qemu-patch-raspberry4/hw/ppc/spapr_vio.c
Chetan Pant 61f3c91a67 nomaintainer: Fix Lesser GPL version number
There is no "version 2" of the "Lesser" General Public License.
It is either "GPL version 2.0" or "Lesser GPL version 2.1".
This patch replaces all occurrences of "Lesser GPL version 2" with
"Lesser GPL version 2.1" in comment section.

This patch contains all the files, whose maintainer I could not get
from ‘get_maintainer.pl’ script.

Signed-off-by: Chetan Pant <chetan4windows@gmail.com>
Message-Id: <20201023124424.20177-1-chetan4windows@gmail.com>
Reviewed-by: Thomas Huth <thuth@redhat.com>
[thuth: Adapted exec.c and qdev-monitor.c to new location]
Signed-off-by: Thomas Huth <thuth@redhat.com>
2020-11-15 17:04:40 +01:00

743 lines
20 KiB
C

/*
* QEMU sPAPR VIO code
*
* Copyright (c) 2010 David Gibson, IBM Corporation <dwg@au1.ibm.com>
* Based on the s390 virtio bus code:
* Copyright (c) 2009 Alexander Graf <agraf@suse.de>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "qapi/visitor.h"
#include "qemu/log.h"
#include "hw/loader.h"
#include "elf.h"
#include "hw/sysbus.h"
#include "sysemu/kvm.h"
#include "sysemu/device_tree.h"
#include "kvm_ppc.h"
#include "migration/vmstate.h"
#include "sysemu/qtest.h"
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_vio.h"
#include "hw/ppc/fdt.h"
#include "trace.h"
#include <libfdt.h>
#define SPAPR_VIO_REG_BASE 0x71000000
static char *spapr_vio_get_dev_name(DeviceState *qdev)
{
SpaprVioDevice *dev = VIO_SPAPR_DEVICE(qdev);
SpaprVioDeviceClass *pc = VIO_SPAPR_DEVICE_GET_CLASS(dev);
/* Device tree style name device@reg */
return g_strdup_printf("%s@%x", pc->dt_name, dev->reg);
}
static void spapr_vio_bus_class_init(ObjectClass *klass, void *data)
{
BusClass *k = BUS_CLASS(klass);
k->get_dev_path = spapr_vio_get_dev_name;
k->get_fw_dev_path = spapr_vio_get_dev_name;
}
static const TypeInfo spapr_vio_bus_info = {
.name = TYPE_SPAPR_VIO_BUS,
.parent = TYPE_BUS,
.class_init = spapr_vio_bus_class_init,
.instance_size = sizeof(SpaprVioBus),
};
SpaprVioDevice *spapr_vio_find_by_reg(SpaprVioBus *bus, uint32_t reg)
{
BusChild *kid;
SpaprVioDevice *dev = NULL;
QTAILQ_FOREACH(kid, &bus->bus.children, sibling) {
dev = (SpaprVioDevice *)kid->child;
if (dev->reg == reg) {
return dev;
}
}
return NULL;
}
static int vio_make_devnode(SpaprVioDevice *dev,
void *fdt)
{
SpaprVioDeviceClass *pc = VIO_SPAPR_DEVICE_GET_CLASS(dev);
int vdevice_off, node_off, ret;
char *dt_name;
const char *dt_compatible;
vdevice_off = fdt_path_offset(fdt, "/vdevice");
if (vdevice_off < 0) {
return vdevice_off;
}
dt_name = spapr_vio_get_dev_name(DEVICE(dev));
node_off = fdt_add_subnode(fdt, vdevice_off, dt_name);
g_free(dt_name);
if (node_off < 0) {
return node_off;
}
ret = fdt_setprop_cell(fdt, node_off, "reg", dev->reg);
if (ret < 0) {
return ret;
}
if (pc->dt_type) {
ret = fdt_setprop_string(fdt, node_off, "device_type",
pc->dt_type);
if (ret < 0) {
return ret;
}
}
if (pc->get_dt_compatible) {
dt_compatible = pc->get_dt_compatible(dev);
} else {
dt_compatible = pc->dt_compatible;
}
if (dt_compatible) {
ret = fdt_setprop_string(fdt, node_off, "compatible",
dt_compatible);
if (ret < 0) {
return ret;
}
}
if (dev->irq) {
uint32_t ints_prop[2];
spapr_dt_irq(ints_prop, dev->irq, false);
ret = fdt_setprop(fdt, node_off, "interrupts", ints_prop,
sizeof(ints_prop));
if (ret < 0) {
return ret;
}
}
ret = spapr_tcet_dma_dt(fdt, node_off, "ibm,my-dma-window", dev->tcet);
if (ret < 0) {
return ret;
}
if (pc->devnode) {
ret = (pc->devnode)(dev, fdt, node_off);
if (ret < 0) {
return ret;
}
}
return node_off;
}
/*
* CRQ handling
*/
static target_ulong h_reg_crq(PowerPCCPU *cpu, SpaprMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
target_ulong reg = args[0];
target_ulong queue_addr = args[1];
target_ulong queue_len = args[2];
SpaprVioDevice *dev = spapr_vio_find_by_reg(spapr->vio_bus, reg);
if (!dev) {
hcall_dprintf("Unit 0x" TARGET_FMT_lx " does not exist\n", reg);
return H_PARAMETER;
}
/* We can't grok a queue size bigger than 256M for now */
if (queue_len < 0x1000 || queue_len > 0x10000000) {
hcall_dprintf("Queue size too small or too big (0x" TARGET_FMT_lx
")\n", queue_len);
return H_PARAMETER;
}
/* Check queue alignment */
if (queue_addr & 0xfff) {
hcall_dprintf("Queue not aligned (0x" TARGET_FMT_lx ")\n", queue_addr);
return H_PARAMETER;
}
/* Check if device supports CRQs */
if (!dev->crq.SendFunc) {
hcall_dprintf("Device does not support CRQ\n");
return H_NOT_FOUND;
}
/* Already a queue ? */
if (dev->crq.qsize) {
hcall_dprintf("CRQ already registered\n");
return H_RESOURCE;
}
dev->crq.qladdr = queue_addr;
dev->crq.qsize = queue_len;
dev->crq.qnext = 0;
trace_spapr_vio_h_reg_crq(reg, queue_addr, queue_len);
return H_SUCCESS;
}
static target_ulong free_crq(SpaprVioDevice *dev)
{
dev->crq.qladdr = 0;
dev->crq.qsize = 0;
dev->crq.qnext = 0;
trace_spapr_vio_free_crq(dev->reg);
return H_SUCCESS;
}
static target_ulong h_free_crq(PowerPCCPU *cpu, SpaprMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
target_ulong reg = args[0];
SpaprVioDevice *dev = spapr_vio_find_by_reg(spapr->vio_bus, reg);
if (!dev) {
hcall_dprintf("Unit 0x" TARGET_FMT_lx " does not exist\n", reg);
return H_PARAMETER;
}
return free_crq(dev);
}
static target_ulong h_send_crq(PowerPCCPU *cpu, SpaprMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
target_ulong reg = args[0];
target_ulong msg_hi = args[1];
target_ulong msg_lo = args[2];
SpaprVioDevice *dev = spapr_vio_find_by_reg(spapr->vio_bus, reg);
uint64_t crq_mangle[2];
if (!dev) {
hcall_dprintf("Unit 0x" TARGET_FMT_lx " does not exist\n", reg);
return H_PARAMETER;
}
crq_mangle[0] = cpu_to_be64(msg_hi);
crq_mangle[1] = cpu_to_be64(msg_lo);
if (dev->crq.SendFunc) {
return dev->crq.SendFunc(dev, (uint8_t *)crq_mangle);
}
return H_HARDWARE;
}
static target_ulong h_enable_crq(PowerPCCPU *cpu, SpaprMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
target_ulong reg = args[0];
SpaprVioDevice *dev = spapr_vio_find_by_reg(spapr->vio_bus, reg);
if (!dev) {
hcall_dprintf("Unit 0x" TARGET_FMT_lx " does not exist\n", reg);
return H_PARAMETER;
}
return 0;
}
/* Returns negative error, 0 success, or positive: queue full */
int spapr_vio_send_crq(SpaprVioDevice *dev, uint8_t *crq)
{
int rc;
uint8_t byte;
if (!dev->crq.qsize) {
error_report("spapr_vio_send_creq on uninitialized queue");
return -1;
}
/* Maybe do a fast path for KVM just writing to the pages */
rc = spapr_vio_dma_read(dev, dev->crq.qladdr + dev->crq.qnext, &byte, 1);
if (rc) {
return rc;
}
if (byte != 0) {
return 1;
}
rc = spapr_vio_dma_write(dev, dev->crq.qladdr + dev->crq.qnext + 8,
&crq[8], 8);
if (rc) {
return rc;
}
kvmppc_eieio();
rc = spapr_vio_dma_write(dev, dev->crq.qladdr + dev->crq.qnext, crq, 8);
if (rc) {
return rc;
}
dev->crq.qnext = (dev->crq.qnext + 16) % dev->crq.qsize;
if (dev->signal_state & 1) {
spapr_vio_irq_pulse(dev);
}
return 0;
}
/* "quiesce" handling */
static void spapr_vio_quiesce_one(SpaprVioDevice *dev)
{
if (dev->tcet) {
device_legacy_reset(DEVICE(dev->tcet));
}
free_crq(dev);
}
void spapr_vio_set_bypass(SpaprVioDevice *dev, bool bypass)
{
if (!dev->tcet) {
return;
}
memory_region_set_enabled(&dev->mrbypass, bypass);
memory_region_set_enabled(spapr_tce_get_iommu(dev->tcet), !bypass);
dev->tcet->bypass = bypass;
}
static void rtas_set_tce_bypass(PowerPCCPU *cpu, SpaprMachineState *spapr,
uint32_t token,
uint32_t nargs, target_ulong args,
uint32_t nret, target_ulong rets)
{
SpaprVioBus *bus = spapr->vio_bus;
SpaprVioDevice *dev;
uint32_t unit, enable;
if (nargs != 2) {
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
return;
}
unit = rtas_ld(args, 0);
enable = rtas_ld(args, 1);
dev = spapr_vio_find_by_reg(bus, unit);
if (!dev) {
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
return;
}
if (!dev->tcet) {
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
return;
}
spapr_vio_set_bypass(dev, !!enable);
rtas_st(rets, 0, RTAS_OUT_SUCCESS);
}
static void rtas_quiesce(PowerPCCPU *cpu, SpaprMachineState *spapr,
uint32_t token,
uint32_t nargs, target_ulong args,
uint32_t nret, target_ulong rets)
{
SpaprVioBus *bus = spapr->vio_bus;
BusChild *kid;
SpaprVioDevice *dev = NULL;
if (nargs != 0) {
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
return;
}
QTAILQ_FOREACH(kid, &bus->bus.children, sibling) {
dev = (SpaprVioDevice *)kid->child;
spapr_vio_quiesce_one(dev);
}
rtas_st(rets, 0, RTAS_OUT_SUCCESS);
}
static SpaprVioDevice *reg_conflict(SpaprVioDevice *dev)
{
SpaprVioBus *bus = SPAPR_VIO_BUS(dev->qdev.parent_bus);
BusChild *kid;
SpaprVioDevice *other;
/*
* Check for a device other than the given one which is already
* using the requested address. We have to open code this because
* the given dev might already be in the list.
*/
QTAILQ_FOREACH(kid, &bus->bus.children, sibling) {
other = VIO_SPAPR_DEVICE(kid->child);
if (other != dev && other->reg == dev->reg) {
return other;
}
}
return 0;
}
static void spapr_vio_busdev_reset(DeviceState *qdev)
{
SpaprVioDevice *dev = VIO_SPAPR_DEVICE(qdev);
SpaprVioDeviceClass *pc = VIO_SPAPR_DEVICE_GET_CLASS(dev);
/* Shut down the request queue and TCEs if necessary */
spapr_vio_quiesce_one(dev);
dev->signal_state = 0;
spapr_vio_set_bypass(dev, false);
if (pc->reset) {
pc->reset(dev);
}
}
/*
* The register property of a VIO device is defined in libvirt using
* 0x1000 as a base register number plus a 0x1000 increment. For the
* VIO tty device, the base number is changed to 0x30000000. QEMU uses
* a base register number of 0x71000000 and then a simple increment.
*
* The formula below tries to compute a unique index number from the
* register value that will be used to define the IRQ number of the
* VIO device.
*
* A maximum of 256 VIO devices is covered. Collisions are possible
* but they will be detected when the IRQ is claimed.
*/
static inline uint32_t spapr_vio_reg_to_irq(uint32_t reg)
{
uint32_t irq;
if (reg >= SPAPR_VIO_REG_BASE) {
/*
* VIO device register values when allocated by QEMU. For
* these, we simply mask the high bits to fit the overall
* range: [0x00 - 0xff].
*
* The nvram VIO device (reg=0x71000000) is a static device of
* the pseries machine and so is always allocated by QEMU. Its
* IRQ number is 0x0.
*/
irq = reg & 0xff;
} else if (reg >= 0x30000000) {
/*
* VIO tty devices register values, when allocated by libvirt,
* are mapped in range [0xf0 - 0xff], gives us a maximum of 16
* vtys.
*/
irq = 0xf0 | ((reg >> 12) & 0xf);
} else {
/*
* Other VIO devices register values, when allocated by
* libvirt, should be mapped in range [0x00 - 0xef]. Conflicts
* will be detected when IRQ is claimed.
*/
irq = (reg >> 12) & 0xff;
}
return SPAPR_IRQ_VIO | irq;
}
static void spapr_vio_busdev_realize(DeviceState *qdev, Error **errp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
SpaprVioDevice *dev = (SpaprVioDevice *)qdev;
SpaprVioDeviceClass *pc = VIO_SPAPR_DEVICE_GET_CLASS(dev);
char *id;
if (dev->reg != -1) {
/*
* Explicitly assigned address, just verify that no-one else
* is using it. other mechanism). We have to open code this
* rather than using spapr_vio_find_by_reg() because sdev
* itself is already in the list.
*/
SpaprVioDevice *other = reg_conflict(dev);
if (other) {
error_setg(errp, "%s and %s devices conflict at address %#x",
object_get_typename(OBJECT(qdev)),
object_get_typename(OBJECT(&other->qdev)),
dev->reg);
return;
}
} else {
/* Need to assign an address */
SpaprVioBus *bus = SPAPR_VIO_BUS(dev->qdev.parent_bus);
do {
dev->reg = bus->next_reg++;
} while (reg_conflict(dev));
}
/* Don't overwrite ids assigned on the command line */
if (!dev->qdev.id) {
id = spapr_vio_get_dev_name(DEVICE(dev));
dev->qdev.id = id;
}
dev->irq = spapr_vio_reg_to_irq(dev->reg);
if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
int irq = spapr_irq_findone(spapr, errp);
if (irq < 0) {
return;
}
dev->irq = irq;
}
if (spapr_irq_claim(spapr, dev->irq, false, errp) < 0) {
return;
}
if (pc->rtce_window_size) {
uint32_t liobn = SPAPR_VIO_LIOBN(dev->reg);
memory_region_init(&dev->mrroot, OBJECT(dev), "iommu-spapr-root",
ram_size);
memory_region_init_alias(&dev->mrbypass, OBJECT(dev),
"iommu-spapr-bypass", get_system_memory(),
0, ram_size);
memory_region_add_subregion_overlap(&dev->mrroot, 0, &dev->mrbypass, 1);
address_space_init(&dev->as, &dev->mrroot, qdev->id);
dev->tcet = spapr_tce_new_table(qdev, liobn);
spapr_tce_table_enable(dev->tcet, SPAPR_TCE_PAGE_SHIFT, 0,
pc->rtce_window_size >> SPAPR_TCE_PAGE_SHIFT);
dev->tcet->vdev = dev;
memory_region_add_subregion_overlap(&dev->mrroot, 0,
spapr_tce_get_iommu(dev->tcet), 2);
}
pc->realize(dev, errp);
}
static target_ulong h_vio_signal(PowerPCCPU *cpu, SpaprMachineState *spapr,
target_ulong opcode,
target_ulong *args)
{
target_ulong reg = args[0];
target_ulong mode = args[1];
SpaprVioDevice *dev = spapr_vio_find_by_reg(spapr->vio_bus, reg);
SpaprVioDeviceClass *pc;
if (!dev) {
return H_PARAMETER;
}
pc = VIO_SPAPR_DEVICE_GET_CLASS(dev);
if (mode & ~pc->signal_mask) {
return H_PARAMETER;
}
dev->signal_state = mode;
return H_SUCCESS;
}
SpaprVioBus *spapr_vio_bus_init(void)
{
SpaprVioBus *bus;
BusState *qbus;
DeviceState *dev;
/* Create bridge device */
dev = qdev_new(TYPE_SPAPR_VIO_BRIDGE);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
/* Create bus on bridge device */
qbus = qbus_create(TYPE_SPAPR_VIO_BUS, dev, "spapr-vio");
bus = SPAPR_VIO_BUS(qbus);
bus->next_reg = SPAPR_VIO_REG_BASE;
/* hcall-vio */
spapr_register_hypercall(H_VIO_SIGNAL, h_vio_signal);
/* hcall-crq */
spapr_register_hypercall(H_REG_CRQ, h_reg_crq);
spapr_register_hypercall(H_FREE_CRQ, h_free_crq);
spapr_register_hypercall(H_SEND_CRQ, h_send_crq);
spapr_register_hypercall(H_ENABLE_CRQ, h_enable_crq);
/* RTAS calls */
spapr_rtas_register(RTAS_IBM_SET_TCE_BYPASS, "ibm,set-tce-bypass",
rtas_set_tce_bypass);
spapr_rtas_register(RTAS_QUIESCE, "quiesce", rtas_quiesce);
return bus;
}
static void spapr_vio_bridge_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->fw_name = "vdevice";
}
static const TypeInfo spapr_vio_bridge_info = {
.name = TYPE_SPAPR_VIO_BRIDGE,
.parent = TYPE_SYS_BUS_DEVICE,
.class_init = spapr_vio_bridge_class_init,
};
const VMStateDescription vmstate_spapr_vio = {
.name = "spapr_vio",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
/* Sanity check */
VMSTATE_UINT32_EQUAL(reg, SpaprVioDevice, NULL),
VMSTATE_UINT32_EQUAL(irq, SpaprVioDevice, NULL),
/* General VIO device state */
VMSTATE_UINT64(signal_state, SpaprVioDevice),
VMSTATE_UINT64(crq.qladdr, SpaprVioDevice),
VMSTATE_UINT32(crq.qsize, SpaprVioDevice),
VMSTATE_UINT32(crq.qnext, SpaprVioDevice),
VMSTATE_END_OF_LIST()
},
};
static void vio_spapr_device_class_init(ObjectClass *klass, void *data)
{
DeviceClass *k = DEVICE_CLASS(klass);
k->realize = spapr_vio_busdev_realize;
k->reset = spapr_vio_busdev_reset;
k->bus_type = TYPE_SPAPR_VIO_BUS;
}
static const TypeInfo spapr_vio_type_info = {
.name = TYPE_VIO_SPAPR_DEVICE,
.parent = TYPE_DEVICE,
.instance_size = sizeof(SpaprVioDevice),
.abstract = true,
.class_size = sizeof(SpaprVioDeviceClass),
.class_init = vio_spapr_device_class_init,
};
static void spapr_vio_register_types(void)
{
type_register_static(&spapr_vio_bus_info);
type_register_static(&spapr_vio_bridge_info);
type_register_static(&spapr_vio_type_info);
}
type_init(spapr_vio_register_types)
static int compare_reg(const void *p1, const void *p2)
{
SpaprVioDevice const *dev1, *dev2;
dev1 = (SpaprVioDevice *)*(DeviceState **)p1;
dev2 = (SpaprVioDevice *)*(DeviceState **)p2;
if (dev1->reg < dev2->reg) {
return -1;
}
if (dev1->reg == dev2->reg) {
return 0;
}
/* dev1->reg > dev2->reg */
return 1;
}
void spapr_dt_vdevice(SpaprVioBus *bus, void *fdt)
{
DeviceState *qdev, **qdevs;
BusChild *kid;
int i, num, ret = 0;
int node;
_FDT(node = fdt_add_subnode(fdt, 0, "vdevice"));
_FDT(fdt_setprop_string(fdt, node, "device_type", "vdevice"));
_FDT(fdt_setprop_string(fdt, node, "compatible", "IBM,vdevice"));
_FDT(fdt_setprop_cell(fdt, node, "#address-cells", 1));
_FDT(fdt_setprop_cell(fdt, node, "#size-cells", 0));
_FDT(fdt_setprop_cell(fdt, node, "#interrupt-cells", 2));
_FDT(fdt_setprop(fdt, node, "interrupt-controller", NULL, 0));
/* Count qdevs on the bus list */
num = 0;
QTAILQ_FOREACH(kid, &bus->bus.children, sibling) {
num++;
}
/* Copy out into an array of pointers */
qdevs = g_new(DeviceState *, num);
num = 0;
QTAILQ_FOREACH(kid, &bus->bus.children, sibling) {
qdevs[num++] = kid->child;
}
/* Sort the array */
qsort(qdevs, num, sizeof(qdev), compare_reg);
/* Hack alert. Give the devices to libfdt in reverse order, we happen
* to know that will mean they are in forward order in the tree. */
for (i = num - 1; i >= 0; i--) {
SpaprVioDevice *dev = (SpaprVioDevice *)(qdevs[i]);
SpaprVioDeviceClass *vdc = VIO_SPAPR_DEVICE_GET_CLASS(dev);
ret = vio_make_devnode(dev, fdt);
if (ret < 0) {
error_report("Couldn't create device node /vdevice/%s@%"PRIx32,
vdc->dt_name, dev->reg);
exit(1);
}
}
g_free(qdevs);
}
gchar *spapr_vio_stdout_path(SpaprVioBus *bus)
{
SpaprVioDevice *dev;
char *name, *path;
dev = spapr_vty_get_default(bus);
if (!dev) {
return NULL;
}
name = spapr_vio_get_dev_name(DEVICE(dev));
path = g_strdup_printf("/vdevice/%s", name);
g_free(name);
return path;
}