qemu-patch-raspberry4/hw/misc/tmp421.c
Markus Armbruster d2623129a7 qom: Drop parameter @errp of object_property_add() & friends
The only way object_property_add() can fail is when a property with
the same name already exists.  Since our property names are all
hardcoded, failure is a programming error, and the appropriate way to
handle it is passing &error_abort.

Same for its variants, except for object_property_add_child(), which
additionally fails when the child already has a parent.  Parentage is
also under program control, so this is a programming error, too.

We have a bit over 500 callers.  Almost half of them pass
&error_abort, slightly fewer ignore errors, one test case handles
errors, and the remaining few callers pass them to their own callers.

The previous few commits demonstrated once again that ignoring
programming errors is a bad idea.

Of the few ones that pass on errors, several violate the Error API.
The Error ** argument must be NULL, &error_abort, &error_fatal, or a
pointer to a variable containing NULL.  Passing an argument of the
latter kind twice without clearing it in between is wrong: if the
first call sets an error, it no longer points to NULL for the second
call.  ich9_pm_add_properties(), sparc32_ledma_realize(),
sparc32_dma_realize(), xilinx_axidma_realize(), xilinx_enet_realize()
are wrong that way.

When the one appropriate choice of argument is &error_abort, letting
users pick the argument is a bad idea.

Drop parameter @errp and assert the preconditions instead.

There's one exception to "duplicate property name is a programming
error": the way object_property_add() implements the magic (and
undocumented) "automatic arrayification".  Don't drop @errp there.
Instead, rename object_property_add() to object_property_try_add(),
and add the obvious wrapper object_property_add().

Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20200505152926.18877-15-armbru@redhat.com>
[Two semantic rebase conflicts resolved]
2020-05-15 07:07:58 +02:00

402 lines
11 KiB
C

/*
* Texas Instruments TMP421 temperature sensor.
*
* Copyright (c) 2016 IBM Corporation.
*
* Largely inspired by :
*
* Texas Instruments TMP105 temperature sensor.
*
* Copyright (C) 2008 Nokia Corporation
* Written by Andrzej Zaborowski <andrew@openedhand.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 or
* (at your option) version 3 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "hw/i2c/i2c.h"
#include "migration/vmstate.h"
#include "qapi/error.h"
#include "qapi/visitor.h"
#include "qemu/module.h"
/* Manufacturer / Device ID's */
#define TMP421_MANUFACTURER_ID 0x55
#define TMP421_DEVICE_ID 0x21
#define TMP422_DEVICE_ID 0x22
#define TMP423_DEVICE_ID 0x23
typedef struct DeviceInfo {
int model;
const char *name;
} DeviceInfo;
static const DeviceInfo devices[] = {
{ TMP421_DEVICE_ID, "tmp421" },
{ TMP422_DEVICE_ID, "tmp422" },
{ TMP423_DEVICE_ID, "tmp423" },
};
typedef struct TMP421State {
/*< private >*/
I2CSlave i2c;
/*< public >*/
int16_t temperature[4];
uint8_t status;
uint8_t config[2];
uint8_t rate;
uint8_t len;
uint8_t buf[2];
uint8_t pointer;
} TMP421State;
typedef struct TMP421Class {
I2CSlaveClass parent_class;
DeviceInfo *dev;
} TMP421Class;
#define TYPE_TMP421 "tmp421-generic"
#define TMP421(obj) OBJECT_CHECK(TMP421State, (obj), TYPE_TMP421)
#define TMP421_CLASS(klass) \
OBJECT_CLASS_CHECK(TMP421Class, (klass), TYPE_TMP421)
#define TMP421_GET_CLASS(obj) \
OBJECT_GET_CLASS(TMP421Class, (obj), TYPE_TMP421)
/* the TMP421 registers */
#define TMP421_STATUS_REG 0x08
#define TMP421_STATUS_BUSY (1 << 7)
#define TMP421_CONFIG_REG_1 0x09
#define TMP421_CONFIG_RANGE (1 << 2)
#define TMP421_CONFIG_SHUTDOWN (1 << 6)
#define TMP421_CONFIG_REG_2 0x0A
#define TMP421_CONFIG_RC (1 << 2)
#define TMP421_CONFIG_LEN (1 << 3)
#define TMP421_CONFIG_REN (1 << 4)
#define TMP421_CONFIG_REN2 (1 << 5)
#define TMP421_CONFIG_REN3 (1 << 6)
#define TMP421_CONVERSION_RATE_REG 0x0B
#define TMP421_ONE_SHOT 0x0F
#define TMP421_RESET 0xFC
#define TMP421_MANUFACTURER_ID_REG 0xFE
#define TMP421_DEVICE_ID_REG 0xFF
#define TMP421_TEMP_MSB0 0x00
#define TMP421_TEMP_MSB1 0x01
#define TMP421_TEMP_MSB2 0x02
#define TMP421_TEMP_MSB3 0x03
#define TMP421_TEMP_LSB0 0x10
#define TMP421_TEMP_LSB1 0x11
#define TMP421_TEMP_LSB2 0x12
#define TMP421_TEMP_LSB3 0x13
static const int32_t mins[2] = { -40000, -55000 };
static const int32_t maxs[2] = { 127000, 150000 };
static void tmp421_get_temperature(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
TMP421State *s = TMP421(obj);
bool ext_range = (s->config[0] & TMP421_CONFIG_RANGE);
int offset = ext_range * 64 * 256;
int64_t value;
int tempid;
if (sscanf(name, "temperature%d", &tempid) != 1) {
error_setg(errp, "error reading %s: %s", name, g_strerror(errno));
return;
}
if (tempid >= 4 || tempid < 0) {
error_setg(errp, "error reading %s", name);
return;
}
value = ((s->temperature[tempid] - offset) * 1000 + 128) / 256;
visit_type_int(v, name, &value, errp);
}
/* Units are 0.001 centigrades relative to 0 C. s->temperature is 8.8
* fixed point, so units are 1/256 centigrades. A simple ratio will do.
*/
static void tmp421_set_temperature(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
TMP421State *s = TMP421(obj);
Error *local_err = NULL;
int64_t temp;
bool ext_range = (s->config[0] & TMP421_CONFIG_RANGE);
int offset = ext_range * 64 * 256;
int tempid;
visit_type_int(v, name, &temp, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
if (temp >= maxs[ext_range] || temp < mins[ext_range]) {
error_setg(errp, "value %" PRId64 ".%03" PRIu64 " C is out of range",
temp / 1000, temp % 1000);
return;
}
if (sscanf(name, "temperature%d", &tempid) != 1) {
error_setg(errp, "error reading %s: %s", name, g_strerror(errno));
return;
}
if (tempid >= 4 || tempid < 0) {
error_setg(errp, "error reading %s", name);
return;
}
s->temperature[tempid] = (int16_t) ((temp * 256 - 128) / 1000) + offset;
}
static void tmp421_read(TMP421State *s)
{
TMP421Class *sc = TMP421_GET_CLASS(s);
s->len = 0;
switch (s->pointer) {
case TMP421_MANUFACTURER_ID_REG:
s->buf[s->len++] = TMP421_MANUFACTURER_ID;
break;
case TMP421_DEVICE_ID_REG:
s->buf[s->len++] = sc->dev->model;
break;
case TMP421_CONFIG_REG_1:
s->buf[s->len++] = s->config[0];
break;
case TMP421_CONFIG_REG_2:
s->buf[s->len++] = s->config[1];
break;
case TMP421_CONVERSION_RATE_REG:
s->buf[s->len++] = s->rate;
break;
case TMP421_STATUS_REG:
s->buf[s->len++] = s->status;
break;
/* FIXME: check for channel enablement in config registers */
case TMP421_TEMP_MSB0:
s->buf[s->len++] = (((uint16_t) s->temperature[0]) >> 8);
s->buf[s->len++] = (((uint16_t) s->temperature[0]) >> 0) & 0xf0;
break;
case TMP421_TEMP_MSB1:
s->buf[s->len++] = (((uint16_t) s->temperature[1]) >> 8);
s->buf[s->len++] = (((uint16_t) s->temperature[1]) >> 0) & 0xf0;
break;
case TMP421_TEMP_MSB2:
s->buf[s->len++] = (((uint16_t) s->temperature[2]) >> 8);
s->buf[s->len++] = (((uint16_t) s->temperature[2]) >> 0) & 0xf0;
break;
case TMP421_TEMP_MSB3:
s->buf[s->len++] = (((uint16_t) s->temperature[3]) >> 8);
s->buf[s->len++] = (((uint16_t) s->temperature[3]) >> 0) & 0xf0;
break;
case TMP421_TEMP_LSB0:
s->buf[s->len++] = (((uint16_t) s->temperature[0]) >> 0) & 0xf0;
break;
case TMP421_TEMP_LSB1:
s->buf[s->len++] = (((uint16_t) s->temperature[1]) >> 0) & 0xf0;
break;
case TMP421_TEMP_LSB2:
s->buf[s->len++] = (((uint16_t) s->temperature[2]) >> 0) & 0xf0;
break;
case TMP421_TEMP_LSB3:
s->buf[s->len++] = (((uint16_t) s->temperature[3]) >> 0) & 0xf0;
break;
}
}
static void tmp421_reset(I2CSlave *i2c);
static void tmp421_write(TMP421State *s)
{
switch (s->pointer) {
case TMP421_CONVERSION_RATE_REG:
s->rate = s->buf[0];
break;
case TMP421_CONFIG_REG_1:
s->config[0] = s->buf[0];
break;
case TMP421_CONFIG_REG_2:
s->config[1] = s->buf[0];
break;
case TMP421_RESET:
tmp421_reset(I2C_SLAVE(s));
break;
}
}
static uint8_t tmp421_rx(I2CSlave *i2c)
{
TMP421State *s = TMP421(i2c);
if (s->len < 2) {
return s->buf[s->len++];
} else {
return 0xff;
}
}
static int tmp421_tx(I2CSlave *i2c, uint8_t data)
{
TMP421State *s = TMP421(i2c);
if (s->len == 0) {
/* first byte is the register pointer for a read or write
* operation */
s->pointer = data;
s->len++;
} else if (s->len == 1) {
/* second byte is the data to write. The device only supports
* one byte writes */
s->buf[0] = data;
tmp421_write(s);
}
return 0;
}
static int tmp421_event(I2CSlave *i2c, enum i2c_event event)
{
TMP421State *s = TMP421(i2c);
if (event == I2C_START_RECV) {
tmp421_read(s);
}
s->len = 0;
return 0;
}
static const VMStateDescription vmstate_tmp421 = {
.name = "TMP421",
.version_id = 0,
.minimum_version_id = 0,
.fields = (VMStateField[]) {
VMSTATE_UINT8(len, TMP421State),
VMSTATE_UINT8_ARRAY(buf, TMP421State, 2),
VMSTATE_UINT8(pointer, TMP421State),
VMSTATE_UINT8_ARRAY(config, TMP421State, 2),
VMSTATE_UINT8(status, TMP421State),
VMSTATE_UINT8(rate, TMP421State),
VMSTATE_INT16_ARRAY(temperature, TMP421State, 4),
VMSTATE_I2C_SLAVE(i2c, TMP421State),
VMSTATE_END_OF_LIST()
}
};
static void tmp421_reset(I2CSlave *i2c)
{
TMP421State *s = TMP421(i2c);
TMP421Class *sc = TMP421_GET_CLASS(s);
memset(s->temperature, 0, sizeof(s->temperature));
s->pointer = 0;
s->config[0] = 0; /* TMP421_CONFIG_RANGE */
/* resistance correction and channel enablement */
switch (sc->dev->model) {
case TMP421_DEVICE_ID:
s->config[1] = 0x1c;
break;
case TMP422_DEVICE_ID:
s->config[1] = 0x3c;
break;
case TMP423_DEVICE_ID:
s->config[1] = 0x7c;
break;
}
s->rate = 0x7; /* 8Hz */
s->status = 0;
}
static void tmp421_realize(DeviceState *dev, Error **errp)
{
TMP421State *s = TMP421(dev);
tmp421_reset(&s->i2c);
}
static void tmp421_initfn(Object *obj)
{
object_property_add(obj, "temperature0", "int",
tmp421_get_temperature,
tmp421_set_temperature, NULL, NULL);
object_property_add(obj, "temperature1", "int",
tmp421_get_temperature,
tmp421_set_temperature, NULL, NULL);
object_property_add(obj, "temperature2", "int",
tmp421_get_temperature,
tmp421_set_temperature, NULL, NULL);
object_property_add(obj, "temperature3", "int",
tmp421_get_temperature,
tmp421_set_temperature, NULL, NULL);
}
static void tmp421_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
I2CSlaveClass *k = I2C_SLAVE_CLASS(klass);
TMP421Class *sc = TMP421_CLASS(klass);
dc->realize = tmp421_realize;
k->event = tmp421_event;
k->recv = tmp421_rx;
k->send = tmp421_tx;
dc->vmsd = &vmstate_tmp421;
sc->dev = (DeviceInfo *) data;
}
static const TypeInfo tmp421_info = {
.name = TYPE_TMP421,
.parent = TYPE_I2C_SLAVE,
.instance_size = sizeof(TMP421State),
.class_size = sizeof(TMP421Class),
.instance_init = tmp421_initfn,
.abstract = true,
};
static void tmp421_register_types(void)
{
int i;
type_register_static(&tmp421_info);
for (i = 0; i < ARRAY_SIZE(devices); ++i) {
TypeInfo ti = {
.name = devices[i].name,
.parent = TYPE_TMP421,
.class_init = tmp421_class_init,
.class_data = (void *) &devices[i],
};
type_register(&ti);
}
}
type_init(tmp421_register_types)