qemu-patch-raspberry4/target-alpha/helper.c
Richard Henderson 743434099d target-alpha: Make use of fp_status.flush_inputs_to_zero.
This softfp feature post-dates the last major update to the Alpha
fpu translation.  We can make use of this to eliminate at least
one helper function that was performing this operation by hand.

Signed-off-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
2012-03-24 17:07:58 +00:00

534 lines
14 KiB
C

/*
* Alpha emulation cpu helpers for qemu.
*
* Copyright (c) 2007 Jocelyn Mayer
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include "cpu.h"
#include "softfloat.h"
#include "helper.h"
uint64_t cpu_alpha_load_fpcr (CPUAlphaState *env)
{
uint64_t r = 0;
uint8_t t;
t = env->fpcr_exc_status;
if (t) {
r = FPCR_SUM;
if (t & float_flag_invalid) {
r |= FPCR_INV;
}
if (t & float_flag_divbyzero) {
r |= FPCR_DZE;
}
if (t & float_flag_overflow) {
r |= FPCR_OVF;
}
if (t & float_flag_underflow) {
r |= FPCR_UNF;
}
if (t & float_flag_inexact) {
r |= FPCR_INE;
}
}
t = env->fpcr_exc_mask;
if (t & float_flag_invalid) {
r |= FPCR_INVD;
}
if (t & float_flag_divbyzero) {
r |= FPCR_DZED;
}
if (t & float_flag_overflow) {
r |= FPCR_OVFD;
}
if (t & float_flag_underflow) {
r |= FPCR_UNFD;
}
if (t & float_flag_inexact) {
r |= FPCR_INED;
}
switch (env->fpcr_dyn_round) {
case float_round_nearest_even:
r |= FPCR_DYN_NORMAL;
break;
case float_round_down:
r |= FPCR_DYN_MINUS;
break;
case float_round_up:
r |= FPCR_DYN_PLUS;
break;
case float_round_to_zero:
r |= FPCR_DYN_CHOPPED;
break;
}
if (env->fp_status.flush_inputs_to_zero) {
r |= FPCR_DNZ;
}
if (env->fpcr_dnod) {
r |= FPCR_DNOD;
}
if (env->fpcr_undz) {
r |= FPCR_UNDZ;
}
return r;
}
void cpu_alpha_store_fpcr (CPUAlphaState *env, uint64_t val)
{
uint8_t t;
t = 0;
if (val & FPCR_INV) {
t |= float_flag_invalid;
}
if (val & FPCR_DZE) {
t |= float_flag_divbyzero;
}
if (val & FPCR_OVF) {
t |= float_flag_overflow;
}
if (val & FPCR_UNF) {
t |= float_flag_underflow;
}
if (val & FPCR_INE) {
t |= float_flag_inexact;
}
env->fpcr_exc_status = t;
t = 0;
if (val & FPCR_INVD) {
t |= float_flag_invalid;
}
if (val & FPCR_DZED) {
t |= float_flag_divbyzero;
}
if (val & FPCR_OVFD) {
t |= float_flag_overflow;
}
if (val & FPCR_UNFD) {
t |= float_flag_underflow;
}
if (val & FPCR_INED) {
t |= float_flag_inexact;
}
env->fpcr_exc_mask = t;
switch (val & FPCR_DYN_MASK) {
case FPCR_DYN_CHOPPED:
t = float_round_to_zero;
break;
case FPCR_DYN_MINUS:
t = float_round_down;
break;
case FPCR_DYN_NORMAL:
t = float_round_nearest_even;
break;
case FPCR_DYN_PLUS:
t = float_round_up;
break;
}
env->fpcr_dyn_round = t;
env->fpcr_dnod = (val & FPCR_DNOD) != 0;
env->fpcr_undz = (val & FPCR_UNDZ) != 0;
env->fpcr_flush_to_zero = env->fpcr_dnod & env->fpcr_undz;
env->fp_status.flush_inputs_to_zero = (val & FPCR_DNZ) != 0;
}
uint64_t helper_load_fpcr(CPUAlphaState *env)
{
return cpu_alpha_load_fpcr(env);
}
void helper_store_fpcr(CPUAlphaState *env, uint64_t val)
{
cpu_alpha_store_fpcr(env, val);
}
#if defined(CONFIG_USER_ONLY)
int cpu_alpha_handle_mmu_fault(CPUAlphaState *env, target_ulong address,
int rw, int mmu_idx)
{
env->exception_index = EXCP_MMFAULT;
env->trap_arg0 = address;
return 1;
}
#else
void swap_shadow_regs(CPUAlphaState *env)
{
uint64_t i0, i1, i2, i3, i4, i5, i6, i7;
i0 = env->ir[8];
i1 = env->ir[9];
i2 = env->ir[10];
i3 = env->ir[11];
i4 = env->ir[12];
i5 = env->ir[13];
i6 = env->ir[14];
i7 = env->ir[25];
env->ir[8] = env->shadow[0];
env->ir[9] = env->shadow[1];
env->ir[10] = env->shadow[2];
env->ir[11] = env->shadow[3];
env->ir[12] = env->shadow[4];
env->ir[13] = env->shadow[5];
env->ir[14] = env->shadow[6];
env->ir[25] = env->shadow[7];
env->shadow[0] = i0;
env->shadow[1] = i1;
env->shadow[2] = i2;
env->shadow[3] = i3;
env->shadow[4] = i4;
env->shadow[5] = i5;
env->shadow[6] = i6;
env->shadow[7] = i7;
}
/* Returns the OSF/1 entMM failure indication, or -1 on success. */
static int get_physical_address(CPUAlphaState *env, target_ulong addr,
int prot_need, int mmu_idx,
target_ulong *pphys, int *pprot)
{
target_long saddr = addr;
target_ulong phys = 0;
target_ulong L1pte, L2pte, L3pte;
target_ulong pt, index;
int prot = 0;
int ret = MM_K_ACV;
/* Ensure that the virtual address is properly sign-extended from
the last implemented virtual address bit. */
if (saddr >> TARGET_VIRT_ADDR_SPACE_BITS != saddr >> 63) {
goto exit;
}
/* Translate the superpage. */
/* ??? When we do more than emulate Unix PALcode, we'll need to
determine which KSEG is actually active. */
if (saddr < 0 && ((saddr >> 41) & 3) == 2) {
/* User-space cannot access KSEG addresses. */
if (mmu_idx != MMU_KERNEL_IDX) {
goto exit;
}
/* For the benefit of the Typhoon chipset, move bit 40 to bit 43.
We would not do this if the 48-bit KSEG is enabled. */
phys = saddr & ((1ull << 40) - 1);
phys |= (saddr & (1ull << 40)) << 3;
prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
ret = -1;
goto exit;
}
/* Interpret the page table exactly like PALcode does. */
pt = env->ptbr;
/* L1 page table read. */
index = (addr >> (TARGET_PAGE_BITS + 20)) & 0x3ff;
L1pte = ldq_phys(pt + index*8);
if (unlikely((L1pte & PTE_VALID) == 0)) {
ret = MM_K_TNV;
goto exit;
}
if (unlikely((L1pte & PTE_KRE) == 0)) {
goto exit;
}
pt = L1pte >> 32 << TARGET_PAGE_BITS;
/* L2 page table read. */
index = (addr >> (TARGET_PAGE_BITS + 10)) & 0x3ff;
L2pte = ldq_phys(pt + index*8);
if (unlikely((L2pte & PTE_VALID) == 0)) {
ret = MM_K_TNV;
goto exit;
}
if (unlikely((L2pte & PTE_KRE) == 0)) {
goto exit;
}
pt = L2pte >> 32 << TARGET_PAGE_BITS;
/* L3 page table read. */
index = (addr >> TARGET_PAGE_BITS) & 0x3ff;
L3pte = ldq_phys(pt + index*8);
phys = L3pte >> 32 << TARGET_PAGE_BITS;
if (unlikely((L3pte & PTE_VALID) == 0)) {
ret = MM_K_TNV;
goto exit;
}
#if PAGE_READ != 1 || PAGE_WRITE != 2 || PAGE_EXEC != 4
# error page bits out of date
#endif
/* Check access violations. */
if (L3pte & (PTE_KRE << mmu_idx)) {
prot |= PAGE_READ | PAGE_EXEC;
}
if (L3pte & (PTE_KWE << mmu_idx)) {
prot |= PAGE_WRITE;
}
if (unlikely((prot & prot_need) == 0 && prot_need)) {
goto exit;
}
/* Check fault-on-operation violations. */
prot &= ~(L3pte >> 1);
ret = -1;
if (unlikely((prot & prot_need) == 0)) {
ret = (prot_need & PAGE_EXEC ? MM_K_FOE :
prot_need & PAGE_WRITE ? MM_K_FOW :
prot_need & PAGE_READ ? MM_K_FOR : -1);
}
exit:
*pphys = phys;
*pprot = prot;
return ret;
}
target_phys_addr_t cpu_get_phys_page_debug(CPUAlphaState *env, target_ulong addr)
{
target_ulong phys;
int prot, fail;
fail = get_physical_address(env, addr, 0, 0, &phys, &prot);
return (fail >= 0 ? -1 : phys);
}
int cpu_alpha_handle_mmu_fault(CPUAlphaState *env, target_ulong addr, int rw,
int mmu_idx)
{
target_ulong phys;
int prot, fail;
fail = get_physical_address(env, addr, 1 << rw, mmu_idx, &phys, &prot);
if (unlikely(fail >= 0)) {
env->exception_index = EXCP_MMFAULT;
env->trap_arg0 = addr;
env->trap_arg1 = fail;
env->trap_arg2 = (rw == 2 ? -1 : rw);
return 1;
}
tlb_set_page(env, addr & TARGET_PAGE_MASK, phys & TARGET_PAGE_MASK,
prot, mmu_idx, TARGET_PAGE_SIZE);
return 0;
}
#endif /* USER_ONLY */
void do_interrupt (CPUAlphaState *env)
{
int i = env->exception_index;
if (qemu_loglevel_mask(CPU_LOG_INT)) {
static int count;
const char *name = "<unknown>";
switch (i) {
case EXCP_RESET:
name = "reset";
break;
case EXCP_MCHK:
name = "mchk";
break;
case EXCP_SMP_INTERRUPT:
name = "smp_interrupt";
break;
case EXCP_CLK_INTERRUPT:
name = "clk_interrupt";
break;
case EXCP_DEV_INTERRUPT:
name = "dev_interrupt";
break;
case EXCP_MMFAULT:
name = "mmfault";
break;
case EXCP_UNALIGN:
name = "unalign";
break;
case EXCP_OPCDEC:
name = "opcdec";
break;
case EXCP_ARITH:
name = "arith";
break;
case EXCP_FEN:
name = "fen";
break;
case EXCP_CALL_PAL:
name = "call_pal";
break;
case EXCP_STL_C:
name = "stl_c";
break;
case EXCP_STQ_C:
name = "stq_c";
break;
}
qemu_log("INT %6d: %s(%#x) pc=%016" PRIx64 " sp=%016" PRIx64 "\n",
++count, name, env->error_code, env->pc, env->ir[IR_SP]);
}
env->exception_index = -1;
#if !defined(CONFIG_USER_ONLY)
switch (i) {
case EXCP_RESET:
i = 0x0000;
break;
case EXCP_MCHK:
i = 0x0080;
break;
case EXCP_SMP_INTERRUPT:
i = 0x0100;
break;
case EXCP_CLK_INTERRUPT:
i = 0x0180;
break;
case EXCP_DEV_INTERRUPT:
i = 0x0200;
break;
case EXCP_MMFAULT:
i = 0x0280;
break;
case EXCP_UNALIGN:
i = 0x0300;
break;
case EXCP_OPCDEC:
i = 0x0380;
break;
case EXCP_ARITH:
i = 0x0400;
break;
case EXCP_FEN:
i = 0x0480;
break;
case EXCP_CALL_PAL:
i = env->error_code;
/* There are 64 entry points for both privileged and unprivileged,
with bit 0x80 indicating unprivileged. Each entry point gets
64 bytes to do its job. */
if (i & 0x80) {
i = 0x2000 + (i - 0x80) * 64;
} else {
i = 0x1000 + i * 64;
}
break;
default:
cpu_abort(env, "Unhandled CPU exception");
}
/* Remember where the exception happened. Emulate real hardware in
that the low bit of the PC indicates PALmode. */
env->exc_addr = env->pc | env->pal_mode;
/* Continue execution at the PALcode entry point. */
env->pc = env->palbr + i;
/* Switch to PALmode. */
if (!env->pal_mode) {
env->pal_mode = 1;
swap_shadow_regs(env);
}
#endif /* !USER_ONLY */
}
void cpu_dump_state (CPUAlphaState *env, FILE *f, fprintf_function cpu_fprintf,
int flags)
{
static const char *linux_reg_names[] = {
"v0 ", "t0 ", "t1 ", "t2 ", "t3 ", "t4 ", "t5 ", "t6 ",
"t7 ", "s0 ", "s1 ", "s2 ", "s3 ", "s4 ", "s5 ", "fp ",
"a0 ", "a1 ", "a2 ", "a3 ", "a4 ", "a5 ", "t8 ", "t9 ",
"t10", "t11", "ra ", "t12", "at ", "gp ", "sp ", "zero",
};
int i;
cpu_fprintf(f, " PC " TARGET_FMT_lx " PS %02x\n",
env->pc, env->ps);
for (i = 0; i < 31; i++) {
cpu_fprintf(f, "IR%02d %s " TARGET_FMT_lx " ", i,
linux_reg_names[i], env->ir[i]);
if ((i % 3) == 2)
cpu_fprintf(f, "\n");
}
cpu_fprintf(f, "lock_a " TARGET_FMT_lx " lock_v " TARGET_FMT_lx "\n",
env->lock_addr, env->lock_value);
for (i = 0; i < 31; i++) {
cpu_fprintf(f, "FIR%02d " TARGET_FMT_lx " ", i,
*((uint64_t *)(&env->fir[i])));
if ((i % 3) == 2)
cpu_fprintf(f, "\n");
}
cpu_fprintf(f, "\n");
}
void do_restore_state(CPUAlphaState *env, void *retaddr)
{
uintptr_t pc = (uintptr_t)retaddr;
if (pc) {
TranslationBlock *tb = tb_find_pc(pc);
if (tb) {
cpu_restore_state(tb, env, pc);
}
}
}
/* This should only be called from translate, via gen_excp.
We expect that ENV->PC has already been updated. */
void QEMU_NORETURN helper_excp(CPUAlphaState *env, int excp, int error)
{
env->exception_index = excp;
env->error_code = error;
cpu_loop_exit(env);
}
/* This may be called from any of the helpers to set up EXCEPTION_INDEX. */
void QEMU_NORETURN dynamic_excp(CPUAlphaState *env, void *retaddr,
int excp, int error)
{
env->exception_index = excp;
env->error_code = error;
do_restore_state(env, retaddr);
cpu_loop_exit(env);
}
void QEMU_NORETURN arith_excp(CPUAlphaState *env, void *retaddr,
int exc, uint64_t mask)
{
env->trap_arg0 = exc;
env->trap_arg1 = mask;
dynamic_excp(env, retaddr, EXCP_ARITH, 0);
}