qemu-patch-raspberry4/hw/intc/xive.c
Cédric Le Goater 4836b45510 ppc/xive: activate HV support
The NSR register of the HV ring has a different, although similar, bit
layout. TM_QW3_NSR_HE_PHYS bit should now be raised when the
Hypervisor interrupt line is signaled. Other bits TM_QW3_NSR_HE_POOL
and TM_QW3_NSR_HE_LSI are not modeled. LSI are for special interrupts
reserved for HW bringup and the POOL bit is used when signaling a
group of VPs. This is not currently implemented in Linux but it is in
pHyp.

The most important special commands on the HV TIMA page are added to
let the core manage interrupts : acking and changing the CPU priority.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190306085032.15744-10-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2019-03-12 14:33:04 +11:00

1694 lines
49 KiB
C

/*
* QEMU PowerPC XIVE interrupt controller model
*
* Copyright (c) 2017-2018, IBM Corporation.
*
* This code is licensed under the GPL version 2 or later. See the
* COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qapi/error.h"
#include "target/ppc/cpu.h"
#include "sysemu/cpus.h"
#include "sysemu/dma.h"
#include "hw/qdev-properties.h"
#include "monitor/monitor.h"
#include "hw/ppc/xive.h"
#include "hw/ppc/xive_regs.h"
/*
* XIVE Thread Interrupt Management context
*/
/*
* Convert a priority number to an Interrupt Pending Buffer (IPB)
* register, which indicates a pending interrupt at the priority
* corresponding to the bit number
*/
static uint8_t priority_to_ipb(uint8_t priority)
{
return priority > XIVE_PRIORITY_MAX ?
0 : 1 << (XIVE_PRIORITY_MAX - priority);
}
/*
* Convert an Interrupt Pending Buffer (IPB) register to a Pending
* Interrupt Priority Register (PIPR), which contains the priority of
* the most favored pending notification.
*/
static uint8_t ipb_to_pipr(uint8_t ibp)
{
return ibp ? clz32((uint32_t)ibp << 24) : 0xff;
}
static void ipb_update(uint8_t *regs, uint8_t priority)
{
regs[TM_IPB] |= priority_to_ipb(priority);
regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
}
static uint8_t exception_mask(uint8_t ring)
{
switch (ring) {
case TM_QW1_OS:
return TM_QW1_NSR_EO;
case TM_QW3_HV_PHYS:
return TM_QW3_NSR_HE;
default:
g_assert_not_reached();
}
}
static uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t ring)
{
uint8_t *regs = &tctx->regs[ring];
uint8_t nsr = regs[TM_NSR];
uint8_t mask = exception_mask(ring);
qemu_irq_lower(tctx->output);
if (regs[TM_NSR] & mask) {
uint8_t cppr = regs[TM_PIPR];
regs[TM_CPPR] = cppr;
/* Reset the pending buffer bit */
regs[TM_IPB] &= ~priority_to_ipb(cppr);
regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
/* Drop Exception bit */
regs[TM_NSR] &= ~mask;
}
return (nsr << 8) | regs[TM_CPPR];
}
static void xive_tctx_notify(XiveTCTX *tctx, uint8_t ring)
{
uint8_t *regs = &tctx->regs[ring];
if (regs[TM_PIPR] < regs[TM_CPPR]) {
switch (ring) {
case TM_QW1_OS:
regs[TM_NSR] |= TM_QW1_NSR_EO;
break;
case TM_QW3_HV_PHYS:
regs[TM_NSR] |= (TM_QW3_NSR_HE_PHYS << 6);
break;
default:
g_assert_not_reached();
}
qemu_irq_raise(tctx->output);
}
}
static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr)
{
if (cppr > XIVE_PRIORITY_MAX) {
cppr = 0xff;
}
tctx->regs[ring + TM_CPPR] = cppr;
/* CPPR has changed, check if we need to raise a pending exception */
xive_tctx_notify(tctx, ring);
}
/*
* XIVE Thread Interrupt Management Area (TIMA)
*/
static void xive_tm_set_hv_cppr(XiveTCTX *tctx, hwaddr offset,
uint64_t value, unsigned size)
{
xive_tctx_set_cppr(tctx, TM_QW3_HV_PHYS, value & 0xff);
}
static uint64_t xive_tm_ack_hv_reg(XiveTCTX *tctx, hwaddr offset, unsigned size)
{
return xive_tctx_accept(tctx, TM_QW3_HV_PHYS);
}
static uint64_t xive_tm_pull_pool_ctx(XiveTCTX *tctx, hwaddr offset,
unsigned size)
{
uint64_t ret;
ret = tctx->regs[TM_QW2_HV_POOL + TM_WORD2] & TM_QW2W2_POOL_CAM;
tctx->regs[TM_QW2_HV_POOL + TM_WORD2] &= ~TM_QW2W2_POOL_CAM;
return ret;
}
static void xive_tm_vt_push(XiveTCTX *tctx, hwaddr offset,
uint64_t value, unsigned size)
{
tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = value & 0xff;
}
static uint64_t xive_tm_vt_poll(XiveTCTX *tctx, hwaddr offset, unsigned size)
{
return tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] & 0xff;
}
/*
* Define an access map for each page of the TIMA that we will use in
* the memory region ops to filter values when doing loads and stores
* of raw registers values
*
* Registers accessibility bits :
*
* 0x0 - no access
* 0x1 - write only
* 0x2 - read only
* 0x3 - read/write
*/
static const uint8_t xive_tm_hw_view[] = {
/* QW-0 User */ 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0,
/* QW-1 OS */ 3, 3, 3, 3, 3, 3, 0, 3, 3, 3, 3, 3, 0, 0, 0, 0,
/* QW-2 POOL */ 0, 0, 3, 3, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0,
/* QW-3 PHYS */ 3, 3, 3, 3, 0, 3, 0, 3, 3, 0, 0, 3, 3, 3, 3, 0,
};
static const uint8_t xive_tm_hv_view[] = {
/* QW-0 User */ 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0,
/* QW-1 OS */ 3, 3, 3, 3, 3, 3, 0, 3, 3, 3, 3, 3, 0, 0, 0, 0,
/* QW-2 POOL */ 0, 0, 3, 3, 0, 0, 0, 0, 0, 3, 3, 3, 0, 0, 0, 0,
/* QW-3 PHYS */ 3, 3, 3, 3, 0, 3, 0, 3, 3, 0, 0, 3, 0, 0, 0, 0,
};
static const uint8_t xive_tm_os_view[] = {
/* QW-0 User */ 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0,
/* QW-1 OS */ 2, 3, 2, 2, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0,
/* QW-2 POOL */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* QW-3 PHYS */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
static const uint8_t xive_tm_user_view[] = {
/* QW-0 User */ 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* QW-1 OS */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* QW-2 POOL */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* QW-3 PHYS */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
/*
* Overall TIMA access map for the thread interrupt management context
* registers
*/
static const uint8_t *xive_tm_views[] = {
[XIVE_TM_HW_PAGE] = xive_tm_hw_view,
[XIVE_TM_HV_PAGE] = xive_tm_hv_view,
[XIVE_TM_OS_PAGE] = xive_tm_os_view,
[XIVE_TM_USER_PAGE] = xive_tm_user_view,
};
/*
* Computes a register access mask for a given offset in the TIMA
*/
static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write)
{
uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
uint8_t reg_offset = offset & 0x3F;
uint8_t reg_mask = write ? 0x1 : 0x2;
uint64_t mask = 0x0;
int i;
for (i = 0; i < size; i++) {
if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) {
mask |= (uint64_t) 0xff << (8 * (size - i - 1));
}
}
return mask;
}
static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
unsigned size)
{
uint8_t ring_offset = offset & 0x30;
uint8_t reg_offset = offset & 0x3F;
uint64_t mask = xive_tm_mask(offset, size, true);
int i;
/*
* Only 4 or 8 bytes stores are allowed and the User ring is
* excluded
*/
if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%"
HWADDR_PRIx"\n", offset);
return;
}
/*
* Use the register offset for the raw values and filter out
* reserved values
*/
for (i = 0; i < size; i++) {
uint8_t byte_mask = (mask >> (8 * (size - i - 1)));
if (byte_mask) {
tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) &
byte_mask;
}
}
}
static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
{
uint8_t ring_offset = offset & 0x30;
uint8_t reg_offset = offset & 0x3F;
uint64_t mask = xive_tm_mask(offset, size, false);
uint64_t ret;
int i;
/*
* Only 4 or 8 bytes loads are allowed and the User ring is
* excluded
*/
if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%"
HWADDR_PRIx"\n", offset);
return -1;
}
/* Use the register offset for the raw values */
ret = 0;
for (i = 0; i < size; i++) {
ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1));
}
/* filter out reserved values */
return ret & mask;
}
/*
* The TM context is mapped twice within each page. Stores and loads
* to the first mapping below 2K write and read the specified values
* without modification. The second mapping above 2K performs specific
* state changes (side effects) in addition to setting/returning the
* interrupt management area context of the processor thread.
*/
static uint64_t xive_tm_ack_os_reg(XiveTCTX *tctx, hwaddr offset, unsigned size)
{
return xive_tctx_accept(tctx, TM_QW1_OS);
}
static void xive_tm_set_os_cppr(XiveTCTX *tctx, hwaddr offset,
uint64_t value, unsigned size)
{
xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff);
}
/*
* Adjust the IPB to allow a CPU to process event queues of other
* priorities during one physical interrupt cycle.
*/
static void xive_tm_set_os_pending(XiveTCTX *tctx, hwaddr offset,
uint64_t value, unsigned size)
{
ipb_update(&tctx->regs[TM_QW1_OS], value & 0xff);
xive_tctx_notify(tctx, TM_QW1_OS);
}
/*
* Define a mapping of "special" operations depending on the TIMA page
* offset and the size of the operation.
*/
typedef struct XiveTmOp {
uint8_t page_offset;
uint32_t op_offset;
unsigned size;
void (*write_handler)(XiveTCTX *tctx, hwaddr offset, uint64_t value,
unsigned size);
uint64_t (*read_handler)(XiveTCTX *tctx, hwaddr offset, unsigned size);
} XiveTmOp;
static const XiveTmOp xive_tm_operations[] = {
/*
* MMIOs below 2K : raw values and special operations without side
* effects
*/
{ XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR, 1, xive_tm_set_os_cppr, NULL },
{ XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, xive_tm_set_hv_cppr, NULL },
{ XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push, NULL },
{ XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL, xive_tm_vt_poll },
/* MMIOs above 2K : special operations with side effects */
{ XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG, 2, NULL, xive_tm_ack_os_reg },
{ XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL },
{ XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG, 2, NULL, xive_tm_ack_hv_reg },
{ XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 4, NULL, xive_tm_pull_pool_ctx },
{ XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 8, NULL, xive_tm_pull_pool_ctx },
};
static const XiveTmOp *xive_tm_find_op(hwaddr offset, unsigned size, bool write)
{
uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
uint32_t op_offset = offset & 0xFFF;
int i;
for (i = 0; i < ARRAY_SIZE(xive_tm_operations); i++) {
const XiveTmOp *xto = &xive_tm_operations[i];
/* Accesses done from a more privileged TIMA page is allowed */
if (xto->page_offset >= page_offset &&
xto->op_offset == op_offset &&
xto->size == size &&
((write && xto->write_handler) || (!write && xto->read_handler))) {
return xto;
}
}
return NULL;
}
/*
* TIMA MMIO handlers
*/
void xive_tctx_tm_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
unsigned size)
{
const XiveTmOp *xto;
/*
* TODO: check V bit in Q[0-3]W2
*/
/*
* First, check for special operations in the 2K region
*/
if (offset & 0x800) {
xto = xive_tm_find_op(offset, size, true);
if (!xto) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA"
"@%"HWADDR_PRIx"\n", offset);
} else {
xto->write_handler(tctx, offset, value, size);
}
return;
}
/*
* Then, for special operations in the region below 2K.
*/
xto = xive_tm_find_op(offset, size, true);
if (xto) {
xto->write_handler(tctx, offset, value, size);
return;
}
/*
* Finish with raw access to the register values
*/
xive_tm_raw_write(tctx, offset, value, size);
}
uint64_t xive_tctx_tm_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
{
const XiveTmOp *xto;
/*
* TODO: check V bit in Q[0-3]W2
*/
/*
* First, check for special operations in the 2K region
*/
if (offset & 0x800) {
xto = xive_tm_find_op(offset, size, false);
if (!xto) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA"
"@%"HWADDR_PRIx"\n", offset);
return -1;
}
return xto->read_handler(tctx, offset, size);
}
/*
* Then, for special operations in the region below 2K.
*/
xto = xive_tm_find_op(offset, size, false);
if (xto) {
return xto->read_handler(tctx, offset, size);
}
/*
* Finish with raw access to the register values
*/
return xive_tm_raw_read(tctx, offset, size);
}
static void xive_tm_write(void *opaque, hwaddr offset,
uint64_t value, unsigned size)
{
XiveTCTX *tctx = xive_router_get_tctx(XIVE_ROUTER(opaque), current_cpu);
xive_tctx_tm_write(tctx, offset, value, size);
}
static uint64_t xive_tm_read(void *opaque, hwaddr offset, unsigned size)
{
XiveTCTX *tctx = xive_router_get_tctx(XIVE_ROUTER(opaque), current_cpu);
return xive_tctx_tm_read(tctx, offset, size);
}
const MemoryRegionOps xive_tm_ops = {
.read = xive_tm_read,
.write = xive_tm_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 1,
.max_access_size = 8,
},
.impl = {
.min_access_size = 1,
.max_access_size = 8,
},
};
static inline uint32_t xive_tctx_word2(uint8_t *ring)
{
return *((uint32_t *) &ring[TM_WORD2]);
}
static char *xive_tctx_ring_print(uint8_t *ring)
{
uint32_t w2 = xive_tctx_word2(ring);
return g_strdup_printf("%02x %02x %02x %02x %02x "
"%02x %02x %02x %08x",
ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB],
ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR],
be32_to_cpu(w2));
}
static const char * const xive_tctx_ring_names[] = {
"USER", "OS", "POOL", "PHYS",
};
void xive_tctx_pic_print_info(XiveTCTX *tctx, Monitor *mon)
{
int cpu_index = tctx->cs ? tctx->cs->cpu_index : -1;
int i;
monitor_printf(mon, "CPU[%04x]: QW NSR CPPR IPB LSMFB ACK# INC AGE PIPR"
" W2\n", cpu_index);
for (i = 0; i < XIVE_TM_RING_COUNT; i++) {
char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]);
monitor_printf(mon, "CPU[%04x]: %4s %s\n", cpu_index,
xive_tctx_ring_names[i], s);
g_free(s);
}
}
static void xive_tctx_reset(void *dev)
{
XiveTCTX *tctx = XIVE_TCTX(dev);
memset(tctx->regs, 0, sizeof(tctx->regs));
/* Set some defaults */
tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF;
tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF;
tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF;
/*
* Initialize PIPR to 0xFF to avoid phantom interrupts when the
* CPPR is first set.
*/
tctx->regs[TM_QW1_OS + TM_PIPR] =
ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]);
tctx->regs[TM_QW3_HV_PHYS + TM_PIPR] =
ipb_to_pipr(tctx->regs[TM_QW3_HV_PHYS + TM_IPB]);
}
static void xive_tctx_realize(DeviceState *dev, Error **errp)
{
XiveTCTX *tctx = XIVE_TCTX(dev);
PowerPCCPU *cpu;
CPUPPCState *env;
Object *obj;
Error *local_err = NULL;
obj = object_property_get_link(OBJECT(dev), "cpu", &local_err);
if (!obj) {
error_propagate(errp, local_err);
error_prepend(errp, "required link 'cpu' not found: ");
return;
}
cpu = POWERPC_CPU(obj);
tctx->cs = CPU(obj);
env = &cpu->env;
switch (PPC_INPUT(env)) {
case PPC_FLAGS_INPUT_POWER9:
tctx->output = env->irq_inputs[POWER9_INPUT_INT];
break;
default:
error_setg(errp, "XIVE interrupt controller does not support "
"this CPU bus model");
return;
}
qemu_register_reset(xive_tctx_reset, dev);
}
static void xive_tctx_unrealize(DeviceState *dev, Error **errp)
{
qemu_unregister_reset(xive_tctx_reset, dev);
}
static const VMStateDescription vmstate_xive_tctx = {
.name = TYPE_XIVE_TCTX,
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_BUFFER(regs, XiveTCTX),
VMSTATE_END_OF_LIST()
},
};
static void xive_tctx_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->desc = "XIVE Interrupt Thread Context";
dc->realize = xive_tctx_realize;
dc->unrealize = xive_tctx_unrealize;
dc->vmsd = &vmstate_xive_tctx;
}
static const TypeInfo xive_tctx_info = {
.name = TYPE_XIVE_TCTX,
.parent = TYPE_DEVICE,
.instance_size = sizeof(XiveTCTX),
.class_init = xive_tctx_class_init,
};
Object *xive_tctx_create(Object *cpu, XiveRouter *xrtr, Error **errp)
{
Error *local_err = NULL;
Object *obj;
obj = object_new(TYPE_XIVE_TCTX);
object_property_add_child(cpu, TYPE_XIVE_TCTX, obj, &error_abort);
object_unref(obj);
object_property_add_const_link(obj, "cpu", cpu, &error_abort);
object_property_set_bool(obj, true, "realized", &local_err);
if (local_err) {
goto error;
}
return obj;
error:
object_unparent(obj);
error_propagate(errp, local_err);
return NULL;
}
/*
* XIVE ESB helpers
*/
static uint8_t xive_esb_set(uint8_t *pq, uint8_t value)
{
uint8_t old_pq = *pq & 0x3;
*pq &= ~0x3;
*pq |= value & 0x3;
return old_pq;
}
static bool xive_esb_trigger(uint8_t *pq)
{
uint8_t old_pq = *pq & 0x3;
switch (old_pq) {
case XIVE_ESB_RESET:
xive_esb_set(pq, XIVE_ESB_PENDING);
return true;
case XIVE_ESB_PENDING:
case XIVE_ESB_QUEUED:
xive_esb_set(pq, XIVE_ESB_QUEUED);
return false;
case XIVE_ESB_OFF:
xive_esb_set(pq, XIVE_ESB_OFF);
return false;
default:
g_assert_not_reached();
}
}
static bool xive_esb_eoi(uint8_t *pq)
{
uint8_t old_pq = *pq & 0x3;
switch (old_pq) {
case XIVE_ESB_RESET:
case XIVE_ESB_PENDING:
xive_esb_set(pq, XIVE_ESB_RESET);
return false;
case XIVE_ESB_QUEUED:
xive_esb_set(pq, XIVE_ESB_PENDING);
return true;
case XIVE_ESB_OFF:
xive_esb_set(pq, XIVE_ESB_OFF);
return false;
default:
g_assert_not_reached();
}
}
/*
* XIVE Interrupt Source (or IVSE)
*/
uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno)
{
assert(srcno < xsrc->nr_irqs);
return xsrc->status[srcno] & 0x3;
}
uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq)
{
assert(srcno < xsrc->nr_irqs);
return xive_esb_set(&xsrc->status[srcno], pq);
}
/*
* Returns whether the event notification should be forwarded.
*/
static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno)
{
uint8_t old_pq = xive_source_esb_get(xsrc, srcno);
xsrc->status[srcno] |= XIVE_STATUS_ASSERTED;
switch (old_pq) {
case XIVE_ESB_RESET:
xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING);
return true;
default:
return false;
}
}
/*
* Returns whether the event notification should be forwarded.
*/
static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno)
{
bool ret;
assert(srcno < xsrc->nr_irqs);
ret = xive_esb_trigger(&xsrc->status[srcno]);
if (xive_source_irq_is_lsi(xsrc, srcno) &&
xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) {
qemu_log_mask(LOG_GUEST_ERROR,
"XIVE: queued an event on LSI IRQ %d\n", srcno);
}
return ret;
}
/*
* Returns whether the event notification should be forwarded.
*/
static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno)
{
bool ret;
assert(srcno < xsrc->nr_irqs);
ret = xive_esb_eoi(&xsrc->status[srcno]);
/*
* LSI sources do not set the Q bit but they can still be
* asserted, in which case we should forward a new event
* notification
*/
if (xive_source_irq_is_lsi(xsrc, srcno) &&
xsrc->status[srcno] & XIVE_STATUS_ASSERTED) {
ret = xive_source_lsi_trigger(xsrc, srcno);
}
return ret;
}
/*
* Forward the source event notification to the Router
*/
static void xive_source_notify(XiveSource *xsrc, int srcno)
{
XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive);
if (xnc->notify) {
xnc->notify(xsrc->xive, srcno);
}
}
/*
* In a two pages ESB MMIO setting, even page is the trigger page, odd
* page is for management
*/
static inline bool addr_is_even(hwaddr addr, uint32_t shift)
{
return !((addr >> shift) & 1);
}
static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr)
{
return xive_source_esb_has_2page(xsrc) &&
addr_is_even(addr, xsrc->esb_shift - 1);
}
/*
* ESB MMIO loads
* Trigger page Management/EOI page
*
* ESB MMIO setting 2 pages 1 or 2 pages
*
* 0x000 .. 0x3FF -1 EOI and return 0|1
* 0x400 .. 0x7FF -1 EOI and return 0|1
* 0x800 .. 0xBFF -1 return PQ
* 0xC00 .. 0xCFF -1 return PQ and atomically PQ=00
* 0xD00 .. 0xDFF -1 return PQ and atomically PQ=01
* 0xE00 .. 0xDFF -1 return PQ and atomically PQ=10
* 0xF00 .. 0xDFF -1 return PQ and atomically PQ=11
*/
static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size)
{
XiveSource *xsrc = XIVE_SOURCE(opaque);
uint32_t offset = addr & 0xFFF;
uint32_t srcno = addr >> xsrc->esb_shift;
uint64_t ret = -1;
/* In a two pages ESB MMIO setting, trigger page should not be read */
if (xive_source_is_trigger_page(xsrc, addr)) {
qemu_log_mask(LOG_GUEST_ERROR,
"XIVE: invalid load on IRQ %d trigger page at "
"0x%"HWADDR_PRIx"\n", srcno, addr);
return -1;
}
switch (offset) {
case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
ret = xive_source_esb_eoi(xsrc, srcno);
/* Forward the source event notification for routing */
if (ret) {
xive_source_notify(xsrc, srcno);
}
break;
case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
ret = xive_source_esb_get(xsrc, srcno);
break;
case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n",
offset);
}
return ret;
}
/*
* ESB MMIO stores
* Trigger page Management/EOI page
*
* ESB MMIO setting 2 pages 1 or 2 pages
*
* 0x000 .. 0x3FF Trigger Trigger
* 0x400 .. 0x7FF Trigger EOI
* 0x800 .. 0xBFF Trigger undefined
* 0xC00 .. 0xCFF Trigger PQ=00
* 0xD00 .. 0xDFF Trigger PQ=01
* 0xE00 .. 0xDFF Trigger PQ=10
* 0xF00 .. 0xDFF Trigger PQ=11
*/
static void xive_source_esb_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size)
{
XiveSource *xsrc = XIVE_SOURCE(opaque);
uint32_t offset = addr & 0xFFF;
uint32_t srcno = addr >> xsrc->esb_shift;
bool notify = false;
/* In a two pages ESB MMIO setting, trigger page only triggers */
if (xive_source_is_trigger_page(xsrc, addr)) {
notify = xive_source_esb_trigger(xsrc, srcno);
goto out;
}
switch (offset) {
case 0 ... 0x3FF:
notify = xive_source_esb_trigger(xsrc, srcno);
break;
case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF:
if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) {
qemu_log_mask(LOG_GUEST_ERROR,
"XIVE: invalid Store EOI for IRQ %d\n", srcno);
return;
}
notify = xive_source_esb_eoi(xsrc, srcno);
break;
case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n",
offset);
return;
}
out:
/* Forward the source event notification for routing */
if (notify) {
xive_source_notify(xsrc, srcno);
}
}
static const MemoryRegionOps xive_source_esb_ops = {
.read = xive_source_esb_read,
.write = xive_source_esb_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 8,
.max_access_size = 8,
},
.impl = {
.min_access_size = 8,
.max_access_size = 8,
},
};
void xive_source_set_irq(void *opaque, int srcno, int val)
{
XiveSource *xsrc = XIVE_SOURCE(opaque);
bool notify = false;
if (xive_source_irq_is_lsi(xsrc, srcno)) {
if (val) {
notify = xive_source_lsi_trigger(xsrc, srcno);
} else {
xsrc->status[srcno] &= ~XIVE_STATUS_ASSERTED;
}
} else {
if (val) {
notify = xive_source_esb_trigger(xsrc, srcno);
}
}
/* Forward the source event notification for routing */
if (notify) {
xive_source_notify(xsrc, srcno);
}
}
void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, Monitor *mon)
{
int i;
for (i = 0; i < xsrc->nr_irqs; i++) {
uint8_t pq = xive_source_esb_get(xsrc, i);
if (pq == XIVE_ESB_OFF) {
continue;
}
monitor_printf(mon, " %08x %s %c%c%c\n", i + offset,
xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
pq & XIVE_ESB_VAL_P ? 'P' : '-',
pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ');
}
}
static void xive_source_reset(void *dev)
{
XiveSource *xsrc = XIVE_SOURCE(dev);
/* Do not clear the LSI bitmap */
/* PQs are initialized to 0b01 (Q=1) which corresponds to "ints off" */
memset(xsrc->status, XIVE_ESB_OFF, xsrc->nr_irqs);
}
static void xive_source_realize(DeviceState *dev, Error **errp)
{
XiveSource *xsrc = XIVE_SOURCE(dev);
Object *obj;
Error *local_err = NULL;
obj = object_property_get_link(OBJECT(dev), "xive", &local_err);
if (!obj) {
error_propagate(errp, local_err);
error_prepend(errp, "required link 'xive' not found: ");
return;
}
xsrc->xive = XIVE_NOTIFIER(obj);
if (!xsrc->nr_irqs) {
error_setg(errp, "Number of interrupt needs to be greater than 0");
return;
}
if (xsrc->esb_shift != XIVE_ESB_4K &&
xsrc->esb_shift != XIVE_ESB_4K_2PAGE &&
xsrc->esb_shift != XIVE_ESB_64K &&
xsrc->esb_shift != XIVE_ESB_64K_2PAGE) {
error_setg(errp, "Invalid ESB shift setting");
return;
}
xsrc->status = g_malloc0(xsrc->nr_irqs);
xsrc->lsi_map = bitmap_new(xsrc->nr_irqs);
memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
&xive_source_esb_ops, xsrc, "xive.esb",
(1ull << xsrc->esb_shift) * xsrc->nr_irqs);
qemu_register_reset(xive_source_reset, dev);
}
static const VMStateDescription vmstate_xive_source = {
.name = TYPE_XIVE_SOURCE,
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL),
VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs),
VMSTATE_END_OF_LIST()
},
};
/*
* The default XIVE interrupt source setting for the ESB MMIOs is two
* 64k pages without Store EOI, to be in sync with KVM.
*/
static Property xive_source_properties[] = {
DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0),
DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0),
DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE),
DEFINE_PROP_END_OF_LIST(),
};
static void xive_source_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->desc = "XIVE Interrupt Source";
dc->props = xive_source_properties;
dc->realize = xive_source_realize;
dc->vmsd = &vmstate_xive_source;
}
static const TypeInfo xive_source_info = {
.name = TYPE_XIVE_SOURCE,
.parent = TYPE_DEVICE,
.instance_size = sizeof(XiveSource),
.class_init = xive_source_class_init,
};
/*
* XiveEND helpers
*/
void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, Monitor *mon)
{
uint64_t qaddr_base = (uint64_t) be32_to_cpu(end->w2 & 0x0fffffff) << 32
| be32_to_cpu(end->w3);
uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
uint32_t qentries = 1 << (qsize + 10);
int i;
/*
* print out the [ (qindex - (width - 1)) .. (qindex + 1)] window
*/
monitor_printf(mon, " [ ");
qindex = (qindex - (width - 1)) & (qentries - 1);
for (i = 0; i < width; i++) {
uint64_t qaddr = qaddr_base + (qindex << 2);
uint32_t qdata = -1;
if (dma_memory_read(&address_space_memory, qaddr, &qdata,
sizeof(qdata))) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%"
HWADDR_PRIx "\n", qaddr);
return;
}
monitor_printf(mon, "%s%08x ", i == width - 1 ? "^" : "",
be32_to_cpu(qdata));
qindex = (qindex + 1) & (qentries - 1);
}
}
void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon)
{
uint64_t qaddr_base = (uint64_t) be32_to_cpu(end->w2 & 0x0fffffff) << 32
| be32_to_cpu(end->w3);
uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
uint32_t qentries = 1 << (qsize + 10);
uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6);
uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
if (!xive_end_is_valid(end)) {
return;
}
monitor_printf(mon, " %08x %c%c%c%c%c prio:%d nvt:%04x eq:@%08"PRIx64
"% 6d/%5d ^%d", end_idx,
xive_end_is_valid(end) ? 'v' : '-',
xive_end_is_enqueue(end) ? 'q' : '-',
xive_end_is_notify(end) ? 'n' : '-',
xive_end_is_backlog(end) ? 'b' : '-',
xive_end_is_escalate(end) ? 'e' : '-',
priority, nvt, qaddr_base, qindex, qentries, qgen);
xive_end_queue_pic_print_info(end, 6, mon);
monitor_printf(mon, "]\n");
}
static void xive_end_enqueue(XiveEND *end, uint32_t data)
{
uint64_t qaddr_base = (uint64_t) be32_to_cpu(end->w2 & 0x0fffffff) << 32
| be32_to_cpu(end->w3);
uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
uint64_t qaddr = qaddr_base + (qindex << 2);
uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff));
uint32_t qentries = 1 << (qsize + 10);
if (dma_memory_write(&address_space_memory, qaddr, &qdata, sizeof(qdata))) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%"
HWADDR_PRIx "\n", qaddr);
return;
}
qindex = (qindex + 1) & (qentries - 1);
if (qindex == 0) {
qgen ^= 1;
end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen);
}
end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex);
}
/*
* XIVE Router (aka. Virtualization Controller or IVRE)
*/
int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
XiveEAS *eas)
{
XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
return xrc->get_eas(xrtr, eas_blk, eas_idx, eas);
}
int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
XiveEND *end)
{
XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
return xrc->get_end(xrtr, end_blk, end_idx, end);
}
int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
XiveEND *end, uint8_t word_number)
{
XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
return xrc->write_end(xrtr, end_blk, end_idx, end, word_number);
}
int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
XiveNVT *nvt)
{
XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt);
}
int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
XiveNVT *nvt, uint8_t word_number)
{
XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number);
}
XiveTCTX *xive_router_get_tctx(XiveRouter *xrtr, CPUState *cs)
{
XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
return xrc->get_tctx(xrtr, cs);
}
/*
* By default on P9, the HW CAM line (23bits) is hardwired to :
*
* 0x000||0b1||4Bit chip number||7Bit Thread number.
*
* When the block grouping is enabled, the CAM line is changed to :
*
* 4Bit chip number||0x001||7Bit Thread number.
*/
static uint32_t hw_cam_line(uint8_t chip_id, uint8_t tid)
{
return 1 << 11 | (chip_id & 0xf) << 7 | (tid & 0x7f);
}
static bool xive_presenter_tctx_match_hw(XiveTCTX *tctx,
uint8_t nvt_blk, uint32_t nvt_idx)
{
CPUPPCState *env = &POWERPC_CPU(tctx->cs)->env;
uint32_t pir = env->spr_cb[SPR_PIR].default_value;
return hw_cam_line((pir >> 8) & 0xf, pir & 0x7f) ==
hw_cam_line(nvt_blk, nvt_idx);
}
/*
* The thread context register words are in big-endian format.
*/
static int xive_presenter_tctx_match(XiveTCTX *tctx, uint8_t format,
uint8_t nvt_blk, uint32_t nvt_idx,
bool cam_ignore, uint32_t logic_serv)
{
uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx);
uint32_t qw3w2 = xive_tctx_word2(&tctx->regs[TM_QW3_HV_PHYS]);
uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]);
/*
* TODO (PowerNV): ignore mode. The low order bits of the NVT
* identifier are ignored in the "CAM" match.
*/
if (format == 0) {
if (cam_ignore == true) {
/*
* F=0 & i=1: Logical server notification (bits ignored at
* the end of the NVT identifier)
*/
qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n",
nvt_blk, nvt_idx);
return -1;
}
/* F=0 & i=0: Specific NVT notification */
/* PHYS ring */
if ((be32_to_cpu(qw3w2) & TM_QW3W2_VT) &&
xive_presenter_tctx_match_hw(tctx, nvt_blk, nvt_idx)) {
return TM_QW3_HV_PHYS;
}
/* HV POOL ring */
if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) &&
cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) {
return TM_QW2_HV_POOL;
}
/* OS ring */
if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) {
return TM_QW1_OS;
}
} else {
/* F=1 : User level Event-Based Branch (EBB) notification */
/* USER ring */
if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
(cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) &&
(be32_to_cpu(qw0w2) & TM_QW0W2_VU) &&
(logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) {
return TM_QW0_USER;
}
}
return -1;
}
typedef struct XiveTCTXMatch {
XiveTCTX *tctx;
uint8_t ring;
} XiveTCTXMatch;
static bool xive_presenter_match(XiveRouter *xrtr, uint8_t format,
uint8_t nvt_blk, uint32_t nvt_idx,
bool cam_ignore, uint8_t priority,
uint32_t logic_serv, XiveTCTXMatch *match)
{
CPUState *cs;
/*
* TODO (PowerNV): handle chip_id overwrite of block field for
* hardwired CAM compares
*/
CPU_FOREACH(cs) {
XiveTCTX *tctx = xive_router_get_tctx(xrtr, cs);
int ring;
/*
* HW checks that the CPU is enabled in the Physical Thread
* Enable Register (PTER).
*/
/*
* Check the thread context CAM lines and record matches. We
* will handle CPU exception delivery later
*/
ring = xive_presenter_tctx_match(tctx, format, nvt_blk, nvt_idx,
cam_ignore, logic_serv);
/*
* Save the context and follow on to catch duplicates, that we
* don't support yet.
*/
if (ring != -1) {
if (match->tctx) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a thread "
"context NVT %x/%x\n", nvt_blk, nvt_idx);
return false;
}
match->ring = ring;
match->tctx = tctx;
}
}
if (!match->tctx) {
qemu_log_mask(LOG_UNIMP, "XIVE: NVT %x/%x is not dispatched\n",
nvt_blk, nvt_idx);
return false;
}
return true;
}
/*
* This is our simple Xive Presenter Engine model. It is merged in the
* Router as it does not require an extra object.
*
* It receives notification requests sent by the IVRE to find one
* matching NVT (or more) dispatched on the processor threads. In case
* of a single NVT notification, the process is abreviated and the
* thread is signaled if a match is found. In case of a logical server
* notification (bits ignored at the end of the NVT identifier), the
* IVPE and IVRE select a winning thread using different filters. This
* involves 2 or 3 exchanges on the PowerBus that the model does not
* support.
*
* The parameters represent what is sent on the PowerBus
*/
static void xive_presenter_notify(XiveRouter *xrtr, uint8_t format,
uint8_t nvt_blk, uint32_t nvt_idx,
bool cam_ignore, uint8_t priority,
uint32_t logic_serv)
{
XiveNVT nvt;
XiveTCTXMatch match = { .tctx = NULL, .ring = 0 };
bool found;
/* NVT cache lookup */
if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n",
nvt_blk, nvt_idx);
return;
}
if (!xive_nvt_is_valid(&nvt)) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n",
nvt_blk, nvt_idx);
return;
}
found = xive_presenter_match(xrtr, format, nvt_blk, nvt_idx, cam_ignore,
priority, logic_serv, &match);
if (found) {
ipb_update(&match.tctx->regs[match.ring], priority);
xive_tctx_notify(match.tctx, match.ring);
return;
}
/* Record the IPB in the associated NVT structure */
ipb_update((uint8_t *) &nvt.w4, priority);
xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
/*
* If no matching NVT is dispatched on a HW thread :
* - update the NVT structure if backlog is activated
* - escalate (ESe PQ bits and EAS in w4-5) if escalation is
* activated
*/
}
/*
* An END trigger can come from an event trigger (IPI or HW) or from
* another chip. We don't model the PowerBus but the END trigger
* message has the same parameters than in the function below.
*/
static void xive_router_end_notify(XiveRouter *xrtr, uint8_t end_blk,
uint32_t end_idx, uint32_t end_data)
{
XiveEND end;
uint8_t priority;
uint8_t format;
/* END cache lookup */
if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
end_idx);
return;
}
if (!xive_end_is_valid(&end)) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
end_blk, end_idx);
return;
}
if (xive_end_is_enqueue(&end)) {
xive_end_enqueue(&end, end_data);
/* Enqueuing event data modifies the EQ toggle and index */
xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
}
/*
* The W7 format depends on the F bit in W6. It defines the type
* of the notification :
*
* F=0 : single or multiple NVT notification
* F=1 : User level Event-Based Branch (EBB) notification, no
* priority
*/
format = xive_get_field32(END_W6_FORMAT_BIT, end.w6);
priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7);
/* The END is masked */
if (format == 0 && priority == 0xff) {
return;
}
/*
* Check the END ESn (Event State Buffer for notification) for
* even futher coalescing in the Router
*/
if (!xive_end_is_notify(&end)) {
uint8_t pq = xive_get_field32(END_W1_ESn, end.w1);
bool notify = xive_esb_trigger(&pq);
if (pq != xive_get_field32(END_W1_ESn, end.w1)) {
end.w1 = xive_set_field32(END_W1_ESn, end.w1, pq);
xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
}
/* ESn[Q]=1 : end of notification */
if (!notify) {
return;
}
}
/*
* Follows IVPE notification
*/
xive_presenter_notify(xrtr, format,
xive_get_field32(END_W6_NVT_BLOCK, end.w6),
xive_get_field32(END_W6_NVT_INDEX, end.w6),
xive_get_field32(END_W7_F0_IGNORE, end.w7),
priority,
xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7));
/* TODO: Auto EOI. */
}
void xive_router_notify(XiveNotifier *xn, uint32_t lisn)
{
XiveRouter *xrtr = XIVE_ROUTER(xn);
uint8_t eas_blk = XIVE_SRCNO_BLOCK(lisn);
uint32_t eas_idx = XIVE_SRCNO_INDEX(lisn);
XiveEAS eas;
/* EAS cache lookup */
if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn);
return;
}
/*
* The IVRE checks the State Bit Cache at this point. We skip the
* SBC lookup because the state bits of the sources are modeled
* internally in QEMU.
*/
if (!xive_eas_is_valid(&eas)) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn);
return;
}
if (xive_eas_is_masked(&eas)) {
/* Notification completed */
return;
}
/*
* The event trigger becomes an END trigger
*/
xive_router_end_notify(xrtr,
xive_get_field64(EAS_END_BLOCK, eas.w),
xive_get_field64(EAS_END_INDEX, eas.w),
xive_get_field64(EAS_END_DATA, eas.w));
}
static void xive_router_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
dc->desc = "XIVE Router Engine";
xnc->notify = xive_router_notify;
}
static const TypeInfo xive_router_info = {
.name = TYPE_XIVE_ROUTER,
.parent = TYPE_SYS_BUS_DEVICE,
.abstract = true,
.class_size = sizeof(XiveRouterClass),
.class_init = xive_router_class_init,
.interfaces = (InterfaceInfo[]) {
{ TYPE_XIVE_NOTIFIER },
{ }
}
};
void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, Monitor *mon)
{
if (!xive_eas_is_valid(eas)) {
return;
}
monitor_printf(mon, " %08x %s end:%02x/%04x data:%08x\n",
lisn, xive_eas_is_masked(eas) ? "M" : " ",
(uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w),
(uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
(uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
}
/*
* END ESB MMIO loads
*/
static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size)
{
XiveENDSource *xsrc = XIVE_END_SOURCE(opaque);
uint32_t offset = addr & 0xFFF;
uint8_t end_blk;
uint32_t end_idx;
XiveEND end;
uint32_t end_esmask;
uint8_t pq;
uint64_t ret = -1;
end_blk = xsrc->block_id;
end_idx = addr >> (xsrc->esb_shift + 1);
if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
end_idx);
return -1;
}
if (!xive_end_is_valid(&end)) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
end_blk, end_idx);
return -1;
}
end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe;
pq = xive_get_field32(end_esmask, end.w1);
switch (offset) {
case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
ret = xive_esb_eoi(&pq);
/* Forward the source event notification for routing ?? */
break;
case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
ret = pq;
break;
case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
ret = xive_esb_set(&pq, (offset >> 8) & 0x3);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n",
offset);
return -1;
}
if (pq != xive_get_field32(end_esmask, end.w1)) {
end.w1 = xive_set_field32(end_esmask, end.w1, pq);
xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1);
}
return ret;
}
/*
* END ESB MMIO stores are invalid
*/
static void xive_end_source_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size)
{
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%"
HWADDR_PRIx"\n", addr);
}
static const MemoryRegionOps xive_end_source_ops = {
.read = xive_end_source_read,
.write = xive_end_source_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 8,
.max_access_size = 8,
},
.impl = {
.min_access_size = 8,
.max_access_size = 8,
},
};
static void xive_end_source_realize(DeviceState *dev, Error **errp)
{
XiveENDSource *xsrc = XIVE_END_SOURCE(dev);
Object *obj;
Error *local_err = NULL;
obj = object_property_get_link(OBJECT(dev), "xive", &local_err);
if (!obj) {
error_propagate(errp, local_err);
error_prepend(errp, "required link 'xive' not found: ");
return;
}
xsrc->xrtr = XIVE_ROUTER(obj);
if (!xsrc->nr_ends) {
error_setg(errp, "Number of interrupt needs to be greater than 0");
return;
}
if (xsrc->esb_shift != XIVE_ESB_4K &&
xsrc->esb_shift != XIVE_ESB_64K) {
error_setg(errp, "Invalid ESB shift setting");
return;
}
/*
* Each END is assigned an even/odd pair of MMIO pages, the even page
* manages the ESn field while the odd page manages the ESe field.
*/
memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
&xive_end_source_ops, xsrc, "xive.end",
(1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends);
}
static Property xive_end_source_properties[] = {
DEFINE_PROP_UINT8("block-id", XiveENDSource, block_id, 0),
DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0),
DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K),
DEFINE_PROP_END_OF_LIST(),
};
static void xive_end_source_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->desc = "XIVE END Source";
dc->props = xive_end_source_properties;
dc->realize = xive_end_source_realize;
}
static const TypeInfo xive_end_source_info = {
.name = TYPE_XIVE_END_SOURCE,
.parent = TYPE_DEVICE,
.instance_size = sizeof(XiveENDSource),
.class_init = xive_end_source_class_init,
};
/*
* XIVE Notifier
*/
static const TypeInfo xive_notifier_info = {
.name = TYPE_XIVE_NOTIFIER,
.parent = TYPE_INTERFACE,
.class_size = sizeof(XiveNotifierClass),
};
static void xive_register_types(void)
{
type_register_static(&xive_source_info);
type_register_static(&xive_notifier_info);
type_register_static(&xive_router_info);
type_register_static(&xive_end_source_info);
type_register_static(&xive_tctx_info);
}
type_init(xive_register_types)