
cpu = NULL;
}
return cpu;
}
static const char *current_cpu_model;
void pc_hot_add_cpu(const int64_t id, Error **errp)
{
DeviceState *icc_bridge;
int64_t apic_id = x86_cpu_apic_id_from_index(id);
if (id < 0) {
error_setg(errp, "Invalid CPU id: %" PRIi64, id);
return;
}
if (cpu_exists(apic_id)) {
error_setg(errp, "Unable to add CPU: %" PRIi64
", it already exists", id);
return;
}
if (id >= max_cpus) {
error_setg(errp, "Unable to add CPU: %" PRIi64
", max allowed: %d", id, max_cpus - 1);
return;
}
icc_bridge = DEVICE(object_resolve_path_type("icc-bridge",
TYPE_ICC_BRIDGE, NULL));
pc_new_cpu(current_cpu_model, apic_id, icc_bridge, errp);
}
void pc_cpus_init(const char *cpu_model, DeviceState *icc_bridge)
{
int i;
X86CPU *cpu = NULL;
Error *error = NULL;
/* init CPUs */
if (cpu_model == NULL) {
#ifdef TARGET_X86_64
cpu_model = "qemu64";
#else
cpu_model = "qemu32";
#endif
}
current_cpu_model = cpu_model;
for (i = 0; i < smp_cpus; i++) {
cpu = pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i),
icc_bridge, &error);
if (error) {
fprintf(stderr, "%s\n", error_get_pretty(error));
error_free(error);
exit(1);
}
}
/* map APIC MMIO area if CPU has APIC */
if (cpu && cpu->env.apic_state) {
/* XXX: what if the base changes? */
sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge), 0,
APIC_DEFAULT_ADDRESS, 0x1000);
}
}
/* pci-info ROM file. Little endian format */
typedef struct PcRomPciInfo {
uint64_t w32_min;
uint64_t w32_max;
uint64_t w64_min;
uint64_t w64_max;
} PcRomPciInfo;
static void pc_fw_cfg_guest_info(PcGuestInfo *guest_info)
{
PcRomPciInfo *info;
Object *pci_info;
bool ambiguous = false;
if (!guest_info->has_pci_info || !guest_info->fw_cfg) {
return;
}
pci_info = object_resolve_path_type("", TYPE_PCI_HOST_BRIDGE, &ambiguous);
g_assert(!ambiguous);
if (!pci_info) {
return;
}
info = g_malloc(sizeof *info);
info->w32_min = cpu_to_le64(object_property_get_int(pci_info,
PCI_HOST_PROP_PCI_HOLE_START, NULL));
info->w32_max = cpu_to_le64(object_property_get_int(pci_info,
PCI_HOST_PROP_PCI_HOLE_END, NULL));
info->w64_min = cpu_to_le64(object_property_get_int(pci_info,
PCI_HOST_PROP_PCI_HOLE64_START, NULL));
info->w64_max = cpu_to_le64(object_property_get_int(pci_info,
PCI_HOST_PROP_PCI_HOLE64_END, NULL));
/* Pass PCI hole info to guest via a side channel.
* Required so guest PCI enumeration does the right thing. */
fw_cfg_add_file(guest_info->fw_cfg, "etc/pci-info", info, sizeof *info);
}
typedef struct PcGuestInfoState {
PcGuestInfo info;
Notifier machine_done;
} PcGuestInfoState;
static
void pc_guest_info_machine_done(Notifier *notifier, void *data)
{
PcGuestInfoState *guest_info_state = container_of(notifier,
PcGuestInfoState,
machine_done);
pc_fw_cfg_guest_info(&guest_info_state->info);
}
PcGuestInfo *pc_guest_info_init(ram_addr_t below_4g_mem_size,
ram_addr_t above_4g_mem_size)
{
PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
PcGuestInfo *guest_info = &guest_info_state->info;
guest_info_state->machine_done.notify = pc_guest_info_machine_done;
qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
return guest_info;
}
void pc_init_pci64_hole(PcPciInfo *pci_info, uint64_t pci_hole64_start,
uint64_t pci_hole64_size)
{
if ((sizeof(hwaddr) == 4) || (!pci_hole64_size)) {
return;
}
/*
* BIOS does not set MTRR entries for the 64 bit window, so no need to
* align address to power of two. Align address at 1G, this makes sure
* it can be exactly covered with a PAT entry even when using huge
* pages.
*/
pci_info->w64.begin = ROUND_UP(pci_hole64_start, 0x1ULL << 30);
pci_info->w64.end = pci_info->w64.begin + pci_hole64_size;
assert(pci_info->w64.begin <= pci_info->w64.end);
}
void pc_acpi_init(const char *default_dsdt)
{
char *filename;
if (acpi_tables != NULL) {
/* manually set via -acpitable, leave it alone */
return;
}
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
if (filename == NULL) {
fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
} else {
char *arg;
QemuOpts *opts;
Error *err = NULL;
arg = g_strdup_printf("file=%s", filename);
/* creates a deep copy of "arg" */
opts = qemu_opts_parse(qemu_find_opts("acpi"), arg, 0);
g_assert(opts != NULL);
acpi_table_add(opts, &err);
if (err) {
fprintf(stderr, "WARNING: failed to load %s: %s\n", filename,
error_get_pretty(err));
error_free(err);
}
g_free(arg);
g_free(filename);
}
}
FWCfgState *pc_memory_init(MemoryRegion *system_memory,
const char *kernel_filename,
const char *kernel_cmdline,
const char *initrd_filename,
ram_addr_t below_4g_mem_size,
ram_addr_t above_4g_mem_size,
MemoryRegion *rom_memory,
MemoryRegion **ram_memory,
PcGuestInfo *guest_info)
{
int linux_boot, i;
MemoryRegion *ram, *option_rom_mr;
MemoryRegion *ram_below_4g, *ram_above_4g;
FWCfgState *fw_cfg;
linux_boot = (kernel_filename != NULL);
/* Allocate RAM. We allocate it as a single memory region and use
* aliases to address portions of it, mostly for backwards compatibility
* with older qemus that used qemu_ram_alloc().
*/
ram = g_malloc(sizeof(*ram));
memory_region_init_ram(ram, NULL, "pc.ram",
below_4g_mem_size + above_4g_mem_size);
vmstate_register_ram_global(ram);
*ram_memory = ram;
ram_below_4g = g_malloc(sizeof(*ram_below_4g));
memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
0, below_4g_mem_size);
memory_region_add_subregion(system_memory, 0, ram_below_4g);
if (above_4g_mem_size > 0) {
ram_above_4g = g_malloc(sizeof(*ram_above_4g));
memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
below_4g_mem_size, above_4g_mem_size);
memory_region_add_subregion(system_memory, 0x100000000ULL,
ram_above_4g);
}
/* Initialize PC system firmware */
pc_system_firmware_init(rom_memory);
option_rom_mr = g_malloc(sizeof(*option_rom_mr));
memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE);
vmstate_register_ram_global(option_rom_mr);
memory_region_add_subregion_overlap(rom_memory,
PC_ROM_MIN_VGA,
option_rom_mr,
1);
fw_cfg = bochs_bios_init();
rom_set_fw(fw_cfg);
if (linux_boot) {
load_linux(fw_cfg, kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size);
}
for (i = 0; i < nb_option_roms; i++) {
rom_add_option(option_rom[i].name, option_rom[i].bootindex);
}
guest_info->fw_cfg = fw_cfg;
return fw_cfg;
}
qemu_irq *pc_allocate_cpu_irq(void)
{
return qemu_allocate_irqs(pic_irq_request, NULL, 1);
}
DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
{
DeviceState *dev = NULL;
if (pci_bus) {
PCIDevice *pcidev = pci_vga_init(pci_bus);
dev = pcidev ? &pcidev->qdev : NULL;
} else if (isa_bus) {
ISADevice *isadev = isa_vga_init(isa_bus);
dev = isadev ? DEVICE(isadev) : NULL;
}
return dev;
}
static void cpu_request_exit(void *opaque, int irq, int level)
{
CPUState *cpu = current_cpu;
if (cpu && level) {
cpu_exit(cpu);
}
}
static const MemoryRegionOps ioport80_io_ops = {
.write = ioport80_write,
.read = ioport80_read,
.endianness = DEVICE_NATIVE_ENDIAN,
.impl = {
.min_access_size = 1,
.max_access_size = 1,
},
};
static const MemoryRegionOps ioportF0_io_ops = {
.write = ioportF0_write,
.read = ioportF0_read,
.endianness = DEVICE_NATIVE_ENDIAN,
.impl = {
.min_access_size = 1,
.max_access_size = 1,
},
};
void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
ISADevice **rtc_state,
ISADevice **floppy,
bool no_vmport)
{
int i;
DriveInfo *fd[MAX_FD];
DeviceState *hpet = NULL;
int pit_isa_irq = 0;
qemu_irq pit_alt_irq = NULL;
qemu_irq rtc_irq = NULL;
qemu_irq *a20_line;
ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
qemu_irq *cpu_exit_irq;
MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
/*
* Check if an HPET shall be created.
*
* Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
* when the HPET wants to take over. Thus we have to disable the latter.
*/
if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
hpet = sysbus_try_create_simple("hpet", HPET_BASE, NULL);
if (hpet) {
for (i = 0; i < GSI_NUM_PINS; i++) {
sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
}
pit_isa_irq = -1;
pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
}
}
*rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
qemu_register_boot_set(pc_boot_set, *rtc_state);
if (!xen_enabled()) {
if (kvm_irqchip_in_kernel()) {
pit = kvm_pit_init(isa_bus, 0x40);
} else {
pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
}
if (hpet) {
/* connect PIT to output control line of the HPET */
qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
}
pcspk_init(isa_bus, pit);
}
for(i = 0; i < MAX_SERIAL_PORTS; i++) {
if (serial_hds[i]) {
serial_isa_init(isa_bus, i, serial_hds[i]);
}
}
for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
if (parallel_hds[i]) {
parallel_init(isa_bus, i, parallel_hds[i]);
}
}
a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
i8042 = isa_create_simple(isa_bus, "i8042");
i8042_setup_a20_line(i8042, &a20_line[0]);
if (!no_vmport) {
vmport_init(isa_bus);
vmmouse = isa_try_create(isa_bus, "vmmouse");
} else {
vmmouse = NULL;
}
if (vmmouse) {
DeviceState *dev = DEVICE(vmmouse);
qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
qdev_init_nofail(dev);
}
port92 = isa_create_simple(isa_bus, "port92");
port92_init(port92, &a20_line[1]);
cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
DMA_init(0, cpu_exit_irq);
for(i = 0; i < MAX_FD; i++) {
fd[i] = drive_get(IF_FLOPPY, 0, i);
}
*floppy = fdctrl_init_isa(isa_bus, fd);
}
void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
{
int i;
for (i = 0; i < nb_nics; i++) {
NICInfo *nd = &nd_table[i];
if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
pc_init_ne2k_isa(isa_bus, nd);
} else {
pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
}
}
}
void pc_pci_device_init(PCIBus *pci_bus)
{
int max_bus;
int bus;
max_bus = drive_get_max_bus(IF_SCSI);
for (bus = 0; bus <= max_bus; bus++) {
pci_create_simple(pci_bus, -1, "lsi53c895a");
}
}
void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
{
DeviceState *dev;
SysBusDevice *d;
unsigned int i;
if (kvm_irqchip_in_kernel()) {
dev = qdev_create(NULL, "kvm-ioapic");
} else {
dev = qdev_create(NULL, "ioapic");
}
if (parent_name) {
object_property_add_child(object_resolve_path(parent_name, NULL),
"ioapic", OBJECT(dev), NULL);
}
qdev_init_nofail(dev);
d = SYS_BUS_DEVICE(dev);
sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
for (i = 0; i < IOAPIC_NUM_PINS; i++) {
gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
}
}