qemu-patch-raspberry4/hw/mips_r4k.c
aurel32 42fc73a1ce Support epoch of 1980 in RTC emulation for MIPS Magnum
On the MIPS Magnum, the time that is held in the RTC's NVRAM should be
relative to midnight on 1980-01-01.  This patch adds an extra parameter
to rtc_init(), allowing different epochs to be used.  For the Magnum,
1980 is specified, and for all other machines, 2000 is specified.

I've not modified the handling of the century byte, as with an epoch of
1980 and a year of 2009, one could argue that it should hold either
0, 1, 19 or 20.  NT 3.50 on MIPS does not read the century byte.

Signed-off-by: Stuart Brady <stuart.brady@gmail.com>
Signed-off-by: Aurelien Jarno <aurelien@aurel32.net>

git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@6429 c046a42c-6fe2-441c-8c8c-71466251a162
2009-01-24 18:06:21 +00:00

287 lines
8.5 KiB
C

/*
* QEMU/MIPS pseudo-board
*
* emulates a simple machine with ISA-like bus.
* ISA IO space mapped to the 0x14000000 (PHYS) and
* ISA memory at the 0x10000000 (PHYS, 16Mb in size).
* All peripherial devices are attached to this "bus" with
* the standard PC ISA addresses.
*/
#include "hw.h"
#include "mips.h"
#include "pc.h"
#include "isa.h"
#include "net.h"
#include "sysemu.h"
#include "boards.h"
#include "flash.h"
#include "qemu-log.h"
#ifdef TARGET_WORDS_BIGENDIAN
#define BIOS_FILENAME "mips_bios.bin"
#else
#define BIOS_FILENAME "mipsel_bios.bin"
#endif
#define PHYS_TO_VIRT(x) ((x) | ~(target_ulong)0x7fffffff)
#define VIRT_TO_PHYS_ADDEND (-((int64_t)(int32_t)0x80000000))
#define MAX_IDE_BUS 2
static const int ide_iobase[2] = { 0x1f0, 0x170 };
static const int ide_iobase2[2] = { 0x3f6, 0x376 };
static const int ide_irq[2] = { 14, 15 };
static int serial_io[MAX_SERIAL_PORTS] = { 0x3f8, 0x2f8, 0x3e8, 0x2e8 };
static int serial_irq[MAX_SERIAL_PORTS] = { 4, 3, 4, 3 };
static PITState *pit; /* PIT i8254 */
/* i8254 PIT is attached to the IRQ0 at PIC i8259 */
static struct _loaderparams {
int ram_size;
const char *kernel_filename;
const char *kernel_cmdline;
const char *initrd_filename;
} loaderparams;
static void mips_qemu_writel (void *opaque, target_phys_addr_t addr,
uint32_t val)
{
if ((addr & 0xffff) == 0 && val == 42)
qemu_system_reset_request ();
else if ((addr & 0xffff) == 4 && val == 42)
qemu_system_shutdown_request ();
}
static uint32_t mips_qemu_readl (void *opaque, target_phys_addr_t addr)
{
return 0;
}
static CPUWriteMemoryFunc *mips_qemu_write[] = {
&mips_qemu_writel,
&mips_qemu_writel,
&mips_qemu_writel,
};
static CPUReadMemoryFunc *mips_qemu_read[] = {
&mips_qemu_readl,
&mips_qemu_readl,
&mips_qemu_readl,
};
static int mips_qemu_iomemtype = 0;
static void load_kernel (CPUState *env)
{
int64_t entry, kernel_low, kernel_high;
long kernel_size, initrd_size;
ram_addr_t initrd_offset;
kernel_size = load_elf(loaderparams.kernel_filename, VIRT_TO_PHYS_ADDEND,
(uint64_t *)&entry, (uint64_t *)&kernel_low,
(uint64_t *)&kernel_high);
if (kernel_size >= 0) {
if ((entry & ~0x7fffffffULL) == 0x80000000)
entry = (int32_t)entry;
env->active_tc.PC = entry;
} else {
fprintf(stderr, "qemu: could not load kernel '%s'\n",
loaderparams.kernel_filename);
exit(1);
}
/* load initrd */
initrd_size = 0;
initrd_offset = 0;
if (loaderparams.initrd_filename) {
initrd_size = get_image_size (loaderparams.initrd_filename);
if (initrd_size > 0) {
initrd_offset = (kernel_high + ~TARGET_PAGE_MASK) & TARGET_PAGE_MASK;
if (initrd_offset + initrd_size > ram_size) {
fprintf(stderr,
"qemu: memory too small for initial ram disk '%s'\n",
loaderparams.initrd_filename);
exit(1);
}
initrd_size = load_image(loaderparams.initrd_filename,
phys_ram_base + initrd_offset);
}
if (initrd_size == (target_ulong) -1) {
fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
loaderparams.initrd_filename);
exit(1);
}
}
/* Store command line. */
if (initrd_size > 0) {
int ret;
ret = sprintf((char *)(phys_ram_base + (16 << 20) - 256),
"rd_start=0x" TARGET_FMT_lx " rd_size=%li ",
PHYS_TO_VIRT((uint32_t)initrd_offset),
initrd_size);
strcpy ((char *)(phys_ram_base + (16 << 20) - 256 + ret),
loaderparams.kernel_cmdline);
}
else {
strcpy ((char *)(phys_ram_base + (16 << 20) - 256),
loaderparams.kernel_cmdline);
}
*(int32_t *)(phys_ram_base + (16 << 20) - 260) = tswap32 (0x12345678);
*(int32_t *)(phys_ram_base + (16 << 20) - 264) = tswap32 (ram_size);
}
static void main_cpu_reset(void *opaque)
{
CPUState *env = opaque;
cpu_reset(env);
if (loaderparams.kernel_filename)
load_kernel (env);
}
static const int sector_len = 32 * 1024;
static
void mips_r4k_init (ram_addr_t ram_size, int vga_ram_size,
const char *boot_device,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
char buf[1024];
unsigned long bios_offset;
int bios_size;
CPUState *env;
RTCState *rtc_state;
int i;
qemu_irq *i8259;
int index;
BlockDriverState *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
/* init CPUs */
if (cpu_model == NULL) {
#ifdef TARGET_MIPS64
cpu_model = "R4000";
#else
cpu_model = "24Kf";
#endif
}
env = cpu_init(cpu_model);
if (!env) {
fprintf(stderr, "Unable to find CPU definition\n");
exit(1);
}
qemu_register_reset(main_cpu_reset, env);
/* allocate RAM */
if (ram_size > (256 << 20)) {
fprintf(stderr,
"qemu: Too much memory for this machine: %d MB, maximum 256 MB\n",
((unsigned int)ram_size / (1 << 20)));
exit(1);
}
cpu_register_physical_memory(0, ram_size, IO_MEM_RAM);
if (!mips_qemu_iomemtype) {
mips_qemu_iomemtype = cpu_register_io_memory(0, mips_qemu_read,
mips_qemu_write, NULL);
}
cpu_register_physical_memory(0x1fbf0000, 0x10000, mips_qemu_iomemtype);
/* Try to load a BIOS image. If this fails, we continue regardless,
but initialize the hardware ourselves. When a kernel gets
preloaded we also initialize the hardware, since the BIOS wasn't
run. */
bios_offset = ram_size + vga_ram_size;
if (bios_name == NULL)
bios_name = BIOS_FILENAME;
snprintf(buf, sizeof(buf), "%s/%s", bios_dir, bios_name);
bios_size = load_image(buf, phys_ram_base + bios_offset);
if ((bios_size > 0) && (bios_size <= BIOS_SIZE)) {
cpu_register_physical_memory(0x1fc00000,
BIOS_SIZE, bios_offset | IO_MEM_ROM);
} else if ((index = drive_get_index(IF_PFLASH, 0, 0)) > -1) {
uint32_t mips_rom = 0x00400000;
cpu_register_physical_memory(0x1fc00000, mips_rom,
qemu_ram_alloc(mips_rom) | IO_MEM_ROM);
if (!pflash_cfi01_register(0x1fc00000, qemu_ram_alloc(mips_rom),
drives_table[index].bdrv, sector_len, mips_rom / sector_len,
4, 0, 0, 0, 0)) {
fprintf(stderr, "qemu: Error registering flash memory.\n");
}
}
else {
/* not fatal */
fprintf(stderr, "qemu: Warning, could not load MIPS bios '%s'\n",
buf);
}
if (kernel_filename) {
loaderparams.ram_size = ram_size;
loaderparams.kernel_filename = kernel_filename;
loaderparams.kernel_cmdline = kernel_cmdline;
loaderparams.initrd_filename = initrd_filename;
load_kernel (env);
}
/* Init CPU internal devices */
cpu_mips_irq_init_cpu(env);
cpu_mips_clock_init(env);
/* The PIC is attached to the MIPS CPU INT0 pin */
i8259 = i8259_init(env->irq[2]);
rtc_state = rtc_init(0x70, i8259[8], 2000);
/* Register 64 KB of ISA IO space at 0x14000000 */
isa_mmio_init(0x14000000, 0x00010000);
isa_mem_base = 0x10000000;
pit = pit_init(0x40, i8259[0]);
for(i = 0; i < MAX_SERIAL_PORTS; i++) {
if (serial_hds[i]) {
serial_init(serial_io[i], i8259[serial_irq[i]], 115200,
serial_hds[i]);
}
}
isa_vga_init(phys_ram_base + ram_size, ram_size,
vga_ram_size);
if (nd_table[0].vlan)
isa_ne2000_init(0x300, i8259[9], &nd_table[0]);
if (drive_get_max_bus(IF_IDE) >= MAX_IDE_BUS) {
fprintf(stderr, "qemu: too many IDE bus\n");
exit(1);
}
for(i = 0; i < MAX_IDE_BUS * MAX_IDE_DEVS; i++) {
index = drive_get_index(IF_IDE, i / MAX_IDE_DEVS, i % MAX_IDE_DEVS);
if (index != -1)
hd[i] = drives_table[index].bdrv;
else
hd[i] = NULL;
}
for(i = 0; i < MAX_IDE_BUS; i++)
isa_ide_init(ide_iobase[i], ide_iobase2[i], i8259[ide_irq[i]],
hd[MAX_IDE_DEVS * i],
hd[MAX_IDE_DEVS * i + 1]);
i8042_init(i8259[1], i8259[12], 0x60);
}
QEMUMachine mips_machine = {
.name = "mips",
.desc = "mips r4k platform",
.init = mips_r4k_init,
.ram_require = VGA_RAM_SIZE + BIOS_SIZE,
.nodisk_ok = 1,
};