qemu-patch-raspberry4/target/openrisc/fpu_helper.c
Stafford Horne 97a254b3f0 target/openrisc: Fix FPCSR mask to allow setting DZF
The mask used when setting FPCSR allows setting bits 10 to 1.  However,
OpenRISC has flags and config bits in 11 to 1, 11 being Divide by Zero
Flag (DZF).  This seems like an off-by-one bug.

This was found when testing the GLIBC test suite which has test cases to
set and clear all bits.

Signed-off-by: Stafford Horne <shorne@gmail.com>
Message-Id: <20200110212843.27335-1-shorne@gmail.com>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2020-01-16 14:50:43 -10:00

172 lines
5.6 KiB
C

/*
* OpenRISC float helper routines
*
* Copyright (c) 2011-2012 Jia Liu <proljc@gmail.com>
* Feng Gao <gf91597@gmail.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/helper-proto.h"
#include "exception.h"
#include "fpu/softfloat.h"
static int ieee_ex_to_openrisc(int fexcp)
{
int ret = 0;
if (fexcp & float_flag_invalid) {
ret |= FPCSR_IVF;
}
if (fexcp & float_flag_overflow) {
ret |= FPCSR_OVF;
}
if (fexcp & float_flag_underflow) {
ret |= FPCSR_UNF;
}
if (fexcp & float_flag_divbyzero) {
ret |= FPCSR_DZF;
}
if (fexcp & float_flag_inexact) {
ret |= FPCSR_IXF;
}
return ret;
}
void HELPER(update_fpcsr)(CPUOpenRISCState *env)
{
int tmp = get_float_exception_flags(&env->fp_status);
if (tmp) {
set_float_exception_flags(0, &env->fp_status);
tmp = ieee_ex_to_openrisc(tmp);
if (tmp) {
env->fpcsr |= tmp;
if (env->fpcsr & FPCSR_FPEE) {
helper_exception(env, EXCP_FPE);
}
}
}
}
void cpu_set_fpcsr(CPUOpenRISCState *env, uint32_t val)
{
static const int rm_to_sf[] = {
float_round_nearest_even,
float_round_to_zero,
float_round_up,
float_round_down
};
env->fpcsr = val & 0xfff;
set_float_rounding_mode(rm_to_sf[extract32(val, 1, 2)], &env->fp_status);
}
uint64_t HELPER(itofd)(CPUOpenRISCState *env, uint64_t val)
{
return int64_to_float64(val, &env->fp_status);
}
uint32_t HELPER(itofs)(CPUOpenRISCState *env, uint32_t val)
{
return int32_to_float32(val, &env->fp_status);
}
uint64_t HELPER(ftoid)(CPUOpenRISCState *env, uint64_t val)
{
return float64_to_int64_round_to_zero(val, &env->fp_status);
}
uint32_t HELPER(ftois)(CPUOpenRISCState *env, uint32_t val)
{
return float32_to_int32_round_to_zero(val, &env->fp_status);
}
uint64_t HELPER(stod)(CPUOpenRISCState *env, uint32_t val)
{
return float32_to_float64(val, &env->fp_status);
}
uint32_t HELPER(dtos)(CPUOpenRISCState *env, uint64_t val)
{
return float64_to_float32(val, &env->fp_status);
}
#define FLOAT_CALC(name) \
uint64_t helper_float_ ## name ## _d(CPUOpenRISCState *env, \
uint64_t fdt0, uint64_t fdt1) \
{ return float64_ ## name(fdt0, fdt1, &env->fp_status); } \
uint32_t helper_float_ ## name ## _s(CPUOpenRISCState *env, \
uint32_t fdt0, uint32_t fdt1) \
{ return float32_ ## name(fdt0, fdt1, &env->fp_status); }
FLOAT_CALC(add)
FLOAT_CALC(sub)
FLOAT_CALC(mul)
FLOAT_CALC(div)
FLOAT_CALC(rem)
#undef FLOAT_CALC
uint64_t helper_float_madd_d(CPUOpenRISCState *env, uint64_t a,
uint64_t b, uint64_t c)
{
/* Note that or1ksim doesn't use fused operation. */
b = float64_mul(b, c, &env->fp_status);
return float64_add(a, b, &env->fp_status);
}
uint32_t helper_float_madd_s(CPUOpenRISCState *env, uint32_t a,
uint32_t b, uint32_t c)
{
/* Note that or1ksim doesn't use fused operation. */
b = float32_mul(b, c, &env->fp_status);
return float32_add(a, b, &env->fp_status);
}
#define FLOAT_CMP(name, impl) \
target_ulong helper_float_ ## name ## _d(CPUOpenRISCState *env, \
uint64_t fdt0, uint64_t fdt1) \
{ return float64_ ## impl(fdt0, fdt1, &env->fp_status); } \
target_ulong helper_float_ ## name ## _s(CPUOpenRISCState *env, \
uint32_t fdt0, uint32_t fdt1) \
{ return float32_ ## impl(fdt0, fdt1, &env->fp_status); }
FLOAT_CMP(le, le)
FLOAT_CMP(lt, lt)
FLOAT_CMP(eq, eq_quiet)
FLOAT_CMP(un, unordered_quiet)
#undef FLOAT_CMP
#define FLOAT_UCMP(name, expr) \
target_ulong helper_float_ ## name ## _d(CPUOpenRISCState *env, \
uint64_t fdt0, uint64_t fdt1) \
{ \
int r = float64_compare_quiet(fdt0, fdt1, &env->fp_status); \
return expr; \
} \
target_ulong helper_float_ ## name ## _s(CPUOpenRISCState *env, \
uint32_t fdt0, uint32_t fdt1) \
{ \
int r = float32_compare_quiet(fdt0, fdt1, &env->fp_status); \
return expr; \
}
FLOAT_UCMP(ueq, r == float_relation_equal || r == float_relation_unordered)
FLOAT_UCMP(ult, r == float_relation_less || r == float_relation_unordered)
FLOAT_UCMP(ule, r != float_relation_greater)
#undef FLOAT_UCMP