qemu-patch-raspberry4/hw/slavio_misc.c
Jan Kiszka 8217606e6e Introduce reset notifier order
Add the parameter 'order' to qemu_register_reset and sort callbacks on
registration. On system reset, callbacks with lower order will be
invoked before those with higher order. Update all existing users to the
standard order 0.

Note: At least for x86, the existing users seem to assume that handlers
are called in their registration order. Therefore, the patch preserves
this property. If someone feels bored, (s)he could try to identify this
dependency and express it properly on callback registration.

Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2009-05-22 10:50:34 -05:00

509 lines
12 KiB
C

/*
* QEMU Sparc SLAVIO aux io port emulation
*
* Copyright (c) 2005 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "sun4m.h"
#include "sysemu.h"
/* debug misc */
//#define DEBUG_MISC
/*
* This is the auxio port, chip control and system control part of
* chip STP2001 (Slave I/O), also produced as NCR89C105. See
* http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
*
* This also includes the PMC CPU idle controller.
*/
#ifdef DEBUG_MISC
#define MISC_DPRINTF(fmt, ...) \
do { printf("MISC: " fmt , ## __VA_ARGS__); } while (0)
#else
#define MISC_DPRINTF(fmt, ...)
#endif
typedef struct MiscState {
qemu_irq irq;
uint8_t config;
uint8_t aux1, aux2;
uint8_t diag, mctrl;
uint32_t sysctrl;
uint16_t leds;
qemu_irq cpu_halt;
qemu_irq fdc_tc;
} MiscState;
#define MISC_SIZE 1
#define SYSCTRL_SIZE 4
#define MISC_LEDS 0x01600000
#define MISC_CFG 0x01800000
#define MISC_DIAG 0x01a00000
#define MISC_MDM 0x01b00000
#define MISC_SYS 0x01f00000
#define AUX1_TC 0x02
#define AUX2_PWROFF 0x01
#define AUX2_PWRINTCLR 0x02
#define AUX2_PWRFAIL 0x20
#define CFG_PWRINTEN 0x08
#define SYS_RESET 0x01
#define SYS_RESETSTAT 0x02
static void slavio_misc_update_irq(void *opaque)
{
MiscState *s = opaque;
if ((s->aux2 & AUX2_PWRFAIL) && (s->config & CFG_PWRINTEN)) {
MISC_DPRINTF("Raise IRQ\n");
qemu_irq_raise(s->irq);
} else {
MISC_DPRINTF("Lower IRQ\n");
qemu_irq_lower(s->irq);
}
}
static void slavio_misc_reset(void *opaque)
{
MiscState *s = opaque;
// Diagnostic and system control registers not cleared in reset
s->config = s->aux1 = s->aux2 = s->mctrl = 0;
}
void slavio_set_power_fail(void *opaque, int power_failing)
{
MiscState *s = opaque;
MISC_DPRINTF("Power fail: %d, config: %d\n", power_failing, s->config);
if (power_failing && (s->config & CFG_PWRINTEN)) {
s->aux2 |= AUX2_PWRFAIL;
} else {
s->aux2 &= ~AUX2_PWRFAIL;
}
slavio_misc_update_irq(s);
}
static void slavio_cfg_mem_writeb(void *opaque, target_phys_addr_t addr,
uint32_t val)
{
MiscState *s = opaque;
MISC_DPRINTF("Write config %2.2x\n", val & 0xff);
s->config = val & 0xff;
slavio_misc_update_irq(s);
}
static uint32_t slavio_cfg_mem_readb(void *opaque, target_phys_addr_t addr)
{
MiscState *s = opaque;
uint32_t ret = 0;
ret = s->config;
MISC_DPRINTF("Read config %2.2x\n", ret);
return ret;
}
static CPUReadMemoryFunc *slavio_cfg_mem_read[3] = {
slavio_cfg_mem_readb,
NULL,
NULL,
};
static CPUWriteMemoryFunc *slavio_cfg_mem_write[3] = {
slavio_cfg_mem_writeb,
NULL,
NULL,
};
static void slavio_diag_mem_writeb(void *opaque, target_phys_addr_t addr,
uint32_t val)
{
MiscState *s = opaque;
MISC_DPRINTF("Write diag %2.2x\n", val & 0xff);
s->diag = val & 0xff;
}
static uint32_t slavio_diag_mem_readb(void *opaque, target_phys_addr_t addr)
{
MiscState *s = opaque;
uint32_t ret = 0;
ret = s->diag;
MISC_DPRINTF("Read diag %2.2x\n", ret);
return ret;
}
static CPUReadMemoryFunc *slavio_diag_mem_read[3] = {
slavio_diag_mem_readb,
NULL,
NULL,
};
static CPUWriteMemoryFunc *slavio_diag_mem_write[3] = {
slavio_diag_mem_writeb,
NULL,
NULL,
};
static void slavio_mdm_mem_writeb(void *opaque, target_phys_addr_t addr,
uint32_t val)
{
MiscState *s = opaque;
MISC_DPRINTF("Write modem control %2.2x\n", val & 0xff);
s->mctrl = val & 0xff;
}
static uint32_t slavio_mdm_mem_readb(void *opaque, target_phys_addr_t addr)
{
MiscState *s = opaque;
uint32_t ret = 0;
ret = s->mctrl;
MISC_DPRINTF("Read modem control %2.2x\n", ret);
return ret;
}
static CPUReadMemoryFunc *slavio_mdm_mem_read[3] = {
slavio_mdm_mem_readb,
NULL,
NULL,
};
static CPUWriteMemoryFunc *slavio_mdm_mem_write[3] = {
slavio_mdm_mem_writeb,
NULL,
NULL,
};
static void slavio_aux1_mem_writeb(void *opaque, target_phys_addr_t addr,
uint32_t val)
{
MiscState *s = opaque;
MISC_DPRINTF("Write aux1 %2.2x\n", val & 0xff);
if (val & AUX1_TC) {
// Send a pulse to floppy terminal count line
if (s->fdc_tc) {
qemu_irq_raise(s->fdc_tc);
qemu_irq_lower(s->fdc_tc);
}
val &= ~AUX1_TC;
}
s->aux1 = val & 0xff;
}
static uint32_t slavio_aux1_mem_readb(void *opaque, target_phys_addr_t addr)
{
MiscState *s = opaque;
uint32_t ret = 0;
ret = s->aux1;
MISC_DPRINTF("Read aux1 %2.2x\n", ret);
return ret;
}
static CPUReadMemoryFunc *slavio_aux1_mem_read[3] = {
slavio_aux1_mem_readb,
NULL,
NULL,
};
static CPUWriteMemoryFunc *slavio_aux1_mem_write[3] = {
slavio_aux1_mem_writeb,
NULL,
NULL,
};
static void slavio_aux2_mem_writeb(void *opaque, target_phys_addr_t addr,
uint32_t val)
{
MiscState *s = opaque;
val &= AUX2_PWRINTCLR | AUX2_PWROFF;
MISC_DPRINTF("Write aux2 %2.2x\n", val);
val |= s->aux2 & AUX2_PWRFAIL;
if (val & AUX2_PWRINTCLR) // Clear Power Fail int
val &= AUX2_PWROFF;
s->aux2 = val;
if (val & AUX2_PWROFF)
qemu_system_shutdown_request();
slavio_misc_update_irq(s);
}
static uint32_t slavio_aux2_mem_readb(void *opaque, target_phys_addr_t addr)
{
MiscState *s = opaque;
uint32_t ret = 0;
ret = s->aux2;
MISC_DPRINTF("Read aux2 %2.2x\n", ret);
return ret;
}
static CPUReadMemoryFunc *slavio_aux2_mem_read[3] = {
slavio_aux2_mem_readb,
NULL,
NULL,
};
static CPUWriteMemoryFunc *slavio_aux2_mem_write[3] = {
slavio_aux2_mem_writeb,
NULL,
NULL,
};
static void apc_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
{
MiscState *s = opaque;
MISC_DPRINTF("Write power management %2.2x\n", val & 0xff);
qemu_irq_raise(s->cpu_halt);
}
static uint32_t apc_mem_readb(void *opaque, target_phys_addr_t addr)
{
uint32_t ret = 0;
MISC_DPRINTF("Read power management %2.2x\n", ret);
return ret;
}
static CPUReadMemoryFunc *apc_mem_read[3] = {
apc_mem_readb,
NULL,
NULL,
};
static CPUWriteMemoryFunc *apc_mem_write[3] = {
apc_mem_writeb,
NULL,
NULL,
};
static uint32_t slavio_sysctrl_mem_readl(void *opaque, target_phys_addr_t addr)
{
MiscState *s = opaque;
uint32_t ret = 0;
switch (addr) {
case 0:
ret = s->sysctrl;
break;
default:
break;
}
MISC_DPRINTF("Read system control %08x\n", ret);
return ret;
}
static void slavio_sysctrl_mem_writel(void *opaque, target_phys_addr_t addr,
uint32_t val)
{
MiscState *s = opaque;
MISC_DPRINTF("Write system control %08x\n", val);
switch (addr) {
case 0:
if (val & SYS_RESET) {
s->sysctrl = SYS_RESETSTAT;
qemu_system_reset_request();
}
break;
default:
break;
}
}
static CPUReadMemoryFunc *slavio_sysctrl_mem_read[3] = {
NULL,
NULL,
slavio_sysctrl_mem_readl,
};
static CPUWriteMemoryFunc *slavio_sysctrl_mem_write[3] = {
NULL,
NULL,
slavio_sysctrl_mem_writel,
};
static uint32_t slavio_led_mem_readw(void *opaque, target_phys_addr_t addr)
{
MiscState *s = opaque;
uint32_t ret = 0;
switch (addr) {
case 0:
ret = s->leds;
break;
default:
break;
}
MISC_DPRINTF("Read diagnostic LED %04x\n", ret);
return ret;
}
static void slavio_led_mem_writew(void *opaque, target_phys_addr_t addr,
uint32_t val)
{
MiscState *s = opaque;
MISC_DPRINTF("Write diagnostic LED %04x\n", val & 0xffff);
switch (addr) {
case 0:
s->leds = val;
break;
default:
break;
}
}
static CPUReadMemoryFunc *slavio_led_mem_read[3] = {
NULL,
slavio_led_mem_readw,
NULL,
};
static CPUWriteMemoryFunc *slavio_led_mem_write[3] = {
NULL,
slavio_led_mem_writew,
NULL,
};
static void slavio_misc_save(QEMUFile *f, void *opaque)
{
MiscState *s = opaque;
uint32_t tmp = 0;
uint8_t tmp8;
qemu_put_be32s(f, &tmp); /* ignored, was IRQ. */
qemu_put_8s(f, &s->config);
qemu_put_8s(f, &s->aux1);
qemu_put_8s(f, &s->aux2);
qemu_put_8s(f, &s->diag);
qemu_put_8s(f, &s->mctrl);
tmp8 = s->sysctrl & 0xff;
qemu_put_8s(f, &tmp8);
}
static int slavio_misc_load(QEMUFile *f, void *opaque, int version_id)
{
MiscState *s = opaque;
uint32_t tmp;
uint8_t tmp8;
if (version_id != 1)
return -EINVAL;
qemu_get_be32s(f, &tmp);
qemu_get_8s(f, &s->config);
qemu_get_8s(f, &s->aux1);
qemu_get_8s(f, &s->aux2);
qemu_get_8s(f, &s->diag);
qemu_get_8s(f, &s->mctrl);
qemu_get_8s(f, &tmp8);
s->sysctrl = (uint32_t)tmp8;
return 0;
}
void *slavio_misc_init(target_phys_addr_t base, target_phys_addr_t power_base,
target_phys_addr_t aux1_base,
target_phys_addr_t aux2_base, qemu_irq irq,
qemu_irq cpu_halt, qemu_irq **fdc_tc)
{
int io;
MiscState *s;
s = qemu_mallocz(sizeof(MiscState));
if (base) {
/* 8 bit registers */
// Slavio control
io = cpu_register_io_memory(0, slavio_cfg_mem_read,
slavio_cfg_mem_write, s);
cpu_register_physical_memory(base + MISC_CFG, MISC_SIZE, io);
// Diagnostics
io = cpu_register_io_memory(0, slavio_diag_mem_read,
slavio_diag_mem_write, s);
cpu_register_physical_memory(base + MISC_DIAG, MISC_SIZE, io);
// Modem control
io = cpu_register_io_memory(0, slavio_mdm_mem_read,
slavio_mdm_mem_write, s);
cpu_register_physical_memory(base + MISC_MDM, MISC_SIZE, io);
/* 16 bit registers */
io = cpu_register_io_memory(0, slavio_led_mem_read,
slavio_led_mem_write, s);
/* ss600mp diag LEDs */
cpu_register_physical_memory(base + MISC_LEDS, MISC_SIZE, io);
/* 32 bit registers */
io = cpu_register_io_memory(0, slavio_sysctrl_mem_read,
slavio_sysctrl_mem_write, s);
// System control
cpu_register_physical_memory(base + MISC_SYS, SYSCTRL_SIZE, io);
}
// AUX 1 (Misc System Functions)
if (aux1_base) {
io = cpu_register_io_memory(0, slavio_aux1_mem_read,
slavio_aux1_mem_write, s);
cpu_register_physical_memory(aux1_base, MISC_SIZE, io);
}
// AUX 2 (Software Powerdown Control)
if (aux2_base) {
io = cpu_register_io_memory(0, slavio_aux2_mem_read,
slavio_aux2_mem_write, s);
cpu_register_physical_memory(aux2_base, MISC_SIZE, io);
}
// Power management (APC) XXX: not a Slavio device
if (power_base) {
io = cpu_register_io_memory(0, apc_mem_read, apc_mem_write, s);
cpu_register_physical_memory(power_base, MISC_SIZE, io);
}
s->irq = irq;
s->cpu_halt = cpu_halt;
*fdc_tc = &s->fdc_tc;
register_savevm("slavio_misc", base, 1, slavio_misc_save, slavio_misc_load,
s);
qemu_register_reset(slavio_misc_reset, 0, s);
slavio_misc_reset(s);
return s;
}